Learning Algorithms of Form Structure for Bayesian Networks

Emilie Philippot 1 Yolande Belaïd 1 Abdel Belaïd 1
1 READ - READ
LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper, a new method is presented for the recognition of online forms filled manually by a digital-type clip. This writing process is not very restrictive but it is only sending electronic ink without the pre-printed form, which will require to undertake field recognition without context. To identify the form model of filled fields, we propose a method based on Bayesian networks. The networks use the conditional probabilities between fields in order to infer the real structure. We associate multiple Bayesian networks for different structures levels (i.e. sub-structures) and test different algorithms for form structure learning. The experiments were conducted on the basis of 3200 forms provided by the Actimage compagny, specialist in interactive writing processes. The first results show a recognition rate reaching more than 97%.
Type de document :
Communication dans un congrès
International Conference on Image Processing - ICIP 2010, Sep 2010, Hong Kong, China. IEEE, pp.2149-2152, 2010, Proceedings of 2010 IEEE 17th International Conference on Image Processing
Liste complète des métadonnées

https://hal.inria.fr/inria-00526725
Contributeur : Yolande Belaid <>
Soumis le : vendredi 15 octobre 2010 - 16:02:27
Dernière modification le : jeudi 11 janvier 2018 - 06:19:59
Document(s) archivé(s) le : dimanche 16 janvier 2011 - 02:55:54

Fichier

version_editeur_ICIP_2010.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00526725, version 1

Collections

Citation

Emilie Philippot, Yolande Belaïd, Abdel Belaïd. Learning Algorithms of Form Structure for Bayesian Networks. International Conference on Image Processing - ICIP 2010, Sep 2010, Hong Kong, China. IEEE, pp.2149-2152, 2010, Proceedings of 2010 IEEE 17th International Conference on Image Processing. 〈inria-00526725〉

Partager

Métriques

Consultations de la notice

191

Téléchargements de fichiers

83