Graph Embedding Using Constant Shift Embedding

Salim Jouili 1 Salvatore Tabbone 1
1 QGAR - Querying Graphics through Analysis and Recognition
LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In the literature, although structural representations (e.g. graph) are more powerful than feature vectors in terms of representational abilities, many robust and efficient methods for classification (unsupervised and supervised) have been developed for feature vector representations. In this paper, we propose a graph embedding technique based on the constant shift embedding which transforms a graph to a real vector. This technique gives the abilities to perform the graph classification tasks by procedures based on feature vectors. Through a set of experiments we show that the proposed technique outperforms the classification in the original graph domain and the other graph embedding techniques.
Type de document :
Chapitre d'ouvrage
D. Ünay, Z. Cataltepe, and S. Aksoy. International Conference on Pattern Recognition - ICPR 2010, 6388, Springer Berlin / Heidelberg, pp.83-92, 2010, Lecture Notes in Computer Science
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00526993
Contributeur : Salim Jouili <>
Soumis le : dimanche 17 octobre 2010 - 18:55:17
Dernière modification le : mardi 24 avril 2018 - 13:37:18
Document(s) archivé(s) le : mardi 18 janvier 2011 - 02:36:11

Fichier

Embedding.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00526993, version 1

Collections

Citation

Salim Jouili, Salvatore Tabbone. Graph Embedding Using Constant Shift Embedding. D. Ünay, Z. Cataltepe, and S. Aksoy. International Conference on Pattern Recognition - ICPR 2010, 6388, Springer Berlin / Heidelberg, pp.83-92, 2010, Lecture Notes in Computer Science. 〈inria-00526993〉

Partager

Métriques

Consultations de la notice

155

Téléchargements de fichiers

354