Matching of Asymptotic Expansions for a 2-D eigenvalue problem with two cavities linked by a narrow hole

Abstract : One question of interest in an industrial conception of air planes motors is the study of the deviation of the acoustic resonance frequencies of a cavity which is linked to another one through a narrow hole. These frequencies have a direct impact on the stability of the combustion in one of these two cavities. In this work, we aim is analyzing the eigenvalue problem for the Laplace operator with Dirichlet boundary conditions. Using the Matched Asymptotic Expansions technique, we derive the asymptotic expansion of this eigenmodes. Then, these results are validated through error estimates. Finally, we show how we can design a numerical method to compute the eigenvalues of this problem. The results are compared with direct computations.
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00527776
Contributeur : Sébastien Tordeux <>
Soumis le : mercredi 20 octobre 2010 - 11:39:54
Dernière modification le : vendredi 26 octobre 2018 - 10:46:00
Document(s) archivé(s) le : vendredi 21 janvier 2011 - 02:38:17

Fichier

2009-17.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00527776, version 1

Citation

Abderrahmane Bendali, Abdelkader Tizaoui, Sébastien Tordeux, Jean-Paul Vila. Matching of Asymptotic Expansions for a 2-D eigenvalue problem with two cavities linked by a narrow hole. [Research Report] 2009, pp.78. 〈inria-00527776〉

Partager

Métriques

Consultations de la notice

263

Téléchargements de fichiers

79