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Abstract: Stochastic subspace identi�cation methods are an e�cient tool
for system identi�cation of mechanical systems in Operational Modal Analy-
sis (OMA), where modal parameters are estimated from measured vibrational
data of a structure. System identi�cation is usually done for many successive
model orders, as the true system order is unknown and identi�cation results
at di�erent model orders need to be compared to distinguish true structural
modes from spurious modes in so-called stabilization diagrams. In this paper,
this multi-order system identi�cation with the subspace-based identi�cation al-
gorithms is studied and an e�cient algorithm to estimate the system matrices
at multiple model orders is derived.
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Identi�cation rapide par méthodes des sous
espaces à ordres multiples

Résumé : Les méthodes stochastiques d'identi�cation des sous espaces sont
un outil e�cace pour l'identi�cation des systèmes linéaires dans le cadre de
l'analyse modale opérationnelle sur les structures mécaniques. Dans ce cas, les
paramètres modaux sont estimés à partir des données vibration mesurées sur
la structure. L'identi�cation du système est généralement faite pour plusieurs
ordres de modèles successifs, puisque l'ordre réel du modèle est inconnu. Les
résultats de l'identi�cation à di�érents ordres de modèle doivent être comparés
pour séparer les vrais modes de la structure des modes parasites, tout ceci par
l'utilisation d'un diagramme de stabilisation. Dans ce travail, l'identi�cation par
sous espaces est étudiée, puis un algorithme e�cace pour estimer les matrices
du système à ordres multiples est développé.

Mots-clés : Identi�cation des systèmes; Méthodes des sous espaces; Ordre du
système; Problèmes aux moindres carrés; Systèmes linéaires
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1 Introduction

Subspace-based linear system identi�cation methods have been proven e�cient
for the system identi�cation of mechanical systems, �tting a linear model to
(input/output or output only) measurements taken from a system. Character-
istics of interest to the mechanical engineer regarding this model are its vibration
modes (its eigenfrequencies) and its mode shapes (corresponding eigenvectors).
Therefore, identifying this linear time-invariant system (LTI) from measure-
ments is a basic service in vibrations monitoring. Having done this allows in
particular Finite Element Models (FEM) updating and structural health moni-
toring.

Linear system identi�cation is a classical and widely studied subject. In an
Operational Modal Analysis (OMA) context, however, the following unusual
characteristics must be taken into account:

(a) The number of sensors can be very large (up to hundreds, or thousands in
the future); sensors can even be moved from one measurement campaign
to another;

(b) The number of modes of interest can be quite large (up to 100 or beyond),
thus calling for non-standard approaches to model reduction;

(c) The excitation applied to the structure can be controlled and dependent
from the technology used for the shakers, or it can be uncontrolled and
natural, and then turbulent and non-stationary.

Because of the features (a�c) above, usual tools from linear system iden-
ti�cation, such as the System Identi�cation Toolbox by Matlab, are not used
as such. In particular, recommended techniques from statistics to estimate the
best model order (AIC, BIC, MDL, . . . ) do not work at all. In order to re-
trieve the wanted large number of modes, an even larger model order must
be assumed while performing identi�cation. This causes a number of spurious
modes to appear in the identi�ed models. Getting rid of these is the main issue
in this context. Basically, all methods in use estimate a number of models of
di�erent orders and build a �nal model by fusing them in some way or another.
So-called stabilization diagrams are a GUI-assisted way to support the engineer
while performing this.

In this paper, this multi-order system identi�cation with the subspace-based
identi�cation algorithms is studied in Section 2 and e�cient algorithms to es-
timate the system matrices at multiple model orders are derived, reducing the
computational burden signi�cantly. In Section 3, the computational cost of the
algorithms is compared for doing the system identi�cation on a real test case,
validating their e�ciency.

2 Stochastic Subspace Identi�cation (SSI)

2.1 The General SSI Algorithm

The discrete time model in state space form is:{
Xk+1 = AXk + Vk+1

Yk = CXk
(1)
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with the stateX ∈ Rn, the output Y ∈ Rr, the state transition matrix A ∈ Rn×n
and the observation matrix C ∈ Rr×n. n is the system order, and the number
of outputs r is also called number of sensors. The state noise V is unmeasured
and assumed to be Gaussian, zero-mean, white.

A subset of the r sensors can be used for reducing the size of the matrices
in the identi�cation process, see e.g. [8]. These sensors are called projection
channels or reference sensors. Let r0 be the number of reference sensors (r0 ≤ r)
and p and q chosen parameters with (p+1)r ≥ qr0 ≥ n. From the output data a
matrixHp+1,q ∈ R(p+1)r×qr0 is built according to a chosen SSI algorithm, see e.g.
[3] for an overview. The matrix Hp+1,q will be called �subspace matrix� in the
following and the SSI algorithm is chosen such that the corresponding subspace
matrix enjoys (asymptotically for a large number of samples) the factorization
property

Hp+1,q = WOp+1Zq (2)

into the matrix of observability

Op+1
def
=


C
CA
...

CAp

 ,

and a matrix Zq, with an invertible weighting matrix W depending on the
selected SSI algorithm. However, W is the identity matrix for many SSI algo-
rithms.

For simplicity, let p and q be given and skip the subscripts of Hp+1,q, Op+1

and Zq.

Example 1. Let N be the number of available samples and Y
(ref)
k ∈ Rr0 the vec-

tor containing the reference sensor data, which is a subset of Yk for all samples.
Then, the �future� and �past� data matrices are built with

Y+ =
1√

N − p− q


Yq+1 Yq+2

... YN−p

Yq+2 Yq+3

... YN−p+1

...
...

...
...

Yq+p+1 Yq+p+2

... YN

 ,

Y− =
1√

N − p− q


Y

(ref)
q Y

(ref)
q+1

... Y
(ref)
N−p−1

Y
(ref)
q−1 Y

(ref)
q

... Y
(ref)
N−p−2

...
...

...
...

Y
(ref)
1 Y

(ref)
2

... Y
(ref)
N−p−q

 .

For the covariance-driven SSI (see also [2], [8]), the subspace matrix Hcov =

Y+Y−T is built, which enjoys the factorization property (2) where Z is the
controllability matrix.

For the data-driven SSI with the Unweighted Principal Component (UPC)

algorithm (see also [10], [8]), the matrix H̃dat = Y+Y−T (Y−Y−T )−1Y− enjoys
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the factorization property (2) where Z is the Kalman �lter state matrix. In
practice, the respective subspace matrix Hdat is obtained from an RQ decompo-
sition of the data, such that H̃dat = HdatQ with an orthogonal matrix Q. See
the mentioned references for details on the implementations.

Now we want to obtain the eigenstructure of the system (1) from a given
matrix H. The observability matrix O is obtained from a thin SVD of the
matrix H and its truncation at the desired model order n:

H = U∆V T

=
[
U1 U0

] [∆1 0
0 ∆0

]
V T , (3)

O = W−1U1∆
1/2
1 . (4)

Note that the singular values in ∆1 must be non-zero and hence O is of full
column rank. The observation matrix C is then found in the �rst block-row of
the observability matrix O. The state transition matrix A is obtained from the
shift invariance property of O, namely as the least squares solution of

O↑A = O↓, where O↑ def
=


C
CA
...

CAp−1

 , O↓ def
=


CA
CA2

...
CAp

 . (5)

The eigenstructure (λ, ϕλ) results from

det(A− λI) = 0, Aφλ = λφλ, ϕλ = Cφλ, (6)

where λ ranges over the set of eigenvalues of A. From λ the natural frequency
and damping ratio are obtained, and ϕλ is the corresponding mode shape.

There are many papers on the used identi�cation techniques. A complete
description can be found in [2], [10], [8], [3], and the related references. A proof
of non-stationary consistency of these subspace methods can be found in [3].

2.2 Multi-Order SSI

In many practical applications the true system order n is unknown and it is
common to do the system identi�cation for models (1) at di�erent system orders
n = nj , j = 1, . . . , t, with

1 ≤ n1 < n2 < . . . < nt ≤ min{pr, qr0}, (7)

and where t is the number of models to be estimated. The choice of the model
orders nj , j = 1, . . . , t, is up to the user and also depends on the problem. For
example, nj = j + c or nj = 2j + c with some constant c can be chosen.

The following notation for specifying these di�erent system orders is intro-
duced and used throughout this paper. Let Oj ∈ R(p+1)r×nj , Aj ∈ Rnj×nj

and Cj ∈ Rr×nj be the observability, state transition and observation matrix at
model order nj , j ∈ {1, . . . , t}, respectively. Let furthermore be O↑j and O

↓
j the

�rst respective last p block rows of Oj , analogously to the de�nition in (5).
Note that in Section 2.1 model order n was used, while from now model

orders nj will be used. The matrices Aj , Cj , Oj , O↑j and O
↓
j ful�ll the equations

in Section 2.1, replacing A, C, O, O↑ and O↓, as well as nj replaces n.

RR n° 7429
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2.3 Computation of the System Matrices

The system matrix Aj is the solution of the least squares problem (5) at a chosen
model order nj . A common numerically stable way to solve it, is

Aj = O↑j
†
O↓j (8)

where † denotes the Moore-Penrose pseudoinverse. A more e�cient and also nu-
merically stable way to solve it (see also [5]), is to do the thin QR decomposition

O↑j = QjRj (9)

with Qj ∈ Rpr×nj a matrix with orthogonal columns and Rj ∈ Rnj×nj upper
triangular. Rj is assumed to be of full rank, which is reasonable as Oj is of full
column rank. With

Sj
def
= QTj O

↓
j , (10)

Sj ∈ Rnj×nj , the solution of the least squares problem is

Aj = R−1j Sj . (11)

The observation matrix Cj is found in the �rst block row of Oj .
For the computation of the system matrices Aj and Cj , j = 1, . . . , t, the

observability matrix Ot at the maximal desired model order nt is computed �rst
from (4). Then, the Oj consist of the �rst nj columns of Ot and the matrices Aj
and Cj are computed with (9) to (11). This is summarized in Algorithm 1. Note
that for a matrix X the matrix X[a1:a2,b1:b2] denotes the submatrix of matrix X
containing the block from rows a1 to a2 and columns b1 to b2 of matrix X.

Algorithm 1 Multi-Order SSI

Input: Ot ∈ R(p+1)r×nt {observability matrix}
n1, . . . , nt {desired model orders satisfying (7)}

1: for j = 1 to t do
2: O↑j ←− Ot[1:pr,1:nj ], O

↓
j ←− Ot[(pr+1):(p+1)r,1:nj ]

3: QR decomposition O↑j = QjRj

4: Sj ←− QTj O
↓
j

5: Aj ←− R−1j Sj
6: Cj ←− Ot[1:r,1:nj ]

7: end for
Output: System matrices Aj , Cj at model orders n1, . . . , nt

2.4 Fast Multi-Order Computation of the System Matri-

ces

Conventionally, for the computation of the system matrices Aj and Cj at the
desired model orders n1, . . . , nt, the least squares problem for the state transition
matrix Aj is solved at each model order (Equations (9) to (11) with j = 1, . . . , t,
see also Algorithm 1).

Now, an algorithm is presented that solves the least squares problem only
once at the maximal desired model order nt (Equations (9) to (11) with j = t,

RR n° 7429



Fast Multi-Order Stochastic Subspace Identi�cation 7

leading to matrices Rt, St and At) and derives the state transition matrices Aj ,
j = 1, . . . , t− 1 directly and e�ciently from R−1t and St, based on the following
main theorem of this paper.

Theorem 2. Let Ot, Qt, Rt and St be given at the maximal desired model order
nt with

O↑t = QtRt, St = QTt O
↓
t , At = R−1t St, (12)

such that At is the least squares solution of

O↑tAt = O↓t .

Let j ∈ {1, . . . , t− 1}, and let R−1t and St be partitioned into blocks

R−1t =

[
R

(11)
j R

(12)
j

0 R
(22)
j

]
, St =

[
S
(11)
j S

(12)
j

S
(21)
j S

(22)
j

]
, (13)

where R
(11)
j , S

(11)
j ∈ Rnj×nj . Then, the state transition matrix Aj at model

order nj, which is the least squares solution of

O↑jAj = O↓j , (14)

satis�es

Aj = R
(11)
j S

(11)
j .

Proof. From (4) it follows that Oj consists of the �rst nj columns of Ot. This
holds analogously for O↑j and O↓j . Hence, O

↑
t and O↓t can be partitioned into

O↑t =
[
O↑j Ô↑j

]
, O↓t =

[
O↓j Ô↓j

]
, (15)

where Ô↑j and Ô↓j consist of the remaining columns of O↑t and O↓t . Let Qt and
Rt be partitioned into blocks

Qt =
[
Q

(1)
j Q

(2)
j

]
, Rt =

[
R̂

(11)
j R̂

(12)
j

0 R̂
(22)
j

]
, (16)

where Q(1)
j ∈ Rpr×nj and R̂(11)

j ∈ Rnj×nj . Note that

R̂
(11)
j
−1 = R

(11)
j (17)

because of the upper triangular structure of Rt and the partitioning in (13).
From (12) and (16) it follows

O↑t =
[
Q

(1)
j Q

(2)
j

] [R̂(11)
j R̂

(12)
j

0 R̂
(22)
j

]
=
[
Q

(1)
j R̂

(11)
j B

]
(18)

with B = Q
(1)
j R̂

(12)
j +Q

(2)
j R̂

(22)
j . Comparing (15) and (18), it follows

O↑j = Q
(1)
j R̂

(11)
j , (19)

which obviously is a QR decomposition of O↑j .

RR n° 7429
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Furthermore, with (12), (15) and (16) it follows

St =

Q(1)
j

T

Q
(2)
j

T

[O↓j Ô↓j
]

=

Q(1)
j

T
O↓j Q

(1)
j

T
Ô↓j

Q
(2)
j

T
O↓j Q

(2)
j

T
Ô↓j

 ,
and comparing to (13) yields

S
(11)
j = Q

(1)
j

T
O↓j . (20)

As Aj is the least squares solution of (14) and because of QR decomposition
(19), Aj yields

Aj = R̂
(11)
j
−1Q

(1)
j

T
O↓j .

Then, the assertion follows together with (17) and (20).

The resulting algorithm for the fast multi-order computation of the system
matrices is summarized in Algorithm 2. At each model order nj , n3j �ops are
required to compute the state transition matrix Aj when R

−1
t and St are known.

Algorithm 2 Fast Multi-Order SSI

Input: Ot ∈ R(p+1)r×nt {observability matrix}
n1, . . . , nt {desired model orders satisfying (7)}

1: O↑t ←− Ot[1:pr,1:nt], O
↓
t ←− Ot[(pr+1):(p+1)r,1:nt]

2: Ct ←− Ot[1:r,1:nt]

3: QR decomposition O↑t = QtRt
4: T ←− R−1t , St ←− QTt O

↓
t

5: for j = 1 to t do
6: Aj ←− T[1:nj ,1:nj ]St[1:nj ,1:nj ]

7: Cj ←− Ct[1:r,1:nj ]

8: end for
Output: System matrices Aj , Cj at model orders n1, . . . , nt

Remark 3. In Algorithm 2 the fact is used that R−1j is the left upper nj × nj
block of R−1t . As Rt is an upper triangular matrix, its inversion is done column-
wise in ascending order by backward substitution, so the inversion of the matrix
Rj is numerically equal to taking the left upper nj × nj block of the inverted
matrix R−1t . Hence, Algorithms 1 and 2 give numerically identical results, where
Algorithm 2 is more e�cient.

2.5 Fast Iterative Multi-Order Computation of the Sys-

tem Matrices

The fast multi-order computation of the state transition matrix from the previ-
ous section can be further improved by expressing Aj+1 with the help of Aj , so
that the number of numerical operations is further reduced.

RR n° 7429
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Corollary 4. Let R−1j+1 and Sj+1 (which are the upper left nj+1 × nj+1 blocks

of R−1t and St) be partitioned into

R−1j+1 =

[
R̃

(11)
j R̃

(12)
j

0 R̃
(22)
j

]
, Sj+1 =

[
S̃
(11)
j S̃

(12)
j

S̃
(21)
j S̃

(22)
j

]
,

with

R̃
(11)
j = R−1j = R−1t[1:nj ,1:nj ]

,

R̃
(12)
j = R−1t[1:nj ,(nj+1):nj+1]

,

R̃
(22)
j = R−1t[(nj+1):nj+1,(nj+1):nj+1]

,

S̃
(11)
j = Sj = St[1:nj ,1:nj ],

S̃
(12)
j = St[1:nj ,(nj+1):nj+1],

S̃
(21)
j = St[(nj+1):nj+1,1:nj ],

S̃
(22)
j = St[(nj+1):nj+1,(nj+1):nj+1].

Then it holds

Aj+1 =

[
Aj + R̃

(12)
j S̃

(21)
j R̃

(11)
j S̃

(12)
j + R̃

(12)
j S̃

(22)
j

R̃
(22)
j S̃

(21)
j R̃

(22)
j S̃

(22)
j

]
. (21)

Proof. The assertion follows directly from Theorem 2 by replacingAj = R̃
(11)
j S̃

(11)
j

in the product

Aj+1 =

[
R̃

(11)
j R̃

(12)
j

0 R̃
(22)
j

][
S̃
(11)
j S̃

(12)
j

S̃
(21)
j S̃

(22)
j

]
.

Hence, by using (21), the computation of Aj+1 needs less than 3(nj+1−nj)n2j
�ops (if (nj+1 − nj) is small compared to nj), if Rt, St and Aj are known.

The complete algorithm for this fast iterative multi-order computation of
the state transition matrix is obtained from Algorithm 2 by replacing Line 6 at
j + 1 with Equation (21).

2.6 Computational Complexities

In the following, the complexities of the computation of the system matrices
Aj and Cj , j = 1, . . . , t, from an observability matrix Ot with the algorithms
presented in Sections 2.3, 2.4 and 2.5, are evaluated. The system orders are

assumed to be nj = j and the maximal model order is noted as nmax
def
= nt = t.

Furthermore, c
def
= pr/nmax and m

def
= pr is de�ned. Note that the subspace

matrix H is of size (p + 1)r × qr0 and in practice one would set p + 1 = q (see
e.g. [1]) and nmax = qr0. Then, c ≈ r/r0 and hence independent of p, q and
nmax.

According to [5], the thin SVD of O↑j takes 14mj2 + 8j3 �ops and the thin

Householder QR decomposition of O↑j takes 4m2j − 4
3j

3 �ops. By using the

RR n° 7429
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simpli�cations
∑nmax

j=1 j ≈ 1
2n

2
max,

∑nmax

j=1 j2 ≈ 1
3n

3
max,

∑nmax

j=1 j3 ≈ 1
4n

4
max,

and counting the operations of the presented algorithms, the computational
complexities of the computation of the system matrices from the observability
matrix are obtained in Table 1.

Table 1: Computational Complexities of Multi-Order System Matrix Computa-
tion

Algorithm Flops
SSI with pseudoinverse (Alg. 1,
using (8) instead Lines 2-4) (5 c+ 9

4 )n4max

SSI with QR (Algorithm 1) ( 5
3 c−

1
12 )n4max

Fast SSI (Algorithm 2) (5 c− 1
2 )n3max + 1

4 n
4
max

Iterative Fast SSI (Section 2.5) 5 c n3max

3 Applications

In this section, the fast multi-order computation of the system matrices is ap-
plied to practical test cases, where so-called stabilization diagrams are used that
contain the system identi�cation results at multiple model orders.

3.1 The Stabilization Diagram

In system identi�cation, the selection of the model order in (3), and thus the
parameters p and q of the subspace matrix H on one hand, and the handling
of excitation and measurement noises on the other hand, are two major prac-
tical issues. In Operational Modal Analysis the true system order is unknown
and recommended techniques from statistics to estimate the best model order
(AIC, BIC, MDL, . . . ) do not work at all. In order to retrieve the wanted
large number of modes, an even larger model order must be assumed. Then,
the subspace method yields a set of modes with both structural and spurious
mathematical or noise modes, and we have to distinguish between the two types
of modes. Fortunately, spurious modes tend to vary for di�erent model orders.
This is why usage suggests to plot frequencies against model order in a stability
or stabilization diagram (see e.g. [9]), where the frequencies (and other modal
parameters) are estimated at t increasing model orders n1, . . . , nt. This gives
results for successive di�erent but redundant models and modes that are com-
mon to many successive models can be distinguished from the spurious modes.
From the modes common to many models the �nal estimated model is obtained.

At each of these model orders, the system matrices have to be computed
�rst, in order to get the eigenstructure of the respective systems. With the new
algorithms from Sections 2.4 and 2.5 this can be done much more e�ciently and
faster than with the conventional Algorithm 1.

RR n° 7429



Fast Multi-Order Stochastic Subspace Identi�cation 11

3.2 Numerical Results

The system matrices Aj and Cj at model orders n1, . . . , nt with nj = j are com-
puted from the observability matrix Ot with the di�erent algorithms presented
in this paper. This, for example, is necessary for computing a stabilization dia-
gram containing model orders n1, . . . , nt, see the previous section. To compare
the performance of the algorithms, the system matrices are computed for stabi-
lization diagrams with di�erent maximal model orders nt, like one would do in
practice:

� From the data, a subspace matrix H of size (p+ 1)r × qr0 is built, where
p+ 1 = q is chosen, as e.g. recommended in [1]

� Ot is obtained from H, where the maximal model order is set to nt = qr0

� Aj and Cj are computed from Ot at model orders nj = j = 1, 2, . . . , nt

To evaluate the computational time for computing the set of Aj 's and Cj 's from
order 1 until a maximal model order nt = qr0, these steps are repeated for
q = 2, . . . , 81 for our test case and the time is recorded for the computation of
the set of Aj and Cj , j = 1, . . . , qr0, for each q.

The test case is the Z24 bridge (see [6], [7]), a prestressed concrete bridge
with three spans, supported by two intermediate piers and a set of three columns
at each end. Both types of supports are rotated with respect to the longitudinal
axis which results in a skew bridge. The overall length is 58m and a schematic
view of the bridge is presented in Figure 1.

Because of the size of the bridge, the response was measured in nine setups
of up to 33 sensors each, with �ve reference sensors common to all setups.
Altogether, the structure was measured at r = 251 sensor positions, of which
are r0 = 5 reference sensors. In each setup, 65,536 samples were collected for
each channel with a sampling frequency of 100 Hz and the common subspace
matrix of all setups was obtained with the PreGER approach described in [4]
using data-driven SSI with the Unweighted Principal Component Algorithm.

As the computation time is also dependent on the constant c ≈ r/r0 (see
Section 2.6), �rst a computation is done with all r = 251 sensors (c ≈ 50),
and second a computation with only a subset of r = 5 sensors (c ≈ 1). The
computation times for the system matrices up to a model order nt from Ot on
an Intel Core2 Duo CPU T8300 with 3.5 GByte in Matlab 7.10.0.499 are plot-
ted in Figure 3. It can be seen that the solution of the least squares problem
with the QR decomposition (see Algorithm 1) is more e�cient than using the
pseudoinverse from Equation (8), especially for the second case in Figure 3(b).
However, using Algorithm 2 from Section 2.4 for multi-order system identi�ca-
tion decreases computation time of the system matrices signi�cantly, which can
be improved further by using the iterative algorithm from Section 2.5.

An example of a stabilization diagram (see Section 3.1) containing the nat-
ural frequencies of the Z24 bridge at model orders 1, . . . , 150 is presented in
Figure 4. Note that some of the modes � the ones that might not be very well
excited � stabilize late in the diagram, making it necessary to use high model
orders for system identi�cation. Going even higher than model order 150 still
can improve identi�cation results, although there only 10 modes to be identi�ed
in this case (see [7]).
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Figure 1: Schematic view of the Z24 bridge.

Figure 2: Photo of the Z24 bridge.

4 Conclusion

In this paper, a new algorithm was derived to e�ciently compute the system
matrices at multiple model orders in subspace based system identi�cation. For
this computation, the computational complexity was reduced from n4max to n

3
max,

where nmax is the maximal desired model order. The e�ciency of the new
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(a) r = 251, r0 = 5, c ≈ 50

(b) r = r0 = 5, c ≈ 1

Figure 3: Computation times for multi-order computation of system matrices
(set of Aj and Cj , nj = j = 1, . . . , nt, computed from Ot) with the algorithms
from Sections 2.3, 2.4 and 2.5.

Figure 4: Stabilization diagram of Z24 bridge containing the identi�ed natural
frequencies at model orders 1, . . . , 150 using the fast iterative SSI from Sec-
tion 2.5.

algorithm was shown on a real test case and computation time was reduced
up to a factor of 100 and more. This fast algorithm can, e.g., be exploited in
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online monitoring, where incoming data has to be processed quickly. Yet, the
e�cient computation of the eigenvalues and eigenvectors of the system matrices
at di�erent model orders remains.
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