Orientational minimal redundancy wavelets: from edge detection to perception

Abstract : Natural images are complex but very structured objects and, in spite of its complexity, the sensory areas in the neocortex in mammals are able to devise learned strategies to encode them efficiently. How is this goal achieved? In this paper, we will discuss the multiscaling approach, which has been recently used to derive a redundancy reducing wavelet basis. This kind of representation can be statistically learned from the data and is optimally adapted for image coding; besides, it presents some remarkable features found in the visual pathway. We will show that the introduction of oriented wavelets is necessary to provide a complete description, which stresses the role of the wavelets as edge detectors.
Type de document :
Article dans une revue
Vision Research, Elsevier, 2003, 43 (9), pp.1061-1079. 〈10.1016/S0042-6989(03)00012-9〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00527185
Contributeur : Brigitte Briot <>
Soumis le : lundi 18 octobre 2010 - 14:51:53
Dernière modification le : mardi 24 avril 2018 - 17:20:04

Lien texte intégral

Identifiants

Collections

INRIA | UPMC | PSL | USPC | LPS

Citation

Antonio Turiel, Jean-Pierre Nadal, Nestor Parga. Orientational minimal redundancy wavelets: from edge detection to perception. Vision Research, Elsevier, 2003, 43 (9), pp.1061-1079. 〈10.1016/S0042-6989(03)00012-9〉. 〈inria-00527185〉

Partager

Métriques

Consultations de la notice

121