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Asymptotic modelling of conductive thin sheets

Kersten Schmidt and Sébastien Tordeux

Abstract. We derive and analyse models which reduce conducting sheets of a small thickness ε

in two dimensions to an interface and approximate their shielding behaviour by conditions on
this interface. For this we consider a model problem with a conductivity scaled reciprocal to the
thickness ε, which leads to a nontrivial limit solution for ε→ 0. The functions of the expansion are
defined hierarchically, i.e. order by order. Our analysis shows that for smooth sheets the models
are well defined for any order and have optimal convergence meaning that the H

1-modelling
error for an expansion with N terms is bounded by O(εN+1) in the exterior of the sheet and by

O(εN+1/2) in its interior. We explicitely specify the models of order zero, one and two. Numerical
experiments for sheets with varying curvature validate the theoretical results.

Mathematics Subject Classification (2000). 65N30, 35C20, 35J25, 41A60, 35B40, 78M30, 78M35 .

Keywords. Asymptotic Expansions, Model Reduction, Thin Sheets.

Introduction

Many electric devices contain very thin conducting parts either for electromagnetic shielding [13,
16], or as casings, tank walls [9, 25] or supply lines [5]. The large aspect ratio of these sheets of
about few millimetres or centimetres to metres or hundreds of micrometres to centimetres and
the high conductivity causes variations in thickness direction in much smaller scales than in the
longitudinal directions. Their discretisation by the finite element method (FEM) is challenging when
the thickness ε of the thin sheets is considerably smaller than the size of neighbouring parts for three
reasons. First, domains with such thin sheets are difficult to mesh by most mesh generators. Secondly,
a discretisation on meshes with cell sizes of different magnitudes can lead to ill-conditioned matrices,
and thirdly, meshes of good quality may also contain cells around the sheet with sizes comparable to
the sheet thickness which leads to a high number of additional degrees of freedom. By reducing the
thin sheet to an interface and by approximating its effect by conditions on this interface, a highly
accurate modelling with standard discretisation schemes like the FEM is possible.

The so called impedance boundary conditions (IBCs), first proposed by Shchukin [29] and
Leontovich [19], are traditionally used for replacing solid conductors, where the domain is artificially
confined, by an approximate boundary condition [28, 3, 1, 2, 15, 11, 8]. This technique is proved to
be accurate for smooth sheets and can be readily implemented.

However, in the context of thin conducting sheets this technique of Shchukin and Leontovich has
been seldom applied. Interface conditions for thin sheets are often based on a tensor product ansatz
of a set of simple functions in thickness direction and functions defined on the interface. The simplest
approaches assume no variation in thickness direction, which leads to a surface quantity [22, 5]. Using
two functions in thickness direction Krähenbühl and Muller [18] derived a relation between the mean
value of the tangential component of the electric or magnetic field on the interfaces of the sheet and
the jump of the magnetic or electric field between the interfaces. This approach for time-harmonic
Maxwell’s equations is adopted by various authors [20, 13, 17] and is known as impedance boundary
condition for thin layers. The functions in thickness direction depending on the frequency ω and
the conductivity σ take the skin effect into account. In similar IBCs for simulations in time domain
underlying functions are changed dynamically [21, 6]. Unfortunately, these interface conditions are
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of low order, and even with the use of a larger number of functions in thickness direction [14] this
type of conditions do not achieve higher orders [27].

Based on arguments similar to those that was used to derive IBCs, first order approximate
models were derived and justified in [24] for electro-quasistatics and [23] for the Maxwell system.
In this paper we derive with similar techniques high order approximations to deal with thin sheets.
We attain these approximations in the context of a 2D scalar model problem with a smooth thin
dissipative sheet.

The model problem defined in Section 1 includes the two major effects, the shielding and the
skin effect. We investigate an asymptotics of constant shielding for ε → 0 by scaling the conductivity
c like 1/ε. For this asymptotics we derive the problems defining together the expansion functions
of the solution of arbitrary order inside and outside the sheet in Section 2. Then, in Section 3
we will rearrange the problems leading to hierarchical coupled problems defining the expansion
functions for each order with the knowledge of the functions of previous orders only. We will decouple
these problems, introduce their variational formulation and show existence and uniqueness of the
internal and external expansion functions in Section 4. Then, in Section 5 we analyse the modelling
error and give the models for the first three orders explicitely in Section 6. Finally, we describe in
Section 7 the numerical discretisation of the asymptotic expansion models and the original model
by means of high-order finite elements and show results for the modelling error in various indicators
in dependence of the sheet thickness. These numerical simulations demonstrate the sharpness of the
bounds for the modelling error.

1. Problem definition

Let Ω be a domain in R2 and Ωε
int be the sub-domain occupied by a sheet of thickness ε > 0

with conductivity c. The remaining sub-domain Ωε
ext := Ω\Ωε

int is non-conducting and we denote
the conductivity function cε(x), where cε(x) = cε for x ∈ Ωε

int and cε(x) = 0 otherwise. We call
the sub-domain of the thin conducting sheet the interior and the non-conducting sub-domain the
exterior.

Let uε be the solution of the problem

−∆uε(x) + cε(x)uε(x)= f(x) in Ω,
uε(x)= g(x) on ∂Ω,

(1)

with the source term f(x) vanishing in Ωε
int and the Dirichlet data g(x). This model problem borrows

the eddy-current model in 2D and includes the skin and shielding effects. We use a bounded domain
Ω and Dirichlet boundary conditions for sake of simplicity. However, the boundary condition is of
no importance in the derivation of the thin sheet models and can be replaced easily, also by suitable
radiation conditions for an unbounded domain.
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Figure 1. (a) Family of geometries for the family of problems for uε(x). (b) Limit
geometry for ε → 0. (c) Normalised interior sub-domain.
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We make the following assumptions on the sheet. The mid-line Γm is given as C∞ continuous
and C∞ invertible map xm(t) from a 1D torus (note that Γm is hence closed), identified with a

reference interval Γ̂ ⊂ R. Furthermore, we assume Γm to have a positive distance to the boundary
of Ω, and, for simplicity, |x′

m(t)| = 1, i. e. t is an arc length parameter. The left normed normal
vector and the curvature of the sheet are denoted by n(t) and κ(t), and the normal derivative by
∂n = ∇ · n. Hence, we can define a parametrisation of the sheet

x(t, s) = xm(t) + sn(t)

over the parameter domain Ω̂ε := Γ̂ ×
[
− ε

2 , ε
2

]
, where s ∈

[
− ε

2 , ε
2

]
(see Figure 1(a)). Due to the

regularity of its midline Γm we can assert for the sheet that

C−1
κ ≤ 1 + sκ(t) ≤ Cκ ∀ (t, s) in Ω̂ε, (2)

for ε small enough with a positive constant Cκ. Finally, we denote the interfaces of the sheet for
s = ± ε

2 by Γε
+ and Γε

− and its union by Γε.
For an asymptotic analysis we embed the problem (1) for a sheet of a particular thickness

into a family of problems with varying thicknesses and a conductivity depending on the respective
thickness. There are several possible scalings of the conductivity with decreasing thickness ε, e. g. one
can consider cε = c0

εα for different parameters α. The choice cε = c0/ε is a borderline case between
a perfect shielding (α > 1) and no shielding (α < 1) and corresponds asymptotically to a constant
shielding [27]. Therefore, this choice is of practical interest.

Hence, we look for the solution uε ∈ H1(Ω) satisfying

−∆uε
ext = f in Ωε

ext,

−∆uε
int +

c0

ε
uε

int = 0 in Ωε
int, ℜ c0 ≥ 0,

uε
ext = g on ∂Ω,

uε
ext(t,± ε

2 )= uε
int(t,± ε

2 ) on Γ̂,

∂nuε
ext(t,± ε

2 )= ∂nuε
int(t,± ε

2 ) on Γ̂,

(3)

where we denote by uε
ext the solution restricted to Ωε

ext and by uε
int its restriction to Ωε

int. We assume
for a positive constant ε0, that f ∈ C∞(Ωε0

ext), and g ∈ C∞(∂Ω) and ∂Ω to be C∞.

2. Derivation of the coupled problems

In this section, we derive two asymptotic expansions of the exact solution, one in each of the exterior
and interior sub-domains. These two expansions are defined by a coupled problem.

2.1. The exterior and interior asymptotic expansions of the solution

The exterior asymptotic expansion corresponds to the asymptotic expansion of uε restricted to Ωε
ext.

It consists in a formal power series

uε
ext(x) =

∞∑

i=0

εiui
ext(x) + o (ε∞)

ε→0
in Ωε

ext, (4)

in which the terms of the asymptotic expansion are independent of ε and defined on Ω0
ext = Ω \ Γm

(see Figure 1(c)), the limit of Ωε
ext for ε → 0. The term o (ε∞)

ε→0
has introduced to mention that

this power series may diverge.
The interior asymptotic expansion is an asymptotic expansion of uε restricted to Ωε

int. In order

to introduce the normalised domain Ω̂ := Γ̂ × [− 1
2 , 1

2 ] (see Figure 1(c)), we consider the stretched

variable

S = ε−1s. (5)

The normalised representation of a function v defined in Ωε
int is denoted by its capital letter V :

v(x) = v(t, s) = V (t, S). The interior asymptotic expansion is postulated to be a formal power
series in ε

Uε
int(t, S) =

∞∑

i=0

εiU i
int(t, S) + o (ε∞)

ε→0
in Ω̂, (6)
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whose terms Uε
int are independent of ε and defined on Ω̂.

Currently, we do not give a mathematical sense to this expansion, even if the formal compu-
tation makes sense. The expansion of the exact solution by a power series in ε emerges as a proper
choice, because all the expansions involve only polynomials in ε. This ansatz of a power series in ε
will be ultimately validated by Theorem 5.1.

In the remainder of this section we derive a coupled problem defining the functions ui
ext and

U i
int.

The coupled problem. Find the families of functions (ui
ext)i∈N0

and (U i
int)i∈N0

such that for all
i ∈ N0

−∆ui
ext = fδi

0 in Ω0
ext, (7a)

ui
ext = gδi

0 on ∂Ω, (7b)

∂2
SU i

int(t, S) = c0U
i−1
int (t, S) −

i∑

ℓ=1

∆ℓU
i−ℓ
int (t, S) in Ω̂. (7c)

U i
int(t,± 1

2 ) − ui
ext(t,±0) =

i∑

ℓ=1

(
±1

2

)ℓ
1

ℓ !
∂ℓ

su
i−ℓ
ext (t,±0) on Γm, (7d)

∂SU i
int(t,± 1

2 ) =

i∑

ℓ=1

(
±1

2

)ℓ−1
1

(ℓ − 1)!
∂ℓ

su
i−ℓ
ext (t,±0), on Γm. (7e)

where we use the Kronecker symbol, δi
j = 1 if i = j and δi

j = 0 if i 6= j, and the differential operators
∆ℓ for ℓ ∈ N which are given by

∆ℓ(t, S) = ∆̂0
ℓ(t)S

ℓ−2 + ∆̂1
ℓ(t)S

ℓ−1∂S ,

∆̂0
ℓ(t) = (−κ(t))ℓ−2(ℓ − 1)

(
∂2

t +
ℓ − 2

2

κ′(t)

κ(t)
∂t

)
and ∆̂1

ℓ(t) = −(−κ(t)) ℓ.
(8)

Equations (7a) and (7b) are readily to derive by inserting (4) in (3) and identifying terms of the
same order in ε. More steps, however, are needed to obtain the leading equation for U i

int. It relies
on the asymptotic expansion

∆ = ε−2∂2
S +

L−1∑

ℓ=1

εℓ−2∆ℓ + εL−2
R

L
ε for all L ≥ 1 (9)

of the Laplacian expressed in local coordinates [8, 27]

∆ = ∂2
s +

κ(t)

1 + sκ(t)
∂s +

1

1 + sκ(t)
∂t

(
1

1 + sκ(t)
∂t

)

= ε−2∂2
S +

ε−1κ(t)

1 + εSκ(t)
∂S +

1

1 + εSκ(t)
∂t

(
1

1 + εSκ(t)
∂t

)
, (10)

with (t, s) = (t, Sε), where for its remainder it holds for any L ∈ N

‖RL
ε U‖L2(bΩ) ≤ CL ‖U‖H2(bΩ) (11)

Inserting (4) and (9) in (3) leads to equation (7c). The coupling conditions (7d) and (7e) need a
specific treatment that will be detailed in Section 2.2.

Remark. The first terms of the expansion of the Laplacian are required in the sequel

∆0 = ∂2
S , ∆1 = κ(t)∂S , ∆2 = ∂2

t − κ2(t)S∂S . (12)
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2.2. The Dirichlet and Neumann coupling conditions

In this section we derive the transmission conditions (7d) and (7e). These relations result from the
exact Dirichlet and Neumann transmission conditions on Γm written in local coordinates

uε
ext(t,± ε

2 ) = Uε
int(t,± 1

2 ), (13)

∂su
ε
ext(t,±

ε

2
) =

1

ε
∂SUε

int(t,± 1
2 ). (14)

Since these conditions are written at s = ±ε/2, Taylor expansions of ui
ext expressed on Γm will

be used to obtain conditions on a single interface. They require regularity of ui
ext that will be a

posteriori validated in Theorem 4.4, by assuming smoothness of Γm.
Remark. The interfaces between the thin sheet and the exterior domain consist of two parts

(s = ±ε/2). Even if one decides to shift the position of the mid-line Γm (s = 0), at least one of the
interfaces is not fixed with respect to ε. This leads to rather more complicated coupling conditions
than for thin coatings [3, 2, 8], where the interface consists of one part only and can be fixed
independently of ε.

The Dirichlet transmission condition (7d). The Taylor expansion of ui
ext reads

ui
ext(t,±

ε

2
) =

∞∑

j=0

(
±ε

2

)j 1

j!
∂j

sui
ext(t,±0) + o (ε∞)

ε→0
. (15)

Inserting the expansion (4), (6) and (15) into (13), we obtain

0 = uε
ext(t,± ε

2 ) − Uε
int(t,± 1

2 )

=
∞∑

i=0

εi




∞∑

j=0

(
±ε

2

)j 1

j!
∂j

sui
ext(t,±0) − U i

int(t,± 1
2 )


+ o (ε∞)

ε→0

=

∞∑

i=0

εi




i∑

j=0

(
±1

2

)j
1

j!
∂j

sui−j
ext (t,±0) − U i

int(t,± 1
2 )


+ o (ε∞)

ε→0
. (16)

Identifying terms of same orders leads to the Dirichlet transmission condition (7d).
Remark.The exterior expansion functions ui

ext may be discontinuous across Γm.

The Neumann transmission condition (7e). The Taylor expansion of ∂su
i
ext reads

∂su
i
ext(t,±

ε

2
) =

∞∑

j=0

(
±ε

2

)j 1

j!
∂j+1

s ui
ext(t,±0) + o (ε∞)

ε→0
. (17)

Inserting the expansions (4), (6) and (17) into (16), we get

0 = ε∂su
ε
ext(t,±

ε

2
) − ∂SUε

int(t,± 1
2 )

=

∞∑

i=0

εi


ε

∞∑

j=0

(
±ε

2

)j 1

j!
∂j+1

s ui
ext(t,±0) − ∂SU i

int(t,± 1
2 )


+ o (ε∞)

ε→0

=

∞∑

i=0

εi

( i−1∑

j=0

(
±1

2

)j
1

j!
∂j+1

s ui−j−1
ext (t,±0) − ∂SU i

int(t,± 1
2 )

)
. (18)

Identifying terms of the same order results in the Neumann transmission condition (7e).

3. The hierarchical coupled problem

In the last section, we derived a coupled problem (7) that defines the families of exterior and interior
terms (ui

ext)i∈N and (U i
int)i∈N. However, these equations do not define the family hierarchically.

Indeed, given (U i
int, u

i
ext)i<k, (7) written for i = k, and not for all i ∈ N, does not uniquely define



6 Kersten Schmidt and Sébastien Tordeux

(Uk
int, u

k
ext). This is due to the fact that there is no condition for the normal derivative ∂su

k
ext(x) on

the mid-line Γm.1

Deriving a necessary condition for the existence of U i+1
int leads to a formulation of (7) which

permits the computation of (U i
int, u

i
ext)i≤k step by step.

Symbols for the mean and the jump. For the sake of brevity let us introduce the following symbols
for the jumps and the mean values of the expansion functions

[V ](t) := V (t, 1
2 ) − V (t,− 1

2 ), {V } (t) :=
1

2

(
V (t, 1

2 ) + V (t,− 1
2 )
)
,

[v](t) := v(t, 0+) − v(t, 0−), {v} (t) :=
1

2

(
v(t, 0+) + v(t, 0−)

)
,

and a symbol for either the jump or the mean value of the external expansion function of both sides
of the mid-line Γm

[v]
n

(t) :=

{
[v](t) n even

2 {v}(t) n odd.

The latter symbol is convenient for terms resulting from the Taylor expansions (15) and (17), in
which the sign changes from term to term and, hence, the difference is the jump and the mean value,
in turns.

Additional condition for the normal derivative ∂su
i
ext(x). The missing condition for the normal

derivative ∂su
i
ext(x) is the compatibility condition for (7c) and (7d) which is necessary for the

existence of the internal functions U i+1
int . Inserting (7c) and (7e) into the following equality for U i

int

0 = ∂SU i
int(t, +

1
2 ) − ∂SU i

int(t,− 1
2 ) −

∫ 1
2

− 1
2

∂2
SU i

int(t, S) dS,

we obtain

0 =

i∑

ℓ=1

(
1

2

)ℓ−1
1

(ℓ − 1)!

[
∂ℓ

su
i−ℓ
ext

]ℓ−1
(t) −

∫ 1
2

− 1
2

(
c0U

i−1
int (t, S) −

i∑

ℓ=1

∆ℓU
i−ℓ
int (t, S)

)
dS. (19)

Furthermore, inserting the equality ∆1 = κ(t)∂S (see (12)) we can rewrite (19) for i + 1 instead of
i as

∫ 1
2

− 1
2

(
c0 − κ(t)∂S

)
U i

int(t, S) dS −
[
∂su

i
ext

]
(t) =

i∑

ℓ=1

(∫ 1
2

− 1
2

∆ℓ+1U
i−ℓ
int (t, S) dS +

1

2ℓ ℓ !
[∂ℓ+1

s ui−ℓ
ext ]ℓ(t)

)
, (20)

which is a condition for the normal derivative involving only terms of order i. Adding this condition
to (7) yields a problem which defines the expansion functions hierarchically.

1Remember, that for second order differential equations two transmission conditions are needed. We have with (7d)
a Dirichlet transmission condition and (7e) defines the normal derivative from the interior. Thus, a condition for the
normal derivative from the exterior of the sheet is missing.
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The hierarchical coupled problem. For i ∈ N0, find ui
ext and U i

int such that

−∆ui
ext = fδi

0 in Ω0
ext, (21a)

ui
ext = gδi

0 on ∂Ω, (21b)

∂2
SU i

int(t, S) = c0U
i−1
int (t, S) −

i∑

ℓ=1

∆ℓU
i−ℓ
int (t, S) in Ω̂, (21c)

U i
int(t,± 1

2 ) − ui
ext(t,±0) =

i∑

ℓ=1

(
±1

2

)ℓ
1

ℓ !
∂ℓ

su
i−ℓ
ext (t,±0) on Γm, (21d)

∂SU i
int(t,± 1

2 ) =
i∑

ℓ=1

(
±1

2

)ℓ−1
1

(ℓ − 1)!
∂ℓ

su
i−ℓ
ext (t,±0) on Γm, (21e)

∫ 1
2

− 1
2

(
c0 − κ(t)∂S

)
U i

int(t, S) dS −
[
∂su

i
ext

]
(t) =

i∑

ℓ=1

(∫ 1
2

− 1
2

∆ℓ+1U
i−ℓ
int (t, S) dS +

(
1

2

)ℓ
1

ℓ !
[∂ℓ+1

s ui−ℓ
ext ]ℓ(t)

)
on Γm. (21f)

Remark. It can be easily proven that U i
int(t, S) is a polynomial of degree 2i in S for i ∈ N0. Thus,

we define U0
int(t) := U0

int(t, S).

In the next section, we prove the existence and uniqueness of the solution of problem (21).

4. Well-posedness of the hierarchical coupled problem

4.1. An algorithm to solve the hierarchical coupled problem

In this section we propose an algorithm to define successively the three functions

Ũ i
int(t, S) := U i

int(t, S) − {U i
int}(t), ui

ext(x) and {U i
int}(t). (22)

as the solutions of the following three problems which can be solved iteratively:

(i) Find Ũ i
int(t, S) : Ω̂ −→ C such that





∂2
SŨ i

int(t, S) = c0U
i−1
int (t, S) −

i∑

ℓ=1

∆ℓU
i−ℓ
int (t, S) in Ω̂,

∂SŨ i
int(t,±

1

2
) =

i∑

ℓ=1

(
±1

2

)ℓ−1
1

(ℓ − 1)!
∂ℓ

su
i−ℓ
ext (t,±0) on Γm,

{Ũ i
int}(t) = 0 on Γm.

(23a)
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(ii) Find ui
ext(t, S) : Ω0

ext −→ C such that




−∆ui
ext = fδi

0 in Ω0
ext,

ui
ext = gδi

0 on ∂Ω,

[
ui

ext

]
(t) =

[
Ũ i

int

]
(t) −

i∑

ℓ=1

(
1

2

)ℓ
1

ℓ !

[
∂ℓ

su
i−ℓ
ext

]ℓ
(t) on Γm,

[
∂su

i
ext

]
(t) − c0

{
ui

ext

}
(t) =

∫ 1
2

− 1
2

c0Ũ
i
int(t, S) dS − κ(t)

[
Ũ i

int

]
(t)+

i∑

ℓ=1

(
c0

(
1

2

)ℓ+1
1

ℓ !
[∂ℓ

su
i−ℓ
ext ]ℓ+1(t) on Γm,

−
(

1

2

)ℓ
1

ℓ !
[∂ℓ+1

s ui−ℓ
ext ]ℓ(t)

−
∫ 1

2

− 1
2

∆ℓ+1U
i−ℓ
int (t, S) dS

)
.

(23b)

(iii) Find {U i
int} : Γm −→ C such that

{U i
int}(t) =

{
ui

ext

}
(t) +

i∑

ℓ=1

(
1

2

)ℓ+1
1

ℓ !
[∂ℓ

su
i−ℓ
ext ]ℓ+1(t) on Γm. (23c)

Lemma 4.1. The problem (23) is equivalent to the problem (21).

Proof. We first demonstrate that every solution of (21) is also a solution of (23). The equations (23a)
are a direct consequence of (21c) and (21e) taking into account that {U i

int}(t) is a constant in S. The
equation (23c) follows by applying the mean value operator to (21d). The third equation in (23b)
follows by applying the jump operator to (21d). And, the fourth equation of (23b) is obtained, after

calculation, by inserting U i
int(t, S) = Ũ i

int(t, S) + {U i
int}(t) and (23c) into (21f).

Applying the converse arguments, we can show that every solution of (23) is also solution of
(21). �

4.2. Variational framework

The interior solution ui
ext is defined by the system (23b). This section is devoted to the existence,

uniqueness and regularity of the solution of such problems.

Given f ∈ L2(Ω), g ∈ H
1
2 (∂Ω), γ ∈ H

1
2 (Γm), δ ∈ H− 1

2 (Γm), we are looking for solution
u ∈ H1(Ω0

ext) of the problem




−∆u = f, in Ω0
ext,

u = g, on ∂Ω,

[u] = γ, on Γm,

[∂nu] − c0{u} = δ, on Γm.

(24)

A classical route to deal with this non-homogeneous problem consists in introducing the harmonic
offset function ũ ∈ H1(Ω0

ext) satisfying




∆ũ = 0, in Ω0
ext,

ũ(·,±0) = ± 1
2γ(·), on Γm,

ũ = g, on ∂Ω.
(25)

Consequently, ũ fulfils the jump condition [ũ](t) = γ and has a vanishing mean {ũ}(t) = 0. Moreover,

since ∆ũ = 0 in Ω0
ext and ũ ∈ H1(Ω0

ext), the jump of the normal trace [∂nũ] belongs to H− 1
2 (Γm).

Multiplying the first equation of (24) by a test function v, integrating over Ω and using the
Green formula, we get the following weak formulation for û = u − ũ :

Find û ∈ H1
0 (Ω) such that a(û, v) = l(v) ∀v ∈ H1

0 (Ω), (26)
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with the bilinear form a(·, ·) and the linear form l(·) defined by

a(û, v) :=

∫

Ω

∇û · ∇v dx +

∫

Γm

c0 ûv dt, (27)

l(v) :=

∫

Ω

fv +

∫

Γm

([∂nũ] − δ) v dt. (28)

Using Poincaré-Friedrichs inequality [7], it is rather easy to prove the following lemma.

Lemma 4.2. The system (24), with data f ∈ L2(Ω), g ∈ H1/2(∂Ω), γ ∈ H1/2(Γm) and δ ∈ H−1/2(Γm)
admits a unique solution given that ℜ c0 ≥ 0.

Even if we seek the expansion functions u ∈ H1(Ω0
ext) they possess a higher regularity given

that the mid-line of the sheet Γm and the source term f are smooth enough. This confirms the
validity of the Taylor expansions (15) and (17).

Proposition 4.3. For k0 ∈ N, f ∈ Hk0−2(Ω0
ext), g ∈ Hk0−1/2(∂Ω), γ ∈ Hk0−1/2(Γm), δ ∈ Hk0−3/2(Γm)

and Γm ∪ ∂Ω Ck0 -continuous, let u(x) ∈ H1(Ω0
ext) be the solution of (24).

For any positive integer k ≤ k0, there exists a constant Ck > 0 such that

‖u‖Hk(Ω0
ext)

≤ Ck

(
‖f‖Hk−2(Ω0

ext)
+ ‖g‖Hk−1/2(∂Ω) + ‖γ‖Hk−1/2(Γm) + ‖δ‖Hk−3/2(Γm)

)
.

Proof. Applying the techniques of Proposition 2.8 in [27] we get the statement of proposition. �

Remark. If the boundary of the domain is not smooth enough, the regularity statement of Proposi-
tion 4.3 has to be restricted to a sub-domain of Ω0

ext excluding a neighbourhood of the boundary.
A sub-domain of Ω0

ext exluding the support of the source term f has to be taken, if this term is not
smooth.

4.3. Existence and uniqueness of (ui
ext) and (U i

int)

Theorem 4.4. The sequences (ui
ext) and (U i

int) exist and are uniquely defined by (23). For any

k ∈ N0 and i ∈ N0 it holds ui
ext ∈ Hk(Ω0

ext), Ũ i
int ∈ Hk(Ω̂), and {U i

int} ∈ Hk(Ω̂) and consequentely

U i
int ∈ Hk(Ω̂) as well.

Proof. The proof is by induction in i.

For i = 0, the Sturm-Liouville problem (23a) with homogeneous data uniquely defines Ũ0
int(t) =

0 (see [30] for a presentation of Sturm-Liouville problems). The source term and the mid-line of the
sheet are C∞ by assumption. Thus, by Proposition 4.3 there exists for any k ∈ N a constant C0,k

such that ‖u0
ext(t)‖Hk(Ω0

ext)
≤ C0,k. Since H1(Ω0

ext) ⊂ L2(Ω0
ext) the same holds for k = 0. By (23a)

we can assert that U0
int,0(t) = U0

int(t) = {U0
int}(t) =

{
u0

ext

}
(t) ∈ Hk−1/2(Γm) for any k ∈ N. Hence,

the statement of the theorem is proven for i = 0.

Assume that the assertion holds for all integer j < i. We divide the rest of the proof in three

steps. In (i) we prove the existence, uniqueness and regularity of Ũ i
int (i), in (ii) those of ui

ext and in
(iii) the regularity of {U i

int}.
(i) The function Ũ i

int is defined by the Sturm-Liouville problem (23a). This function exists and is
unique if and only if the source terms satisfy the compatibility2 condition (19). This condition
is fulfilled since it is equivalent to (21f) written for i = i − 1 which holds as (ui−1

ext , U i−1
int ) is

the solution of (23) and by Lemma 4.1 also of (21). The regularity of Ũ i
int follows from the

regularity of (uj
ext)j<i and (U j

int)j<i.

(ii) The function ui
ext is defined by (23b). Since (uj

ext)j<i, (U j
int)j<i and Ũ i

int are regular, the
existence, uniqueness and regularity of ui

ext result from Lemma 4.2 and Proposition 4.3.

2This compatibility condition corresponds to a necessary condition for the existence of eU i
int

:

∂S
eU i
int(t, +

1

2
)− ∂S

eU i
int(t,−

1

2
) =

Z 1
2

−

1
2

∂2
S

eU i
int(t, S) dS. (29)
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(iii) The function {U i
int} is defined by (23c). The smoothness of {U i

int} follows from the regularity

of (uj
ext)j≤i.

�

Remark. Although we assume a smooth boundary ∂Ω and a smooth source term f , this assumption
is not needed for the existence and uniqueness of the expansion functions (Theorem 4.4) since the

former terms of the expansion (uj
ext)j<i appear only on the mid-line Γm and regularity is required

for the traces to this mid-line only.

5. Estimates of the modelling error

To obtain an approximation uε,N of order N ∈ N0 of the exact solution uε we truncate the expansions
of uε

ext and Uε
int to the first N + 1 terms

uε,N
ext (x) :=

N∑

i=0

εiui
ext(x), and Uε,N

int (t, S) :=

N∑

i=0

εiU i
int(t, S), (30)

and use the notation uε,N
int (t, s) := Uε,N

int (t, s/ε). Now, we formulate the main result about the mod-
elling error in the following Theorem.

Theorem 5.1 (The modelling error in the H1-norm). For any N ∈ N0, there exists a constant CN

independent of ε such that

‖uε
ext − uε,N

ext ‖H1(Ωε
ext)

+
√

ε ‖uε
int − uε,N

int ‖H1(Ωε
int

) ≤ CNεN+1. (31)

Proof. In order to prove Theorem 5.1 we need to estimate the remainder rε,N+1

rε,N+1
ext = uε

ext − uε,N
ext and rε,N+1

int = uε
int − uε,N

int . (32)

In Section 5.1, we identify residuals by inserting rε,N+1 in the model problem (3). Then, these
residuals are bounded in Section 5.2. Finally, we conclude using a stability argument in Section
5.3. �

5.1. The problem for the remainder

Contrary to uε, the approximation uε,N given in (30) does not exactly fulfil our model problem (3).
Indeed, the exact solution uε has continuous Dirichlet and Neumann data on Γε, whereas the
Dirichlet and Neumann traces of uε,N have jumps. Moreover, the partial differential equation in the
sheet is also not satisfied exactly. More precisely, the remainder rε,N+1 solves the following system
of equations





−∆rε,N+1
ext = 0 in Ωε

ext,

−∆rε,N+1
int +

c0

ε
rε,N+1
int = δε,N+1

int in Ωε
int

rε,N+1
ext (t,±ε

2
) − rε,N+1

int (t,±ε

2
) = δε,N+1

D,± on Γε,

∂sr
ε,N+1
ext (t,±ε

2
) − ∂sr

ε,N+1
int (t,±ε

2
) = δε,N+1

N,± on Γε,

rε,N+1
ext = 0 on ∂Ω,

(33)

with the internal residual

δε,N+1
int (x) :=

(
−∆ +

c0

ε

)(
uε

int(x) − uε,N
int (x)

)

(3)
= −

(
−∆ +

c0

ε

)
uε,N

int (x)
(30)
= −

N∑

i=0

εi
(
−∆ +

c0

ε

)
ui

int(x), (34a)
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the residual of the Dirichlet jump

δε,N+1
D,± (t) :=

(
uε

ext(t,±
ε

2
) − uε

int(t,±
ε

2
)
)

︸ ︷︷ ︸
0 by (3)

−
(
uε,N

ext (t,±ε

2
) − uε,N

int (t,±ε

2
)
)

(30)
=

N∑

i=0

εi

(
U i

int(t,±
1

2
) − ui

ext(t,±
ε

2
)

)

(34b)

and the residual of the Neumann jump

δε,N+1
N,± (t) :=

(
∂nuε

ext(t,±
ε

2
) − ∂nuε

int(t,±
ε

2
)
)

︸ ︷︷ ︸
0 by (3)

−
(
∂nuε,N

ext (t,±ε

2
) − ∂nuε,N

int (t,±ε

2
)
)

(30)
=

N∑

i=0

εi

(
1

ε
∂SU i

int(t,±
1

2
) − ∂nui

ext(t,±
ε

2
)

)
. (34c)

5.2. Consistency estimates

In this section, we estimate the residuals δε,N+1
int , δε,N+1

D,± and δε,N+1
N,± defined in (34).

5.2.1. The internal residual.

Proposition 5.2 (Consistency error in the sheet). There exists CN > 0, independent of ε, such that

‖δε,N+1
int ‖L2(Ωε

int
) ≤ CN εN−1/2.

Proof. We write the interior residual given by (34a) in local coordinates, Dε,N+1
int (t, S) := δε,N+1

int (t, s),
with s = Sε. Inserting the expansion of the Laplace operator (9) we have

Dε,N+1
int (t, S) = −

N∑

i=0

εi

(
−ε−2

(
∂2

S +

N−i∑

ℓ=1

(
εℓ∆ℓ

)
+ εN−i+1

R
N−i+1
ε

)
U i

int(t, S) +
c0

ε
U i

int(t, S)

)
.

(35)
With the convention U−1

int ≡ 0, we collect the terms of same powers of ε

Dε,N+1
int (t, S) = εN−1

(
N∑

i=0

R
N−i+1
ε U i

int(t, S) − c0U
N
int(t, S)

)

+

N∑

i=0

εi−2

(
∂2

SU i
int(t, S) − c0U

i−1
int (t, S) +

i∑

ℓ=1

∆ℓU
i−ℓ
int (t, S)

)

︸ ︷︷ ︸
0 by (23a)

. (36)

Since U i
int(t, S) is independent of ε for all i by Theorem 4.4, we obtain using (11)

∥∥∥Dε,N+1
int

∥∥∥
L2(bΩ)

≤ εN−1

(
N∑

i=0

C‖U i
int‖H2(bΩ) + c0‖UN

int‖L2(bΩ)

)
≤ CNεN−1. (37)

Considering the curved geometry, see (2), we can write the integral in the original coordinates

‖δε,N+1
int ‖2

L2(Ωε
int

) ≤ Cκ

∫

Γ̂

∫ ε
2

− ε
2

(δε,N+1
int (t, s))2 ds dt = Cκε

∥∥∥Dε,N+1
int

∥∥∥
2

L2(bΩ)
≤ CN ε2N−1.

The proof is complete. �
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5.2.2. A preliminary result on the Taylor expansion remainder. In Sections 5.2.3 and 5.2.4, the
estimates of the Dirichlet and the Neumann jump residuals will require the following proposition.
We give the proof of this classical result for the sake of completeness.

Proposition 5.3 (Estimate of the remainder of the Taylor expansion). Let L ∈ N.

∃CL > 0 ∀ε > 0 ∀u ∈ HL([−ε

2
;
ε

2
] \ {0})

∣∣rL
ε,±(u)

∣∣ ≤ CL εL−1/2 |u|HL([0,± ε
2
]) (38)

with r
L
ε,+(u) and r

L
ε,−(u) the two reals defined by

r
L
ε,±(u) := u(±ε

2
) −

L−1∑

ℓ=0

(
±ε

2

)ℓ

u(ℓ)(±0). (39)

Proof. We use the well-known expression of the remainder term of Taylor polynomials

|rL
ε,±(u)| =

1

(L − 1)!

∣∣∣∣
∫ ± ε

2

0

(
±ε

2
− s
)L−1

∂L
s u(s) ds

∣∣∣∣.

Bounding
∣∣± ε

2 − s
∣∣L−1

by its maximal value
(

ε
2

)L−1
and applying the Cauchy-Schwarz inequality,

we obtain
∣∣∣∣
∫ ± ε

2

0

(
±ε

2
− s
)L−1

∂L
s u(s) ds

∣∣∣∣ ≤
(ε

2

)L− 1
2 ‖∂L

s u‖L2([0,± ε
2
]) =

(ε

2

)L− 1
2 |u|HL([0,± ε

2
]).

The composition of the estimates completes the proof. �

5.2.3. The Dirichlet jump residual. The functions δε,N+1
D,± (t) for the Dirichlet jumps are defined

on Γε
+ or Γε

−, respectively. However, we can regard them as functions on the mid-line Γm. In the
following proposition we bound the L2-norm of the error of the Dirichlet jumps evaluated on the
mid-line. In Proposition 5.5, we will then define and estimate an extension function of the Dirichlet
jump into the sheet.

Proposition 5.4 (Estimate of the Dirichlet jump residual). There exists a constant CN > 0,
independent of ε, such that for j = 0, 1

‖∂j
t δ

ε,N+1
D,± ‖L2(Γm) ≤ CNεN+1/2. (40)

Proof. The Dirichlet jump residual is given by (34b). Replacing ui
ext(t,± ε

2 ) by its Taylor expansion,
see Proposition 5.3, we get

δε,N+1
D,± (t) =

N∑

i=0

εi

(
U i

int(t,±
1

2
) −

i∑

j=0

(
±1

2

)j
1

j!
∂j

sui−j
ext (t,±0)

)
−

N∑

i=0

εi
r

N−i+1
ε,± (ui

ext)(t). (41)

Due to (21d), this simplifies to

δε,N+1
D,± (t) = −

N∑

i=0

εi
r

N−i+1
ε,± (ui

ext)(t). (42)

Applying (38), we get the estimate with CN a generic constant depending on N

|δε,N+1
D,± (t)| ≤

N∑

i=0

εi
(
CN−i εN−i+1/2 ‖∂N−i+1

s ui
ext‖L2([0,± ε

2
])

)

≤ CN εN+1/2

N∑

i=0

‖∂N−i+1
s ui

ext‖L([0,± ε
2
]). (43)

Thus, we can bound the L2(Γm)-norm of δε,N+1
D,± by a triangular inequality

‖δε,N+1
D,± (t)‖L2(Γm) ≤ CN εN+ 1

2

N∑

i=0

‖∂N−i+1
s ui

ext‖L2(Γm×[0,± ε
2
]).
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Considering the curvature, C−1
κ ≤ 1 + sκ(t) by (2), and since Γm × (0,± ε

2 ] ⊂ Ω0
ext we can write

‖∂N−i+1
s ui

ext‖2
L2(Γm×[0,± ε

2
]) ≤ Cκ

∫

Γm

∫ ± ε
2

0

(∂N−i+1
s ui

ext(s, t))
2(1 + sκ(t)) ds dt

≤ Cκ|ui
ext|2HN−i+1(Ω0

ext)
.

Thus, we obtain ‖∂N−i+1
s ui

ext‖L2(Γm×[0,± ε
2
]) ≤ ‖ui

ext‖HN+1(Ω0
ext)

. It follows that

‖δε,N+1
D,± (t)‖L2(Γm) ≤ CNεN+ 1

2

N∑

i=0

|ui
ext|HN−i+1(Ω0

ext)
≤ CNεN+ 1

2 ‖ui
ext‖HN+1(Ω0

ext)
.

By inserting the regularity bound for the expansion functions ui
ext (see Theorem 4.4) we obtain

‖δε,N+1
D,± (t)‖L2(Γm) ≤ CN,0 εN+1/2,

which is our claim for j = 0. With similar arguments we find

‖∂tδ
ε,N+1
D,± (t)‖L2(Γm) ≤ CN εN+ 1

2 ‖∂tu
i
ext‖HN+1(Ω0

ext)
≤ CN εN+ 1

2 ‖ui
ext‖2

HN+2(Ω0
ext)

≤ CN εN+ 1
2 .

This completes the proof. �

Proposition 5.5 (An extension function of the Dirichlet jump residual). There exists an extension

δε,N+1
D (t, s) of δε,N+1

D,± (t) defined in (34b) into Ωε
int with

∂sδ
ε,N+1
D

(
t,±ε

2

)
= 0, and ∃CN > 0 ∀ε > 0 : ‖δε,N+1

D ‖H1(Ωε
int

) ≤ CNεN . (44)

Proof. Let us define the piecewise linear, continuous function (see Figure 2)

χε(s) :=





0 : −ε/2 < s < −ε/4,
1

2
+

2s

ε
: −ε/4 ≤ s ≤ ε/4 ,

1 : ε/4 < s < ε/2,

(45)

for which it holds

∫ ε
2

− ε
2

χ2
ε(s) ds =

∫ ε
2

− ε
2

(1 − χε(s))
2

ds =
5

12
ε,

∫ ε
2

− ε
2

(χ′
ε(s))

2 ds =

∫ ε
2

− ε
2

((1 − χε)
′(s))2 ds =

2

ε
. (46)

− ε
2 − ε

4
ε
4

ε
2

s

1

0

Figure 2. The extension function χε(s).

Using this extension function χε(s) we define an extension of the error in the Dirichlet jumps

δε,N+1
D (t, s) := χε(s) δε,N+1

D,+ (t) + (1 − χε(s)) δε,N+1
D,− (t).

Applying the triangle estimate we can assert that
∥∥δε,N+1

D (t, s)
∥∥

H1(Ωε
int

)
≤
∥∥χε(s) δε,N+1

D,+ (t)
∥∥

H1(Ωε
int

)
+
∥∥(1 − χε(s)) δε,N+1

D,− (t)
∥∥

H1(Ωε
int

)
. (47)
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Due to (2), it holds for any u ∈ H1(Ωε
int)

∥∥u
∥∥2

H1(Ωε
int

)
=

∫

Γm

ε/2∫

−ε/2

(
(
u(t, s)

)2
+

(
∂tu(t, s)

1 + sκ(t)

)2

+ (∂su(t, s))2

)
(1 + sκ(t)) ds dt

≤ C

∫

Γm

ε/2∫

−ε/2

((
u(t, s)

)2
+
(
∂tu(t, s)

)2
+
(
∂su(t, s)

)2)
ds dt ≤ C

∥∥u
∥∥2

H1(Γm×[−ε/2,ε/2])
.

Consequently, it is sufficient to estimate the functions in H1(Γm × [−ε/2, ε/2])

∥∥δε,N+1
D

∥∥
H1(Ωε

int
)
≤ C

(∥∥χε(s) δε,N+1
D,+ (t)

∥∥
H1(Γm×[−ε/2,ε/2])

+

∥∥(1 − χε(s)) δε,N+1
D,− (t)

∥∥
H1(Γm×[−ε/2,ε/2])

)
.

Due to the tensorial nature of the two terms on the right hand side, we can roughly bound

∥∥δε,N+1
D

∥∥
H1(Ωε

int
)
≤ C

(∥∥χε

∥∥
H1(Γm)

∥∥δε,N+1
D,+

∥∥
H1([−ε/2,ε/2])

+
∥∥(1−χε)

∥∥
H1(Γm)

∥∥δε,N+1
D,−

∥∥
H1([−ε/2,ε/2])

)
.

Inserting the estimates (40) and (46) we finally obtain (44). �

5.2.4. The Neumann jump residual.

Proposition 5.6 (Estimate of the Neumann jump residual). There exists a constant CN > 0,
independent of ε, such that

‖δε,N+1
N,± ‖L2(Γε) ≤ CN εN−1/2.

Proof. The error in the Neumann jump is given by

δε,N+1
N,± (x)

(34c)
=

N∑

i=0

εi

(
1

ε
∂SU i

int(t,±
1

2
) − ∂su

i
ext(t,±

ε

2
)

)

(39)
=

N∑

i=0

εi−1

(
∂SU i

int(t,±
1

2
) −

i−1∑

j=0

(
±1

2

)j
1

j!
∂j+1

s ui−j−1
ext (t,±0)

)

︸ ︷︷ ︸
0 by (7e)

−
N∑

i=0

εi
r

N−i
ε,± (∂su

i
ext)(t)

= −
N∑

i=0

εi
r

N−i
ε,± (∂su

i
ext)(t),

where we inserted the Taylor polynomial of ∂su
i
ext(t,± ε

2 ) with their remainder terms in the second

step. Note, that r
L
ε,±(∂su

i
ext)(t) depends on t ∈ Γ̂ since ∂su

i
ext is a function of t. The terms in the

first sum cancel due to the approximation of the Neumann continuity in (7e). Now, we use (38) to
estimate the remainders of the truncated Taylor expansion:

⇒ |δε,N+1
N,± (t)|

(38)

≤
N∑

i=0

εi
(
CN−i εN−i+1/2 ‖∂N−i+2

s ui
ext‖L2([0,± ε

2
])

)

≤ CN εN+1/2

N∑

i=0

‖∂N−i+2
s ui

ext‖L2([0,± ε
2
]).

The proof of the bound in the L2-norms is then similar to the one of Proposition 5.5. �

5.3. Proof of Theorem 5.1

Let r̂ext := rε,N+1
ext , r̂int := rε,N+1

int + δε,N+1
D , with δε,N+1

D the extension function of δε,N+1
D,± of Propo-

sition 5.5. Then, the function r̂ is continuous over the interfaces Γε of the sheet and inherits the
vanishing trace on the boundary from rε,N+1. It lies consequently in H1

0 (Ω).
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Multiplying (33) with a test function v ∈ H1
0 (Ω) and integrating by parts in Ωε

ext and in Ωε
int

we get the variational formulation: Seek r̂ ∈ H1
0 (Ω), such that

∫

Ωε
ext

∇r̂ext · ∇vext dx +

∫

Ωε
int

(
∇r̂int · ∇vint +

c0

ε
r̂intvint

)
dx =

∫

Γε
+

−δε,N+1
N,+ v dt +

∫

Γε
−

δε,N+1
N,− v dt

−
∫

Ωε
int

(
∇δε,N+1

D · ∇vint +
c0

ε
δε,N+1
D vint

)
dx +

∫

Ωε
int

δε,N+1
int v dx. (48)

For ℜ c0 ≥ 0, the left hand side defines a H1
0 (Ω)-elliptic continuous bilinear form. By the estimates

of the Propositions 5.2, 5.5 and 5.6 the right hand side defines a H1(Ω)-continuous linear form. The
Lax-Milgram lemma [26] ensures stability. Inserting the results of the Propositions 5.2, 5.5 and 5.6
yields

(∥∥∥rε,N+1
ext

∥∥∥
2

H1(Ωε
ext)

+
∥∥∥rε,N+1

int

∥∥∥
2

H1(Ωε
int

)

) 1
2 ≤ ‖r̂‖H1(Ω) + ‖δε,N

D ‖H1(Ωε
int

)

≤ C̃

((
2 +

√
c0

ε

)
‖δε,N+1

D ‖H1(Ωε
int

)︸ ︷︷ ︸
O(εN )

+
∑

σ={+,−}

‖δε,N+1
N,σ ‖L2(Γε

σ)︸ ︷︷ ︸
O(εN− 1

2 )

+ ‖δε,N+1
int ‖L2(Ωε

int
)︸ ︷︷ ︸

O(εN− 1
2 )

)
≤ C εN− 1

2 , (49)

with C > 0 a constant independent of ε. Moreover, by definition (32)

rε,N+1 = εN+1uN+1 + εN+2uN+2 + rε,N+3. (50)

Using the fact that for every integer i, ‖ui‖H1(Ωε
ext)

= O(1) and ‖ui‖H1(Ωε
int

) = O(ε−1/2), inserting

(49) into (50) and applying the triangle inequality we conclude that
∥∥∥rε,N+1

ext

∥∥∥
H1(Ωε

ext)
≤ εN+1

∥∥uN+1
ext

∥∥
H1(Ωε

ext)
+ εN+2

∥∥uN+2
ext

∥∥
H1(Ωε

ext)
+
∥∥∥rε,N+3

ext

∥∥∥
H1(Ωε

ext)

≤ C1ε
N+1 + C2ε

N+2 + C3ε
N+3/2 ≤ CεN+1,

∥∥∥rε,N+1
int

∥∥∥
H1(Ωε

int
)
≤ εN+1

∥∥uN+1
int

∥∥
H1(Ωε

int
)
+ εN+2

∥∥uN+1
int

∥∥
H1(Ωε

int
)
+
∥∥∥rε,N+3

int

∥∥∥
H1(Ωε

int
)

≤ C1ε
N+1/2 + C2ε

N+3/2 + C3ε
N+3/2 ≤ CεN+1/2.

6. The first three orders

In Section 4, the external function ui
ext and the internal function U i

int were defined by a coupled
problem, see (23). We could use a finite element method for the approximation on two meshes –

a first one for Ω0
ext and a second one for Ω̂. Since this formulation is not common, we propose an

equivalent definition of the internal and external functions by uncoupled problems, whose solutions
will be much easier to approximate numerically.

More precisely, we elaborate a procedure that allows to compute the exterior functions of order
0, 1, and 2, with no need of the interior functions. This factorisation leads to three problems defining
u0

ext, u1
ext and u2

ext involving only exterior fields of lower order, see (57), (63) and (65). The details
for the second order will not be given.

6.1. Preliminary results: replacing higher normal derivatives on the mid-line

The asymptotic expansion models (23) involve derivatives of high order with respect to the normal
direction. Because it is from a practical point of view easier to handle tangential derivatives than
normal derivatives of the same order we intend to replace these higher normal derivatives. Due to
the absence of a source term f in Ωε

int for all ε smaller than ε0, i. e.

−∆ui
ext(t, s) = 0, s ∈

[
− ε

2 , ε
2

]
, (51)

it is possible to replace the normal derivatives by derivatives in t.
Taking the two limits of the expression (10) of the Laplace operator for s → ±0 we obtain

∆ = ∂2
n + κ(t)∂n + ∂2

t
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and inserting the above expression into (51) yields

∂2
nui

ext(t,±0) = −κ(t) ∂nui
ext(t,±0) − ∂2

t ui
ext(t,±0). (52)

Applying the normal derivative ∂s to (10) we get the expression

0 = ∂s∆ = ∂3
s − κ2(t)

(1 + sκ(t))2
∂s +

κ(t)

1 + sκ(t)
∂2

s − κ(t)

(1 + sκ(t))2
∂t

(
1

1 + sκ(t)
∂t

)

+
1

1 + sκ(t)
∂t

(
− κ(t)

(1 + sκ(t))2
∂t +

1

1 + sκ(t)
∂s∂t

)
.

Taking the two limits for s → ±0 we have

∂3
nui

ext(t,±0) = −κ(t)∂2
nui

ext(t,±0) +
(
κ2(t) − ∂2

t

)
∂nui

ext(t,±0) +
(
2κ(t)∂2

t + κ′(t)∂t

)
ui

ext(t,±0)

(52)
=
(
2κ2(t) − ∂2

t

)
∂nui

ext(t,±0) +
(
3κ(t)∂2

t + κ′(t)∂t

)
ui

ext(t,±0). (53)

Such expressions hold also for the jump and for the mean value of higher order derivatives
[
∂2

nui
ext

]
(t){

∂2
nui

ext

}
(t)

}
= −κ(t)

{ [
∂nui

ext

]
(t){

∂nui
ext

}
(t)

}
− ∂2

t

{ [
ui

ext

]
(t){

ui
ext

}
(t),

(54)

[
∂3

nui
ext

]
(t){

∂3
nui

ext

}
(t)

}
=
(
2κ2(t) − ∂2

t

)
{ [

∂nui
ext

]
(t){

∂nui
ext

}
(t)

}
+ (3κ(t)∂2

t + κ′(t)∂t)

{ [
ui

ext

]
(t){

ui
ext

}
(t).

(55)

6.2. Order 0

First, we express the internal function U0
int as expression of u0

ext. Then, inserting this expression
into (23b) leads to an uncoupled problem for u0

ext.

6.2.1. Internal function. The internal function is given as the sum of the mean value {U0
int}(t) and

of the function Ũ0
int(t, S), which are defined in (23a) and (23c), respectively. By evaluating these

equations we find

∂2
SŨ0

int(t, S) = 0

∂SŨ0
int(t,±

1

2
) = 0

{Ũ0
int}(t) = 0





⇒ Ũ0

int(t, S) = 0 and {U0
int}(t) = {u0

ext}(t).

Consequently, the internal function is given by

U0
int(t, S) = U0

int(t) = {u0
ext}(t). (56)

6.2.2. External function. Inserting Ũ0
int = 0 into (23b) yields the completely uncoupled problem for

the external function u0
ext






−∆u0
ext(x) = f(x) in Ω0

ext,

u0
ext(x) = g(x) on ∂Ω,

[
u0

ext

]
(t) = 0 on Γm,

[
∂su

0
ext

]
(t) − c0

{
u0

ext

}
(t) = 0 on Γm.

(57)

Note that u0
ext is uniquely defined by Lemma 4.2. As u0

ext has no jump over Γm we denote u0
ext(t) :=

u0
ext(t,±0) =

{
u0

ext

}
(t). Thus, we can write the last equation of (57) as

[
∂su

0
ext

]
(t) − c0 u0

ext(t) = 0 on Γm. (58)

6.3. Order 1

In the same way as for order 0 we express Ũ1
int in terms of u0

ext and u1
ext and derive the uncoupled

problem defining u1
ext. Then, we replace a second normal derivative by a second tangential and a

simple normal derivative. The resulting model for u1
ext depends only on the external function of

order 0.
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6.3.1. Internal function. The internal function U1
int(t, S) is given as the sum of the mean value

{U1
int}(t) and the function Ũ1

int(t, S), which are defined in (23a) and (23c), respectively. For i = 1,
the problem (23a) takes the form





∂2
SŨ1

int(t, S) = c0U
0
int(t) − κ(t) ∂SU0

int(t)︸ ︷︷ ︸
0

= c0u
0
ext(t)

∂SŨ1
int(t,± 1

2 ) = ∂su
0
ext(t,±0)

{Ũ1
int}(t) = 0.

(59)

Consequently, we can assert that

Ũ1
int(t, S) =

c0

2
u0

ext(t)
(
S2 − 1

4

)
+
{
∂su

0
ext

}
(t)S. (60)

From (23c) the mean value of the internal function is given by

{U1
int}(t) = {u1

ext}(t) + 1
4 [∂su

0
ext](t)

(57)
= {u1

ext}(t) +
c0

4
u0

ext(t), (61)

and we can re-compose the internal function to

U1
int(t, S) =

c0

2
u0

ext(t)
(
S2 + 1

4

)
+
{
∂su

0
ext

}
(t)S + {u1

ext}(t). (62)

6.3.2. External function. Inserting (60) into (23b) we obtain a vanishing Dirichlet jump

[
u1

ext

]
(t) =

[
Ũ1

int

]
(t) −

{
∂su

0
ext

}
(t) =

{
∂su

0
ext

}
(t) −

{
∂su

0
ext

}
(t) = 0,

and for the Neumann jump

[
∂su

1
ext

]
(t) − c0

{
u1

ext

}
(t) =

∫ 1
2

− 1
2

c0Ũ
1
int(t, S) dS

︸ ︷︷ ︸
−

c2
0

12
u0
ext(t) by (60)

−κ(t)
[
Ũ1

int

]
(t)

︸ ︷︷ ︸
{∂su0

ext}(t) by (60)

+
c0

4
[∂su

0
ext](t)︸ ︷︷ ︸

c
0
u0
ext(t) by (58)

− {∂2
su0

ext}(t) −
∫ 1

2

− 1
2

∂2
t U0

int(t, S)︸ ︷︷ ︸
u0
ext(t) by (56)

−κ2(t)S ∂SU0
int(t, S)︸ ︷︷ ︸

0 by (56)

dS.

Applying (54) we can replace the mean value of the second normal derivative by

{∂2
su0

ext}(t) = −κ(t)
{
∂su

0
ext

}
(t) − ∂2

t

{
u0

ext

}
(t).

Summarising, we have, after mutual cancellation of most of the terms,

[
∂su

1
ext

]
(t) − c0

{
u1

ext

}
(t) = − c2

0

12
u0

ext(t) − κ(t)
{
∂su

0
ext

}
(t) +

c2
0

4
u0

ext(t)

+ κ(t)
{
∂su

0
ext

}
(t) + ∂2

t

{
u0

ext

}
(t) − ∂2

t

{
u0

ext

}
(t) =

c2
0

6
u0

ext(t).

Hence, u1
ext is uniquely defined, see Lemma 4.2, as solution of






−∆u1
ext(x) = 0, in Ω0

ext,

u1
ext(x) = 0, on ∂Ω,

[
u1

ext

]
(t) = 0, on Γm,

[
∂su

1
ext

]
(t) − c0

{
u1

ext

}
(t) =

c2
0

6
u0

ext(t), on Γm.

(63)

As u1
ext(x) has no jump over Γm we denote u1

ext(t) := u1
ext(t,±0) =

{
u1

ext

}
(t). Thus, we can write

the last equation of (63) as

[
∂su

1
ext

]
(t) − c0 u1

ext(t) =
c2
0

6
u0

ext(t) on Γm. (64)
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b
a

R

ε

Ωε
ext

Ωε
int

(a)

Γm

(b)

Ωε
int

(c)

Figure 3. (a) Geometrical setting with elliptic mid-line (dashed line) with the
semi-major axis a and semi-minor axis b. The boundary is a circle of radius R
(R = 2, a =

√
0.4, b = 0.4). (b) Mesh M0 for the finite element solution of the

asymptotic expansion models. The mid-line Γm is labelled. (c) Associate mesh Mε

for the finite element solution of the exact model with the cells in the sheet, here
of thickness ε = 1/16.

6.4. Order 2

6.4.1. External function. In the same way, one can obtain that the second order term u2
ext is uniquely

defined by (see Lemma 4.2)





∆u2
ext(x) = 0 in Ω0

ext,
[
u2

ext

]
(t) = − c0

24
κ(t)u0

ext(t, 0) − c0

12

{
∂nu0

ext

}
(t) on Γm,

[
∂nu2

ext

]
(t) − c0

{
u2

ext

}
(t) =

c2
0

6
u1

ext(t) +
c0

24
κ(t)

{
∂nu0

ext

}
(t)

+ c0

(
7

240
c2
0 −

∂2
t

12

)
u0

ext(t, 0) on Γm,

u2
ext(x) = 0 on ∂Ω,

(65)

whose Dirichlet and Neumann traces are both discontinuous over the mid-line of the sheet in general.
The transmission conditions depend on the solutions of order 0 and 1 and include even a second
tangential derivative of u0

ext. Once again no boundary data or source term is involved.

6.4.2. Internal function. The internal expansion function of order 2 is the fourth order polynomial

U2
int(t, S) =

c2
0

24
u0

ext(t)

(
S2 +

3

4

)2

+
c0

6

{
∂su

0
ext

}
(t)

(
S3 − 3

4
S

)
− c0

6
κ(t)u0

ext(t)

(
S3 +

3

4
S

)
(66)

+
c0

2
u1

ext(t)

(
S2 +

1

4

)
− 1

2

(
κ(t)

{
∂su

0
ext

}
(t) + ∂2

t u0
ext(t)

)
S2 +

{
∂su

1
ext

}
(t)S +

{
u2

ext

}
(t),

which involves the curvature of the sheet and a second tangential derivative of the external function
of order 0.

7. Numerical examples

In this section, we numerically investigate the rate of convergence of the approximate asymptotic
models with the numerical C++ library Concepts [10, 12] . We consider a domain with an ellipsoidal
sheet as an example for varying curvature (see Figure 3(a)).

We discretise both, the exact model and the asymptotic expansion models, by means of high-
order finite elements. The smooth shape is taken into account by curved elements of high-order so
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Figure 4. High order Finite element approximation of the solution uε of the exact
model for two values of ε for Dirichlet data g = 1, source term f = 0 and relative
conductivity c0 = 1.
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(a) Order 0
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(b) Order 1
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(c) Order 2

Figure 5. Numerical approximation of the asymptotic expansion coefficient
ui

ext(x) for the geometry with an ellipsoidal thin sheet (a =
√

0.4, b = 0.4), c0 = 1,
g = 1, and f = 0, computed by high order finite elements.

that the discretisation error does not dominate the modelling error. The meshes for the exact model
are denoted by Mε (see Figure 3(c)) whereas M0 denotes the mesh for asymptotic expansion models
(see Figure 3(b)). For the computation of the modelling errors in the L2-norm and the H1-seminorm
we represent the asymptotic expansion functions ui(x) and U i(t, S) after their computation on the
meshes Mε.

The numerical simulations are performed with Dirichlet boundary data g = 1, a vanishing
source term f = 0 and a relative conductivity c0 = 1. We use linear trunk spaces with a uniform
polynomial degree p = 15 and at least 172 Gauß-Jacobi-quadrature points per cell to highly resolve
the solution of the exact (3380 degrees of freedom) and the asymptotic model (2738 degrees of
freedom). For the exact model these high polynomial degrees are also applied in the cells inside the
sheet.

The solutions uε(x) of the exact model are shown in Figure 4 for two values of ε. The area,
which is enclosed by the sheet, is apparently shielded. The according expansion functions u0

ext(x),
u1

ext(x) and u2
ext(x) are shown in Figure 5.

In Figure 6 the modelling error in the H1-seminorm evaluated first inside the sheet and secondly
in the exterior is shown, both in dependence of ε. The convergence rate is 0.5, 1.5 and 2.5 in the
sheet and 1, 2 and 3 in the exterior area for the asymptotic expansion models of order 0, 1 or 2,
respectively. This validates the sharpness of the a-priori estimates of Lemma 5.1. The corresponding
L2-errors are shown in Figure 7. We observe rates of convergence in the thin sheet of 1.5, 2.5 and
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10
−6

10
−4

10
−2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ε

|u
ε
−

u
ε
,i
| H

1
(Ω

ε in
t
)

1

0.5

1

1.5

1

2.5

Order 0
Order 1
Order 2

(a) In the sheet Ωε
int

.

10
−6

10
−4

10
−2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

ε

|u
ε
−

u
ε
,i
| H

1
(Ω

ε e
x
t
)

1

1

1

2

1

3

Order 0
Order 1
Order 2

(b) In the exterior sub-domain Ωε
ext.

Figure 6. The modelling error in the H1-seminorm for ellipsoid sheets of varying
thicknesses ε and a constant relative conductivity c0 = 1, computed by high-order
FEM.
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Figure 7. The modelling error in the L2-norm for ellipsoid sheets of varying thick-
nesses ε and a constant relative conductivity c0 = 1, computed by high-order FEM.

3.5 and of 1, 2 and 3 in the exterior for the three models. The improved rates inside the sheet in
comparison to the H1-seminorm results due to the different scaling with changing thickness ε.

Conclusion

In the context of eddy current modelling, we derived the asymptotic expansion at any order of
the solution of a model problem with a dissipative thin sheet, see (3). For the three first orders,
we obtained formulations, see Section 6, that are easy to implement, do not require to mesh the
sheet and do not lead to ill-conditioned matrices. This asymtptotic expansion is not only formal
but justified by error estimates. The theoretical results have been validated through numerical
simulations which also demonstrate the numerical feasibility.

Like it was achieved for IBCs, this approach can be generalised to 3D (where one has to take
care of the geometry of the sheet) and to other systems of equations including non exclusively the
Helmholtz equation, the Maxwell equations, or the wave equation in time domain (for IBCs see
respectively [3], [15] and [4] for example).
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