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Abstract—We propose a novel job scheduling approach
for homogeneous cluster computing platforms. Its key
feature is the use of virtual machine technology for
sharing resources in a precise and controlled manner. We
justify our approach and propose several job scheduling
algorithms. We present results obtained in simulations for
synthetic and real-world High Performance Computing
(HPC) workloads, in which we compare our proposed
algorithms with standard batch scheduling algorithms.
We find that our approach widely outperforms batch
scheduling. We also identify a few promising algorithms
that perform well across most experimental scenarios. Our
results demonstrate that virtualization technology coupled
with lightweight scheduling strategies affords dramatic
improvements in performance for HPC workloads.

I. INTRODUCTION

The standard method for sharing a cluster among High
Performance Computing (HPC) users is batch scheduling.
With batch scheduling, users wanting to run applications
submit job requests. Each request is placed in a queue
and waits to be granted an allocation, that is, a subset
of the cluster’s compute nodes, or simply nodes. The
job, i.e., the running application, has exclusive access
to these nodes for a bounded duration.

A problem with batch scheduling is that jobs are
allocated integral numbers of nodes. Consequently, if a
job uses only a fraction of a node’s resource (e.g., half
of the processor cores, a third of the memory), then the
remaining fraction is wasted. It turns out that this is the
case for many jobs in HPC workloads. For example, in a
2006 log of a large Linux cluster [1], more than 95% of
the jobs use under 40% of a node’s memory, and more
than 27% of the jobs effectively use less than 50% of the
node’s CPU resource (due to time spent performing I/O
or network communication and synchronization). This
observation has been made repeatedly in the literature [2]–
[6]. Some of these jobs could coexist on the same node
while suffering only marginal performance degradation
(e.g., due to cache interference). It may even be beneficial
to force jobs to coexist on the same node in spite of
reduced individual job performance in order to improve
overall turn-around times and fairness. Batch schedulers
take the opposite approach and use integral resource
allocations with no time-sharing of nodes. As a result,
jobs can be denied immediate access to the cluster in

spite of cluster resources not being fully utilized, which
is problematic from the perspective of the users.

A second problem with batch schedulers is that they
do not optimize a user-centric objective function; it is
known that there is a sharp disconnect between user
concerns (low job turn-around time, fairness) and the
schedules achieved in practice [7], [8]. Batch schedulers
provide myriad configuration parameters by which
cluster administrators can influence scheduling behaviors,
but these parameters are not directly related to any
desirable user-centric objective function.

We propose a novel approach that addresses both
above problems. We address the problem of integral
resource allocations by allowing resource allocations
that are fractional (e.g., a job can be allocated only
70% of a resource). Furthermore, these allocations can
be modified on the fly, by changing resource fractions
allocated to a job and/or by migrating the job to
different nodes. To address the second problem we
define an objective performance metric. In the literature
a traditional metric, which can be optimized both to
achieve higher job performance and higher fairness
among jobs, is the stretch, i.e., the slowdown factor
experienced by a job because the whole platform is not
dedicated to its use. The stretch is computed based on the
job’s execution time measured on a dedicated platform.
Stretch optimization has been studied assuming that job
execution times are known [9] or that reliable estimates
are available [10]. These techniques are not widely
used on HPC installations, in part because obtaining
accurate job execution time estimates is difficult [11].
Consequently, we take a drastic departure from previous
work: we do not assume any knowledge about job
execution times, thereby freeing users of the need to
estimate them. However, this mandates the use of an
alternate optimization metric.

Our proposed approach, which we term dynamic frac-
tional resource scheduling (DFRS), amounts to carefully
controlled time-sharing that optimizes a clear objective
and that is enabled by state-of-the-art virtual machine
(VM) technology. We consider a non-clairvoyant, on-line
scenario where jobs are submitted over time.

Our contributions in this work are:
• We propose several algorithms for solving the on-
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line non-clairvoyant DFRS problem;
• We evaluate our algorithms via simulation using

synthetic and real-world HPC workloads and com-
pare them to standard batch scheduling algorithms;

• We show that our approach widely outperforms
batch scheduling and we identify algorithms that
perform well across most experimental scenarios.

This paper is organized as follows. In Section II we
formalize the DFRS problem. In Section III we propose
several DFRS algorithms. We describe our experimental
procedure for evaluating these algorithms in Section IV
and present results in Section V. Section VI discusses
related work. Section VII concludes the paper with
a summary of our results and a discussion of future
directions.

II. DYNAMIC FRACTIONAL RESOURCE SCHEDULING

To avoid the problems induced by integral allocations
used in batch scheduling, we allocate fractions of
resources. This amounts to time-sharing nodes between
jobs. The classical time-sharing solution for parallel jobs
is gang scheduling, which, because of its drawbacks (see
Section VI), is used far less often than batch scheduling
for HPC clusters. In this work we opt for time-sharing
in an uncoordinated and low-overhead manner, which
is enabled by virtual machine (VM) technology. Our
hope is to circumvent the problems of batch scheduling
without suffering from the drawbacks of gang scheduling.

A. System Overview and Use of VM Technology

We target clusters of nodes managed by a resource
allocation system that relies on VM technology. The
system responds to job requests by creating collections
of VM instances on which to run the jobs. Each VM
instance runs on a physical node under the control of a
VM monitor that can limit its resource usage. All VM
Monitors are in turn under the control of a VM Manager
that specifies resource usage constraints for all instances.
The VM Manager can also preempt instances, and mi-
grate instances among physical nodes. Several groups in
academia and industry are developing systems following
or amenable to this conceptual architecture [12]–[17].

VM technology allows for accurate sharing of hard-
ware resources among VM instances while achieving
performance isolation. The Xen VM monitor [18]
enables CPU-sharing and performance isolation in a way
that is low-overhead, accurate, and rapidly adaptable [19].
Furthermore, sharing can be arbitrary. For instance, the
Xen Credit CPU scheduler can allow three VM instances
to each receive 33.3% of the total CPU resource of a
dual-core machine [20]. This allows a multi-core physical
node to be considered as an arbitrarily time-shared
single core. Virtualization of other resources, such as I/O
resources, is more challenging [21], [22] but is an active

area of research [23], [24]. Recent work also targets
the virtualization of full memory hierarchies (buses and
caches) [25].

In this work we simply assume that accurate resource
sharing and performance isolation can be achieved with
VM technology: one can start a VM instance on a
node and allocate to it reasonably precise fractions
of the resources on that node. Given this capability,
whether available today or in the future, our approach
is generally applicable to many resource dimensions. In
our experiments we include solely CPU and memory
resources, the sharing of which is well supported by VM
technology today.

Resource allocation decisions must be based on
estimates of jobs’ resource needs. One simple solution
is to use VM instance monitoring mechanisms [26].
VM instance resource needs can also be discovered
via a combination of introspection and configuration
variation. With introspection, one can determine current
CPU resource consumption by inferring process activity
inside of VMs [27], and memory pressure by examining
memory page eviction activity [28]. Another option
is to use configuration variation, by which one can
dynamically vary the amount of resources given to VM
instances, track how they respond to the addition or
removal of resources, and infer resource needs [27],
[28].

B. Problem Statement

1) Platform and Job Models: We consider a homoge-
neous cluster based on a switched interconnect and with
some type of network-attached storage. Users submit
job requests to the cluster. Each job consists of one
or more tasks to be executed in parallel, each task
running within a VM instance. Our goal is to design
algorithms to make sound resource allocation decisions.
These decisions could include picking initial nodes for
instances, setting resource consumption rates for each
instance, migrating instances between nodes, preempting
and pausing instances (by saving them to local or
network-attached storage), and rejecting or postponing
incoming job requests.

Each task has a memory requirement, expressed as a
fraction of total node memory, and a CPU need, which is
the fraction of available CPU cycles that the task needs
to run at maximum speed. For instance, a task could
require 40% of the memory of a node and would utilize
60% of the node’s CPU resource in dedicated mode.
We assume that these quantities are known and do not
vary throughout job execution. Memory requirements
could be specified by users or be discovered on-the-fly,
along with CPU needs, using the discovery techniques
described in Section II-A.

Memory capacities of nodes should not be exceeded.



In other words, we do not allow the allocation of a node
to a set of tasks whose cumulative memory requirement
exceeds 100%. This is to avoid the use of process
swapping, which can have a hard to predict but almost
always dramatic impact on task execution times. By
contrast, we allow a node to be allocated to a set of
tasks whose cumulative CPU needs exceed 100%. Let
T denote the execution time of a task if it is given all
its CPU need, say a fraction α of the CPU resource of a
node. The CPU fraction actually allocated to the task can
change over time, e.g., it may need to be decreased due
to the system becoming more heavily loaded. When a
task is given less than its desired CPU need its execution
time is increased proportionally. The task completes once
the cumulative CPU resource assigned to it up to the
current time is equal to α× T . In this work we target
HPC workloads, which mostly comprise regular parallel
applications. Consequently, we assume that all tasks in
a job have the same memory requirements and CPU
needs, and that they must progress at the same rate. We
enforce allocations to provide identical instantaneous
CPU fractions to all tasks of a job, as non-identical
fractions needlessly waste resources.

2) Performance Objective: A difficult question is that
of the objective function to optimize. Recall that no such
function is optimized by batch schedulers, which is a
problem we wish to address. A metric commonly used
to evaluate batch schedules post-mortem is the stretch
(or slowdown) [29]. The stretch of a job is defined as its
turn-around time divided by its turn-around time had it
been alone on the cluster. For instance, a job that could
have run in 2h on the dedicated cluster but ran instead
in 4h due to competition with other jobs experienced a
stretch of 2. In the literature a proposed way to optimize
both for average performance and for fairness is to
minimize the maximum stretch [29], as opposed to
simply minimizing average stretch, which is prone to
starvation [30]. Maximum stretch minimization is known
to be theoretically difficult, as even in clairvoyant settings
there does not exist any constant-ratio competitive
algorithm [30]. Nevertheless, heuristics can lead to
good results in practice [30]. Stretch minimization, and
especially maximum stretch minimization, tends to favor
short jobs. A known problem in practice is that real-
world workloads contain many small jobs that simply
fail at or soon after being launched, therefore introducing
a strong bias in the metric. The common solution, which
we adopt here, is to use a variant of the stretch metric
called the bounded stretch (or “bounded slowdown”,
with the terminology in [31]). In this variant, the turn-
around time of a job is replaced by the maximum of the
turn-around time and of a threshold value. We set the
threshold to 30 seconds, and hereafter we use the term
stretch to mean bounded stretch. Finally, note that, given

the definition of our objective function, we never reject
job requests (to prevent infinite stretches). However, we
may postpone them until the corresponding jobs can be
scheduled on the cluster.

Our goal is to minimize the maximum job stretch.
One difficulty here is that the stretch is computed based
on job execution time on the dedicated cluster, which
is not known. Current batch scheduling systems require
that users provide execution time estimates, but it is
well known that these estimates are typically (wildly)
inaccurate [11]. Relying on them to optimize job stretch
directly is thus a losing proposition. In this work, we take
a radical departure from batch scheduling and simply do
not assume any knowledge about job execution times!
Instead, we define a new metric, the yield, which does
not use job execution time. The yield of a job’s task is
the fraction of the CPU resource of the node allocated
to the task divided by the task’s CPU need. We contend
that optimizing yield is more feasible than optimizing
stretch given that, on the one hand, job execution time
estimates are inaccurate, and, on the other hand, CPU
needs can be discovered (see Section II-A). Since we
assume that all tasks within a job have identical CPU
needs and are allocated identical CPU fractions, they all
have the same yield which is then the yield of the job.

Both the yield and the stretch capture an absolute
level of job “happiness”, and are thus related. The
yield is a ratio of rates while the stretch is a ratio of
times. The yield can, in fact, be seen as the inverse
of an instantaneous stretch. In this work, we develop
algorithms that explicitly maximize the minimum yield.
The key, and intriguing, question is whether optimizing
the yield is sufficiently related to optimizing the stretch
so that DFRS outperforms standard batch scheduling in
terms of stretch, or even produces schedules with good
maximum stretch in the absolute sense. When presenting
our results, we report on stretch values since they are
the ones used in the literature to evaluate schedules.

In previous work we proposed an efficient algorithm
for off-line minimum yield maximization [32]. Although
interesting from a theoretical point of view, this off-line
algorithm cannot be applied in practice to our on-line
problem: job requests arrive non-deterministically and
a resource allocation decision must be made upon the
arrival of each request. Each time resources are allocated
to the tasks of a new job, CPU fractions allocated to other
tasks running in the cluster may need to be dynamically
adjusted in an attempt to reach a new optimal maximum
minimum yield.

Note that, in some cases, resources may not be fully
utilized once the minimum yield has been maximized.
Unused resource fractions can then be allocated to jobs
as a way to improve average yield, which improves
overall platform utilization. If the system is truly under-



subscribed, then one could temporarily turn off one or
more nodes in order to save energy.

III. ALGORITHMS FOR DYNAMIC FRACTIONAL
SCHEDULING

In this section we propose several DFRS algorithms.
Our goal is twofold: develop an algorithm that delivers
good performance and that is as low-overhead as possible.
By starting from a simplistic algorithm and gradually
introducing additional mechanisms (e.g., preemption,
migration), we aim at determining what mechanisms
are truly necessary. All the proposed algorithms (except
DYNMCB8-STRETCH-PER, described hereafter) attempt
to maximize the minimum yield directly. All the pro-
posed algorithms follow the same underlying principle.
While they do map tasks to a single node in a way
that does not overcome that node’s memory capacity,
they often deliberately map to a single node tasks
whose cumulative CPU need far exceeds the node’s
computational power. The hope is that the resulting
performance degradation is offset by the added benefit of
starting tasks earlier than in a batch scheduling scenario.

A. Greedy Algorithms

GREEDY – For a given job, this algorithm first identifies
the nodes that have sufficient available memory to
run at least one task of the job. Among these nodes,
the one with the lowest total CPU load is allocated
a task. We define the CPU load of a node as the
sum of the CPU needs of all the tasks allocated to
it. If, after this allocation, that node has insufficient
remaining memory to accommodate another task, then
it is removed from consideration. All tasks of the job
are allocated to nodes in this manner. If one or more
tasks cannot be allocated to a node, then the job is
postponed using bounded exponential backoff: the job
is reconsidered min(212, 2count) seconds later, where
count is the number of failed scheduling attempts for
the job. Otherwise, all running jobs, including the new
job, are given a CPU fraction corresponding to a yield of
1.0/max(1.0,Λ), where Λ is the maximum CPU load
over all nodes. This maximizes the minimum yield given
the current allocation of jobs to nodes.

With GREEDY, once a job has been allocated to nodes
there may be unused CPU resources on some nodes.
We use an additional heuristic to take advantage of
remaining CPU resource. This heuristic never decreases
but may increase the resource allocation of a job. It
selects the job with the lowest total CPU need (summed
over the job’s tasks) among all jobs whose tasks are
allocated on nodes where some CPU resource remains
unused. Increasing the yield of this job as much as
possible provides the best cost/benefit ratio in terms of
resource consumption vs. improvement to the overall

average yield. This is repeated until no job can see its
yield further increased. This simple heuristic aims at
maximizing the average yield in a view to increasing
cluster utilization. This heuristic is not optimal, but
computes new CPU allocations quickly and improves
the average stretch in our experiments. All algorithms
(except DYNMCB8-STRETCH-PER) use this average
yield optimization heuristic.

A weakness of GREEDY is its admission policy. If a
short-running job is submitted to the cluster but cannot
be executed immediately due to memory constraints,
then it is postponed. However, since we assume no
knowledge of job execution time, there is no way
to correlate the duration of the postponing with job
execution time. In fact, a job may be postponed forever,
leading to unbounded maximum stretch. The only way
to circumvent this problem is to force the admission of
all newly submitted jobs, which may require that one
or more running jobs be paused via preemption.

The important question then is: which jobs should
be preempted? To answer this question we define a
priority based on the virtual time of a job. The virtual
time is essentially the total subjective execution time
experienced by that job. Formally, this is the integral
of its yield between its release time and the present
moment. For example, a job that starts and runs for
10 seconds with a yield of 1.0, then is paused for 2
minutes, and then restarts and runs for 30 seconds with
a yield of 0.5 has experienced 25 total seconds of virtual
time (10× 1.0 + 30× 0.5). From the virtual time, we
define the following priority: priority = max(30,flow time)

(virtual time)2

where the flow time of a job is the time elapsed since
its submission. We always consider jobs for pausing
or moving by increasing order of priority. Conversely,
we always consider jobs for resuming by decreasing
order of priority. A job that has not yet been allocated
any CPU time (null virtual time) has an infinite priority.
The presence of the flow time in the numerator ensures
that any paused job will eventually be resumed, hence
preventing starvation. The power of two in the priority
function is used to increase the importance of the virtual
time with respect to the flow time, thereby giving an
advantage to short-running jobs. Although we do not
give a theoretical justification for this power of two,
experiments not reported in this paper have shown that
the same priority function without the power of two leads
to markedly inferior results. Note that, in the definition
of the priority function, we use the same 30 sec bound
as in the bounded stretch. This bound ensures that a job
is never eligible for pausing shortly after it has begun.
Using this priority function we can now propose two
greedy algorithms that use preemption.
GREEDY-PMTN – Like GREEDY except that if an
incoming job cannot be started then some of the running



jobs are paused. To do so, this algorithm goes through
the list of currently running jobs in order of increasing
priority and marks them as candidates for pausing until
the incoming job could be started if all these candidates
were indeed paused. It then goes through the list of
these marked jobs in decreasing order of priority and
determines for each whether it could instead be left
running due to sufficient available memory. After this
step, running jobs that are still marked as candidates
for pausing are paused, and the new job is started.
Paused jobs may be resumed at any future event (i.e., job
submission or completion), provided there are sufficient
resources. GREEDY-PMTN attempts to resume paused
jobs in order of decreasing priority. A paused job may
or may not be restarted on the nodes on which it was
previously running.
GREEDY-PMTN-MIGR – Like GREEDY-PMTN, but with
the added capability of moving rather than pausing
running jobs. More precisely, jobs that are paused on
one event (to make room for an incoming job) may
be resumed to a different set of nodes during that
same event, rather than waiting for a future event as in
GREEDY-PMTN. This amounts to a job migration.

B. Non-Greedy Algorithms

The GREEDY algorithm and its variants construct
resource allocations incrementally. We also consider
algorithms that try to optimize the resource alloca-
tion globally. To this end, we build on the MCB8
algorithm [32], which is itself based on an algorithm
proposed by Leinberger et. al. in [33], whose principle
is explained in the next paragraph. Because we have two
resource dimensions (CPU and memory), our resource
allocation problem is related to the bi-dimensional
version of bin packing, or bi-dimensional vector packing.
One important difference between our problem and
vector packing is that our jobs have fluid CPU needs.
This difference can be addressed as follows. Consider
a fixed value of the yield, Y , that must be achieved
for all jobs. Fixing Y amounts to transforming all CPU
needs into CPU requirements: simply multiply the CPU
need by Y . The problem then becomes exactly vector
packing, with a set of tasks with fixed CPU and memory
requirements, that must each be mapped on an individual
node. A binary search on Y is used to find the highest
yield for which the vector packing problem can be solved
(our binary search has an accuracy threshold of 0.01).

MCB8 is a bi-dimensional vector packing heuristic. It
splits the tasks into two lists, with one list containing
the tasks with higher CPU requirements than memory
requirements and the other containing the tasks with
higher memory requirements than CPU requirements.
Each list is then sorted by non-increasing order of the
largest of the two requirements. Initially one assigns the

first task of one of the lists (picked arbitrarily) to the first
node. Subsequently, one searches for the first task that
can fit on that node from the list that goes against the
current imbalance, e.g., if the node’s available memory
exceeds its available CPU resource (in percentage), one
searches for a task whose memory requirement exceeds
its CPU requirement. The purpose of this step of MCB8
is, on each node, to keep the total requirements of both
resources in balance, so that one is not depleted while
the other is still underutilized. If no task in this list fits
on the node, then the same process is applied with the
other list. When no task in either list can fit on the node,
one repeats this process for the next node. If all tasks
can be assigned in this manner then resource allocation
is successful. We can now develop a family of resource
allocation algorithms based on this procedure:
DYNMCB8 – This algorithms runs the MCB8 algorithm
at every event (job submission or completion) over all
jobs in the system. If no valid allocation of nodes to
jobs can be found however small the minimum yield
is, the job with the smallest priority is removed from
consideration (and preempted if it was running), and the
algorithm tries again. This strategy is aggressive and
may lead to prohibitively large numbers of preemptions
and migrations.
DYNMCB8-PER – Like DYNMCB8, but instead of
invoking MCB8 at every event it invokes it periodically,
every T seconds. Incoming jobs are placed in a waiting
queue until the next scheduling event. The goal is to
achieve the benefits of the aggressive DYNMCB8 while
mitigating preemption and migration overhead. The name
of the algorithm is suffixed with the scheduling period:
DYNMCB8-PER-T .
DYNMCB8-ASAP-PER – Like DYNMCB8-PER, but
instead of placing new jobs in a waiting queue it attempts
to greedily schedule them immediately if possible given
memory constraints. The goal of this algorithm is to
gain the benefits of DYNMCB8-PER, while providing
better response time and allowing potentially short jobs
to run to completion between scheduling events.
DYNMCB8-STRETCH-PER – All previous algorithms
try to maximize instantaneous yield. Instead, this algo-
rithms tries to account for jobs’ past histories to minimize
an estimate of the maximum stretch. The algorithm
follows the same general procedure as DYNMCB8-PER
but with the following differences. At scheduling event
i, since we assume no knowledge of job execution
times, the best estimate of the stretch of job j is the
ratio of its flow time (time since submission) to its
virtual time: Ŝj(i) = flowtimej(i)/vtj(i). Assuming
that a job continues running until scheduling event i+ 1,
then Ŝj(i + 1) = flowtimej(i + 1)/vtj(i + 1) =
(flowtimej(i) + T )/(vtj(i) + yj(i) × T ), where T
is the scheduling period, and yj(i) is the yield that



DYNMCB8-STRETCH-PER assigns to job j between
scheduling events i and i + 1. Similar to the binary
search to maximize the minimum yield, here we do a
binary search to minimize Ŝ(i+1) = maxj Ŝj(i+1). At
each iteration of the binary search, a target value Ŝ(i+1)
is tested. From this value the algorithm computes the
yield for any job j by solving the above equation for
yj(i). If the computed value for yj(i) is negative, the
job is heuristically given a yield of 0.01 so that no
job consumes memory without making progress. If the
computed value is greater than 1, then the job is given
a yield of exactly 1 so that it is not allocated more CPU
than it can use. At that point, CPU requirements are
defined and the MCB8 algorithm can be applied to try to
produce a resource allocation for the attempted Ŝ(i+ 1)
value. This is repeated until the lowest feasible such
value is found. If the MCB8 algorithm cannot find a
valid allocation for any value of estimated stretch, then
a job is removed from consideration using the same
criteria as the other algorithms and the algorithm tries
again. While the previous algorithms use a heuristic to
improve the average yield, DYNMCB8-STRETCH-PER
uses a heuristic to improve the average estimated stretch.

All our results are for a 10-minute scheduling period
(T = 600). Based on experiments with T = 60 and
T = 3600, we found that T = 600 is sufficiently small
to achieve results comparable to those using the much
smaller period, and sufficiently large to lead to overhead
comparable to that using the much larger period.

IV. SIMULATION METHODOLOGY

A. Discrete-Event Simulator

We have developed a discrete event simulator that
implements our scheduling algorithms and takes as input
a number of nodes and a list of jobs. Each job is
described by a submit time, a required number of tasks,
one CPU need and one memory requirement specification
(since all tasks within a job have the same needs and
requirements), and an execution time.

Our simulator makes it possible to specify the
preemption and migration overhead. The question of
properly accounting for this overhead is a complicated
one. For this reason we provide two versions of each
simulation experiment: one where the overhead is zero
and one where this overhead is 5 minutes of wall
clock time, which is justifiably high1. We call this
overhead the rescheduling penalty. Note that none of
the scheduling algorithms are aware of this penalty or

1Consider a 128-task job with 1 TB total memory, or 8 GB per
task (our simulations are for a 128-node cluster). Current technology
affords aggregate bandwidth to storage area networks up to tens of
GB/sec for reading and writing [34]. Conservatively assuming 10
GB/sec, moving this job between node memory and secondary storage
can be done in under two minutes.

try to schedule around it. In the real world there are
facilities available that can allow for the live migration
of a running task between nodes [35], but in order to
avoid introducing additional complexity we make the
pessimistic assumption that all migrations are carried
out through a pause/resume mechanism. Note that the
periodic algorithms described in Section III use a period
larger than the rescheduling penalty. Experiments have
shown that using periods shorter than the penalty leads
to poor results due to job thrashing.

B. Batch Scheduling Algorithms

We consider two batch scheduling algorithms: FCFS
and EASY. FCFS (First Come First Serve algorithm),
often used as a baseline comparator in the literature,
holds incoming jobs in a queue and assigns them to
nodes in order as nodes become available. EASY [36],
which is representative of production batch schedulers,
is similar to FCFS but enables backfilling to reduce
resource fragmentation. EASY gives the first job in
the queue a reservation for the earliest possible time
it would be able to run under FCFS, but other jobs
in the queue are scheduled opportunistically as nodes
become available, as long as they do not interfere with
the reservation for the first job. EASY thus improves
on FCFS by allowing small jobs to run while large jobs
are waiting for a sufficient number of nodes.

A drawback of EASY is that it requires estimations
of job execution times. In our experiments we conserva-
tively assume that EASY has perfect knowledge of job
execution times. While this seems a best-case scenario
for EASY, studies have shown that for some workloads
some batch scheduling algorithms can, surprisingly,
produce better schedules when using non-perfectly
accurate execution times (e.g., using inaccurate user-
provided estimates, multiplying the perfectly accurate
estimate by a certain factor). We refer the reader to
the discussion in [37] for more details. At any rate, in
these studies the potential advantage of using inaccurate
estimates is shown to be relatively small, while our
results show that our approach outperforms EASY by
orders of magnitude. Our conclusions thus still hold
when EASY uses non-accurate execution time estimates.

C. Workloads

For part of our study we use synthetic workloads based
on the model by Lublin et. al. [38], augmented with
additional information as described hereafter. There are
a number of reasons for using synthetic workloads. Real
workloads are often of poor quality, and do not usually
contain all of the information that we require. Also,
real workloads are for specific systems, while synthetic
workloads are generated using a model instantiated from
multiple systems, and so may be more representative.



Through the use of VM technology the CPUs of a
multi-core node can be shared precisely and fluidly as
a single resource [20]. Thus for each node the total
amount of allocated CPU resource is simply constrained
to be less than or equal to 100%. However, if the node
is multi-core, then 100% CPU resource utilization can
only be reached by a single task if that task is CPU-
bound and is implemented using multiple threads. A
CPU-bound sequential task could only use 100/n% of
the node’s CPU resource, where n is the number of
processor cores. In our synthetic trace experiments we
arbitrarily assume quad-core nodes, thus meaning that
a sequential task would use at most 25% of a node’s
CPU resource.

We know of no systematic study in the literature of
CPU utilization levels for HPC jobs. We assume that
the task in a one-task job is sequential, and, to err on
the side of caution, that other tasks are multi-threaded.
Furthermore, we assume that all tasks are CPU-bound:
CPU needs of sequential tasks are 25% and those of other
tasks are 100%. This is a pessimistic assumption for our
approach as performance degradation due to sharing of
CPU resources among jobs will be maximum.

The general consensus is that ample memory is
available for allocating multiple tasks on the same
node [2], [4]–[6], but no explicit model is available.
We opt for a simple model suggested by data in Setia
et. al. [3]: 55% of the jobs have tasks with a memory
requirement of 10%. The remaining 45% of the jobs
have tasks with memory requirements 10×x%, where x
is an integer value uniformly distributed over {2,. . . ,10}.

We generated 100 distinct traces of 1,000 jobs using
the Lublin model [38] and annotated them with CPU
needs and memory requirements as described. The
generated traces assume a 128-node cluster and thus
contain jobs with between 1 and 128 tasks. Generally
the time between the submission of the first job and
the submission of the last job is on the order of 4-6
days. Next, in order to provide a way to systematically
study how different algorithms perform on problems
with different levels of difficulty, we multiplied the
inter-arrival times of jobs in each generated trace by
9 computed constants in order to create 9 new traces
with identical job mixes but offered load [4], or load,
levels of 0.1 to 0.9 in increments of .1. Thus, from the
100 initial traces we created 900 scaled traces.

In addition to using synthetic workloads, we also
perform experiments with a real-world workload from a
well-established on-line repository [1]. Most logs provide
standard information such as job arrival times, start time,
completion time, requested duration, size in number of
nodes, etc. For our experiments we choose the HPC2N
workload from [1], which is a 182-week trace from a 120-
node dual-core cluster running Linux. A primary reason

for choosing this workload was that it contains almost
complete information regarding memory requirements,
while other workloads often contain no or very little
such information.

The HPC2N workload required some processing for
use in our experiments. The swf file format used by [1]
contains information about the required number of
“processors,” but not the required number of tasks, and
so this value had to be inferred. First, job per-processor
memory requirements were set as the maximum of either
requested or used memory as a fraction of the system
memory of 2GB, with a minimum observed of 10%. Of
the 202,876 jobs in the trace, only 2,142 (∼ 1%) did
not give values for either used or requested memory
and we assigned them a value of 10%. For jobs that
required an even number of processors and had a per-
processor memory requirement less than 50% of the
available node memory, we assumed that the job used a
number of multi-threaded tasks equal to half the number
of processors. In this case each task had a CPU need of
100% (recall that we pessimistically assume CPU-bound
tasks) and the memory requirement was doubled from
its initial per-processor value. For jobs requiring an odd
number of processors or more than 50% of the available
node memory per processor, we assumed that the number
of tasks was equal to the number of processors and that
each of these tasks had a CPU need of 50% (i.e., 1 core).
These assumptions, once again, are detrimental to our
approach and should benefit batch scheduling algorithms.
Finally, we split the HPC2N workload into 182 1-week
segments as processing the full workload through our
simulator provides only one data point.

V. EXPERIMENTAL RESULTS

For a given instance, and for each algorithm, we define
the degradation factor as the ratio between the maximum
stretch achieved by that algorithm on that instance and
that achieved by the best algorithm for that instance. A
value of 1 means that the algorithm is the best for that
instance, while a value of 10 means that there was an
algorithm in that experiment that achieved a maximum
stretch 10 times lower.

Figure 1 plots average degradation factors vs. load for
all experiments conducted using the scaled synthetic
workloads, using a logarithmic scale on the y-axis.
Figure 1(a) shows results when there is no rescheduling
penalty. In this case, a striking but nevertheless expected
result is that the DYNMCB8 algorithm leads to aver-
age degradation factors averaging 1.16. This confirms
that, without any overhead for pausing, resuming, or
migrating jobs, solving the vector packing problem
using an efficient heuristic is indeed best. The worst
algorithm is FCFS, followed closely by EASY and
then GREEDY. The relatively poor performance of



1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

St
re

tc
h

D
eg

ra
da

tio
n

Fa
ct

or

Load
(a) average degradation factor, no rescheduling penalty

1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

St
re

tc
h

D
eg

ra
da

tio
n

Fa
ct

or

Load
(b) average degradation factor, 5-minute rescheduling penalty

FCFS

EASY

Greedy
Greedy-pmtn

Greedy-pmtn-migr
DynMcb8

Greedy-pmtn-migr
DynMcb8

DynMcb8-per 600
DynMcb8-asap-per 600

DynMcb8-stretch-per 600

Figure 1. Degradation factor vs. load for all our algorithms. Each data point shows average values over 100 instances.

GREEDY when compared to other DFRS algorithms
is expected given that it can delay short jobs arbitrarily
long, thereby increasing their stretch many-fold. More
generally, this demonstrates that preemption mechanisms
are necessary for DFRS. Our two remaining greedy
algorithms, GREEDY-PMTN and GREEDY-PMTN-MIGR,
improve significantly over batch scheduling (EASY
results in degradation values nearly 28 times those of
GREEDY-PMTN on the average) Surprisingly, GREEDY-
PMTN leads to slightly better results than GREEDY-PMTN-
MIGR even though there is no migration overhead in this
set of experiments. Our main result is that, at least for
nontrivial loads, the DYNMCB8-PER, DYNMCB8-ASAP-
PER, and DYNMCB8-STRETCH-PER algorithms provide
a large further improvement (GREEDY-PMTN results in
degradation values 4.5 times those of DYNMCB8-PER
on the average). The best of the three is DYNMCB8-
ASAP-PER, particularly for low load. Interestingly, the
DYNMCB8-STRETCH-PER algorithm, which attempts
to minimize estimated maximum stretch, does not have
better performance than DYNMCB8-PER. This provides
some confidence that explicitly optimizing the yield is
a good option for indirectly optimizing the stretch.

While Figure 1(a) corresponds to an ideal case, results
in Figure 1(b) include a high 5-minute rescheduling
penalty. We see that DYNMCB8 is no longer the
best algorithm. It suffers from large overhead due to
its aggressive use of preemption and migration, but
still outperforms GREEDY and the batch scheduling
algorithms. The DYNMCB8-PER, DYNMCB8-ASAP-PER,
and DYNMCB8-STRETCH-PER algorithms are now the
best for load levels higher than 0.3, while GREEDY-PMTN
and GREEDY-PMTN-MIGR perform best for load levels

below 0.3. DYNMCB8-ASAP-PER is the best algorithm
for this set of experiments, outperforming DYNMCB8-
PER by a slight margin, which outperforms DYNMCB8-
STRETCH-PER by an even smaller margin.

To cross-validate our results, Table I shows aggregate
degradation factor numbers for all experiments using our
scaled synthetic traces (i.e., the results discussed earlier),
using the original unscaled synthetic traces directly from
the Lublin model, and using the real-world HPC2N trace.
All results are for a 5-minute rescheduling penalty. We
see a significant improvement in the average degradation
experienced by the greedy algorithms for the HPC2N
trace. Further investigation has shown that this trace
contains a large number of short-duration serial jobs,
which are less likely to benefit from the bin-packing
approach than long-lived parallel jobs.

The maximum degradation factor is the result for the
“worst trace” of each algorithm. Moving from average
to the maximum degradation factor results, the main
difference is that DYNMCB8-ASAP-PER becomes the
clear winner by this metric, though all DFRS approaches
provide an improvement over FCFS and EASY.

From these results, our main conclusion is that
the DFRS algorithms provide drastic improvements
over standard batch scheduling strategies for maximum
stretch minimization. This holds even when there is a
high penalty for preempting, resuming, and migrating
jobs, and with all the conservative assumptions on the
workload explained in Section IV. DYNMCB8-STRETCH-
PER always has average results worse than DYNMCB8-
PER, which confirms that optimizing the yield compares
well to attempting to optimizing the stretch directly.
The approaches based on multi-capacity bin packing



Table I
DEGRADATION FACTOR RESULTS FOR ALL SCALED SYNTHETIC TRACES, THE UNSCALED SYNTHETIC TRACES, AND THE REAL-WORLD

HPC2N WORKLOAD. ALL RESULTS ARE FOR A 5-MINUTE RESCHEDULING PENALTY.

Scaled synthetic traces Unscaled synthetic traces Real-world trace
Algorithms Degradation factor Degradation factor Degradation factor

avg. std. max avg. std. max avg. std. max
FCFS 435.32 239.37 1, 470.30 448.74 238.38 1, 128.44 469.51 581.12 4, 422.00
EASY 392.78 227.85 1, 454.26 410.06 226.41 989.91 402.93 500.13 3, 136.92
GREEDY 284.07 222.33 2, 288.65 239.76 217.47 1, 128.32 134.32 268.66 2, 129.98
GREEDY-PMTN 9.45 41.30 509.05 3.28 10.59 84.16 1.72 6.63 89.54
GREEDY-PMTN-MIGR 10.86 46.35 509.04 3.61 13.81 102.69 1.77 6.87 92.87
DYNMCB8 108.78 183.77 1, 435.44 36.95 32.16 162.33 67.19 229.96 2, 241.83
DYNMCB8-PER 3.55 2.62 16.38 4.83 3.90 21.30 14.73 64.41 668.24
DYNMCB8-ASAP-PER 2.62 1.66 12.77 3.28 2.03 11.00 4.23 3.05 24.68
DYNMCB8-STRETCH-PER 3.59 2.53 16.38 4.89 3.77 20.97 16.01 78.24 900.45

provide the best results for nontrivial loads when there
is no migration penalty, and the periodic approaches
perform well on both synthetic and real workloads even
when there is a migration penalty. While purely greedy
approaches performed best in the average case on the
real workload in the 5-minute migration penalty case,
their worst case performance was significantly worse
than that of DYNMCB8-ASAP-PER.

Preemption and/or migration, at least when used in
conjunction with adequate algorithms, provide benefit
in terms of stretch even with a high rescheduling
penalty. However, one may wonder whether network
and I/O resources are not overly taxed by preemption
and/or migration activity. Table II shows preemption
and migration costs for our scaled synthetic workloads
with high load (≥ 0.7), for all algorithms that use
preemption and/or migration. The main observation is
that the average bandwidth consumption due to migration
and preemption is only 0.60 + 0.26 = 0.86 GB/sec on
average, and only 1.31 + 0.77 = 2.08 GB/sec for the
worst trace, for DYNMCB8-PER. This corresponds to
under 7 MB/sec per node on average and under 17
MB/sec per node for the worst trace. We conclude that
these resource demands are well within the capacity of
current technology, based on our previous discussion
of I/O and the observation that 17 MB/sec is less than
1.5% of the peak bandwidth on a 10 Gigabit Ethernet
switch. On average DYNMCB8-PER leads to under 46
preemptions and under 49 migrations per hour, with
these numbers being around 110 and 142, respectively,
for the worst trace. On average, each job is preempted
and migrated about 8 and 6 times respectively. As
expected the aggressive DYNMCB8 algorithm leads to
the highest costs. GREEDY-PMTN and GREEDY-PMTN-
MIGR have the lowest costs, but we have seen that
they lead to relatively poor worst case maximum stretch
values. DYNMCB8-PER and DYNMCB8-ASAP-PER have
comparable costs. Compared to them, the DYNMCB8-
STRETCH-PER algorithm leads to up to 33% lower
preemption costs but to more than 100% higher migration

costs. We conclude that our approach, in particular when
using the DYNMCB8-PER and DYNMCB8-ASAP-PER
algorithms, does not impose unreasonable strain on
network and I/O.

Another concern is the time needed to compute a
resource allocation. We have instrumented DYNMCB8
to record each scheduling event. We ran the simulator
on a system with a 3.2GHz Intel Xeon CPU and 4GB
RAM against the 100 unscaled traces generated by the
Lublin model. This gave us 197,808 observations. For
67.25% of them DYNMCB8 computed allocations for 10
or fewer jobs in less than 0.001 seconds. The remaining
observations were for 11 to 102 jobs. Average compute
time was about 0.25 seconds with the maximum under
4.5 seconds. Since typical job inter-arrival times are
orders of magnitude larger [38], we conclude that DFRS
is feasible in practice.

VI. RELATED WORK

Our work is related to gang scheduling [39], which
also departs from batch scheduling by allowing time-
sharing of compute resources. In gang scheduling, tasks
in a parallel job are executed during the same synchro-
nized time slices across cluster nodes. This requires
distributed synchronized context-switching, which may
require significant overhead and thus long time slices,
although solutions have been proposed [40]. In this work
we simply achieve time-sharing in an uncoordinated and
low-overhead manner via VM technology.

A second drawback of gang scheduling is memory
pressure, i.e., the overhead of swapping to disk [4]. In our
approach we completely avoid swapping by enforcing
that tasks may be assigned to the same node only if
the node’s physical memory capacity is not exceeded.
This precludes some time sharing when compared to
gang scheduling. However, this constraint is eminently
sensible given the observation that many jobs in HPC
workloads use only a fraction of physical memory.

Other works have explored the problem of scheduling
jobs without knowledge of their execution time. The



Table II
PREEMPTION AND MIGRATION COSTS IN TERMS OF AVERAGE BANDWIDTH CONSUMPTION, NUMBER OF PREEMPTION AND MIGRATION

OCCURRENCES PER HOUR, AND NUMBER OF PREEMPTION AND MIGRATION OCCURRENCES PER JOB. AVERAGE VALUES OVER ALL SCALED
SYNTHETIC TRACES WITH LOAD ≥ 0.7, WITH MAXIMUM VALUES IN PARENTHESES.

Bandwidth Consumption Frequency of Occurrence # occurrences per job
Algorithm (GB / sec) (# occurrences / hour)

pmtn mig pmtn mig pmtn mig
GREEDY-PMTN 0.10 (0.27) 0.00 (0.00) 12.26 (39.24) 0.00 (0.00) 1.26 (4.44) 0.00 (0.00)
GREEDY-PMTN-MIGR 0.05 (0.14) 0.03 (0.12) 5.42 (20.88) 8.99 (34.56) 0.58 (2.64) 0.90 (2.58)
DYNMCB8 0.53 (1.48) 1.46 (2.90) 84.99 (294.48) 604.55(1329.84) 9.32 (23.61) 71.54 (110.19)
DYNMCB8-PER 0.60 (1.31) 0.26 (0.77) 45.58 (110.16) 48.80 (141.84) 7.63 (32.32) 6.18 (20.77)
DYNMCB8-ASAP-PER 0.59 (1.34) 0.27 (0.77) 44.05 (105.84) 49.16 (142.92) 7.33 (30.87) 6.08 (20.35)
DYNMCB8-STRETCH-PER 0.38 (0.87) 0.51 (1.11) 33.78 (76.32) 88.32 (197.64) 7.15 (27.68) 16.11 (40.61)

famous “scheduling in the dark” approach [41] shows
that in the absence of knowledge giving equal resource
shares to job is theoretically sound. We use the same
approach by ensuring that all jobs achieve the same yield.
Our problem is also related to thread scheduling done
in operating system kernels, given that thread execution
times are unknown. Our work differs in that we strive
to optimize a precisely defined objective function.

Several previous works have explored algorithmic
issues pertaining to bin packing and/or multiprocessor
scheduling. Coffman studies bin stretching, a version of
bin packing in which a bin may be stretched beyond
its normal capacity [42]. Epstein studies the on-line bin
stretching problem as a scheduling problem with the goal
of minimizing makespan [43]. Our scheduling problem
is strongly related to vector packing, i.e., bin packing
with multi-dimensional items and bins. Vector packing
has been studied from both a theoretical standpoint (i.e.,
guaranteed algorithms) [44], [45] and a pragmatic one
(i.e., efficient heuristics) [33], [46], [47]. In this work
we employ an algorithm based on a particular vector
packing algorithms, MCB (Multi-Capacity Bin Packing),
proposed by Leinberger et. al. [33].

Azar has studied on-line load balancing of temporary
tasks on identical machines with assignment restric-
tions [48]. The problem therein is to assign incoming
tasks to nodes permanently. Each task has a weight and
a duration. The weight is known when the task arrives,
but the duration is not known until task completion. The
goal is to minimize the maximum load on any machine
over all time instants. There is thus a connection to our
goal of maximizing the minimum yield.

Finally, previous works have explored the use of VM
technology in the HPC domain. The broad consensus is
that VM overhead does not represent a barrier to main-
stream deployment [49], [50]. Additional research has
shown that the performance impact on MPI applications
is minimal [51] and that cache interference effects do not
cause significant performance degradation in commonly-
used libraries such as LAPACK and BLAS [52]. Finally,
it has been shown that current VM technology allows for

preemption and checkpointing of MPI applications [53],
as assumed in this work.

VII. CONCLUSION

We have proposed DFRS, a novel approach for job
scheduling in a homogeneous cluster. We have focused
on an on-line, non-clairvoyant scenario in which job
execution times are unknown ahead of time. We have pro-
posed several scheduling algorithms and have compared
them to standard batch scheduling approaches using both
synthetic and real-world workloads. In our simulations,
our algorithms were given no knowledge of job execution
times, while batch scheduling algorithms were provided
with perfect estimates. We have found that DFRS
provides dramatic improvement over batch scheduling
in terms of schedule quality, where schedule quality
is measured by a popular job performance metric, the
maximum (bounded) stretch. The improvement shown
in our results is likely to be larger in practice due to
conservative assumptions in our evaluation methodology,
including on the overhead due to preemptions and
migrations. The improvement is the highest when using
one of our resource allocation algorithms, DYNMCB8-
ASAP-PER, which schedules jobs periodically and uses
both preemption and migration. An important result in
this work is that optimizing the yield, an instantaneous
performance metric that does not rely on job execution
times, is an effective way to (indirectly) optimize the
stretch.

This work can be extended in several directions.
Our scheduling algorithms could be improved with a
strategy for reducing the yield of long running jobs as a
way to improve fairness and further decrease maximum
stretch. This strategy, inspired by thread scheduling in
operating systems kernels, would be particularly useful
for mitigating the negative impact of long running jobs
on shorter ones. Also, mechanisms for implementing user
priorities, such as those supported in batch scheduling
systems, are needed. More broadly, a logical next step
is to implement and benchmark our algorithms as
part of a prototype virtual cluster management system,
such as [13], that uses some of the resource need



discovery techniques described in Section II-A. This
would naturally lead to a study of jobs with resource
requirements that evolve over time.
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