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Abstract: Message passing algorithms have been very successful in solving hard
combinatorial problems, and have resulted in breakthrough results in the do-
main of random K-SAT problems. However, only single-objective SAT problems
have been adressed by survey-propagation methods, whereas most real-world
problems are indeed multi objective. A �rst approach to multi objective opti-
mization using a message-passing algorithm is introduced, that aims at sampling
the Pareto set, i.e. the set of Pareto-non-dominated solutions. Several heuris-
tics are proposed and tested on a simple bi-objective 3-SAT problem. A �rst
approach is based on a straightforward deformation of the survey-propagation
equation to locally encode a Pareto trade-o�. A simple heuristic is then tested,
which combines an elimination procedure of clauses with the usual decimation
of variables used in the survey propagation algorithm, and is able to sample
di�erent regions of the Pareto-front. In a second stage we study in more details
the compliance of these deformed equations with basic belief-propagation (BP)
properties. This lead us �rst to an explicit Markov random �eld of valid warn-
ing con�guration, for which the survey-propagation equations are basic belief
propagation equations. This observation is then generalized by de�ning a MRF
for warnings con�gurations expected to approximate well the Pareto-front. The
survey propagation equations associated to this new MRF are derived, allowing
for consistent estimations of the Pareto-set on single problem instances. Nu-
merical experiments on arti�cial problems up to 105 variables are presented and
discussed.

Key-words: SAT, multi objective optimization, message passing, survey-
propagation, Markov Random �elds

� INRIA-Saclay, LRI Bât. 490, F-91405 Orsay(France)
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Problèmes 3-SAT Multi Critères par Passage de
Messages

Résumé : Les algorithmes de passage de messages ont permis de résoudre
des problèmes combinatoires di�ciles avec pour résultats des progrès notables
dans le domaine K-SAT aléatoire. Cependant, les résultats obtenus par survey-
propagation sont limités à des problèmes SAT mono-critères alors que la plupart
des problèmes réel sont multi objectifs. Une première approche au contexte
multi objectif est proposée, dont le but est d'échantillonner le front de Pareto,
c.a.d. l'ensemble des solutions non-dominées au sens de Pareto. Plusieurs
heuristiques sont proposées et testées, sur un problème 3-SAT bi-objectifs.
Une première approche est basée sur une déformation directe des équations
survey-propagation a�n d'encoder localement un compromis de Pareto. Une
heuristique simple est ensuite testée qui combine une procédure d'élimination
des clauses avec la décimation habituelle des variables utilisée dans l'algorithm
survey-propagation, permettant d'échantilloner di�érentes régions du front de
Pareto. Dans un deuxième temps, nous étudions en détails la compatibilité de
ces équations avec les propiétés basique de belief-propagation. Ceci nous conduit
d'abord à trouver un Champ Markovien aléatoire explicite sur les con�gurations
de warnings pour lesquelles les équations de survey-propagation coincident avec
les equations de belief-propagation. Cette observation est ensuite généralisée en
dé�nissant un champ Markovien aléatoire pour les con�gurations situées dans le
voisinage du de l'ensemble de Pareto. Les équations de survey-propagation cor-
respondantes que nous obtenons donne alors la possibilité d'estimer de faccon
cohérente du front de Pareto sur des exemple de problèmes. Des expériences
numériques sur des problèmes arti�ciels atteignants105 variables sont présentées
et discutées.

Mots-clés : SAT, optimisation multi critères, passage de messages, survey
propagation, Champs Markovien aléatoires
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1 Introduction

Message passing algorithms based on the Belief-Propagation heuristic (BP) have
been �ourishing in various domains, and have proved very successful in particu-
lar in combinatorial optimization, to solve for example the random K-SAT prob-
lem with Survey-Propagation (SP) [1], or for clustering problems with a�nity-
propagation [2]. This allowed to address SAT problems involving a huge number
of Boolean variables (up to one million). Furthermore, the link between BP and
SP on the one hand, and the well-known DPLL procedure on the other hand [3],
has been recently established [4], bridging the gap between the two communities
of Statistical Physics and Operations Research.

However, it is well-known that most real-world problems are in fact multi objec-
tive and we are not aware of any work addressing multi objective problems with
message-passing algorithms. Even more, most works in multi objective context
deal with continuous variables, and most works in Multi Objective Combina-
torial Problems (MOCO) address speci�c applications pertaining to scheduling
or knapsack problems, rarely satis�ability problems. One noticeable exception
is [5], where arti�cial multi objective problems are considered, but they involve
at most 20 variables.

The goal of this paper is to extend the message-passing algorithms strategy
from single- to multi objective context in the constraint satisfaction domain.
The aim of multi objective optimization is to sample the Pareto set, i.e. the set
of solutions that are not dominated in the Pareto sense in the decision space,
and the Pareto front, i.e. the corresponding points in the objective space (each
objective being a coordinate). The Pareto dominance relation de�nes a partial
order on the decision space: a solutiona dominates a solution b if a is better
than b on at least one criteria, without being worse on any other. Therefore, on
the Pareto set, a solutiona cannot be worse than any other solutionb on a given
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criteria, without being strictly better on at least one criteria. The knowledge of
(a good approximation of) the Pareto set allows the user to make an informed
decision, knowing exactly what will an increase on a given objective cost in
terms of the other objectives.

For combinatorial optimization problems, message passing heuristics can be set
up in principle, once a uniform measure is de�ned on the set of solutions, typi-
cally in the form of a Markov Random Field (MRF). Our guiding principle then
for addressing the multi objective context is to search for a MRF, approximat-
ing well the Pareto set and at the same time suitable to run message passing
algorithms. To illustrate this strategy, consider the following 2-objective prob-
lem: a random 3-SAT problem in the UNSAT phase, which set of clausesF is
arbitrarily partitioned into two subsets F0 and F1, each one de�ning a sub 3-
SAT problem in the SAT phase. The combination of both de�nes a 2-objective
problem instance. Note that a possible alternative strategy referred as criteria
aggregation, consists in optimizing a set of weighted combination of the two
objectives using a single-objective optimizer.

However, this strategy can only sample the convex parts of the Pareto front,
which does not include in general the whole front. This aggregated approach
can nevertheless be useful for the sake of comparison. In particular, solutions
to the MAX-SAT problem with equal weights pertains to the Pareto front.

The paper is organized as follows: in section 2 we de�ne the benchmark problem
and give a brief introduction to the survey-propagation algorithm and under-
lying assumptions. In section 3 we discuss how the Pareto dominance can be
inserted locally into the survey-propagation equations, and how the Pareto front
can be estimated on single problem instances. In section 5, a simple heuristic
based on the modi�ed equations is presented along with numerical results.

2 Multi Objective Random 3-SAT Benchmark Problem

2.1 Random 3-SAT problem

The 3-SAT problem is a decision problem involving a setV of N binary decision
variables x i 2 f 0; 1g; i = 1 : : : N (FALSE or T RUE), subjected to a conjunc-
tion of a set F of M constraints or clauses. De�ned in conjunctive normal form
the problem reads,

CV;F =
M̂

a=1

Ca(xa)

where xa = ( x i ; x j ; xk ) is a subset ofV, with i; j and k in f 1; : : : ; N g; clauseCa

appears as the disjunction of three variables, like e.g.

Ca(xa) = x i _ x j _ �xk :

where each literal corresponds to a negated or non-negated variable. The clause
is SAT if at least one of its literal is T RUE. The clause density � def= M=N
measures the di�culty of the problem. The random SAT is a family of problems
indexed by this control parameter, a given instance being obtained by taking
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Ca

xk

wa! i

x i

x j

m
in

 f 2

1min f

Fig. 2.1: Warning message send on the factor-graph (left). Approximate MRF
associated to a bi-objective Pareto set (right), with the max-sat point repre-
sented.

at random the subset xa of variables attached to any given clausea and the
sign of each literal is also taken at random. The phase diagram of random
K-SAT has been determined and re�ned over the years mainly with help of
mean-�eld considerations[1, 6, 7, 8]. Various clustering phenomena taking place
in the solutions space give its structure to the phase diagram. Schematically for
3 � SAT we have in the thermodynamic limit:

� a sharp SAT � UNSAT transition occurring at � = � c ' 4:267, saying
that the probability for the problem to be SAT drops discontinuously
from 1 to 0;

� for � � 3:86 there is in the statistical physics parlance[9], a replica sym-
metric (RS) SAT phase, corresponding to a giant cluster of nearby solu-
tions;

� for � � 3:86 either the 1-step (1-RSB) or the full step (f-RSB) of replica
symmetric breaking phase occurs, corresponding to a single or many levels
of clustering of the ground-state measure. The domain� 2 [3:86; 4:267] is
referred to as the hard SAT phase.

� for � 2 [4:15; 4:39] the 1-RSB phase is stable, and the survey-propagation
algorithm is based on this property.

2.2 Survey-Propagation Equation and Decimation Based
Algorithm

Let us give here a brief overview of the survey-propagation equations and asso-
ciated decimation algorithm (see [10] for details). On a single problem-instance,
mean-�eld approach based on the cavity method[9] are translated into a set of
equations: the survey-propagation equations whose �xed point solutions give
statistical information on the variables, which in turn can be used to �nd so-
lutions e�ciently. The survey-propagation equations assume a 1-RSB phase in
which solutions are grouped into well-separated clusters, these clusters being
parametrized (presumably in a non-unique way) by a set of binary variables
wa! i 2 f 0; 1g called warning, attached to each link relating a clausea to a
variable i on the factor graph[11] (see Figure 2.1). When a variable receives
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such a message it has to adopt the value requested by the clause sending this
message. A given con�guration of warnings is valid i�:

� no variable receives any contradictory warnings;

� a clause send a warning to one of its neighbours if its other neighbors
received incompatible warnings with the requirement of that clause.

Fixing in a self-consistent way the values of these warnings is actually equiva-
lent to run belief-propagation algorithm on a MRF associated to SAT assign-
ments [6]. Let Jai 2 f� 1; 1g say whether a variablex i is negated (� 1) or not
(+1 ) in clause a and let � aib

def= 1+ J ai J bi
2 2 f 0; 1g indicate if clause a and b have

compatible requirements (� aib = 1 ) or not ( � aib = 0 ) w.r.t. variable i . The
self-consistency rule for the warnings reads:

wa! i =
Y

j 2 ani

� �
j ! a(wj ) (2.1)

with wj = f wb! j ; b 3 j g1, and

� 0
i ! a(wi )

def=
Y

b3 i na

�wb! i ; (2.2)

� +
i ! a(wi )

def=
Y

b3 i na

�
�wb! i + � aib wb! i

�
� � 0

i ! a(wi ); (2.3)

� �
i ! a(wi )

def=
Y

b3 i na

�
�wb! i + �� aib wb! i

�
� � 0

i ! a(wi ): (2.4)

In the hard SAT phase, this schema is actually not working because of the
clustering of solutions phenomena. The survey propagation algorithm �nd a
uniform measure on the valid warning assignments by propagating instead the
probability

� a! i = P(wa! i = 1) ;

called the survey. Assuming probabilistic independence of warnings sent to a
given variable, the survey propagation equation then reads,

� a! i =
Y

j 2 ani

� �
j ! a(� j )

� 0
j ! a(� j ) + � +

j ! a(� j ) + � �
j ! a(� j )

: (2.5)

where again� j is the set of surveys received byj . The denominator here corre-
sponds to a conditioning on non-contradictory warnings under the independent
law de�ned by the set of surveys.

The �xed-point solution can then be used to simplify SAT formulas by �xing the
most polarized variable. Iterating this procedure constitutes the SP-decimation
algorithm, which ends when the �xed point degenerates with all surveys iden-
tically zero. At this point the reduced problem is expected to be very easy to
solve with a local search algorithm.

1 j 2 b is a shorthand notation expressing that j is neighbour to b
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In the UNSAT phase, the problem (akaMAXSAT ) is instead to �nd con�g-
urations with lowest possible number of violated clauses. The equations (2.5)
are not suitable in that case, although they converge up to a value of� ' 4:35,
yielding a �xed point with negative complexity (the log number of clusters of
solutions). Introducing in the cavity equation a pseudo inverse-temperaturey,
the Legendre conjugate parameter to the derivative of the entropy w.r.t the
energy[1], allows to get probabilistic information on states with positive en-
ergy. An e�cient way of solving these mean-�eld equations on single-problem
instances coupled with decimation and backtracking has been obtained, yielding
the SP-Y algorithm[12].

3 SP Deformed Equations with Local Pareto Constraints

3.1 Bi-objective 3-SAT benchmark and associated local Pareto
criteria

The bi-objective benchmark problem that we consider in this paper consists
simply in having two sets of clausesF0 and F1 instead of a single one, while
keeping a single setV of variables. For simplicity F0 and F1 are taken to be of
equal size

M 1 = M 2 = M=2 with M=N < 2� c; (3.1)

which means that each sub-problem(V; F � ), � 2 f 1; 2g taken independently
is in the SAT phase while the junction of the two (V; F = F0 + F1) is in the
UNSAT phase.

To adapt the survey-propagation equations to this multi objective context we
consider the Pareto dominance relation between solutions at the local level, by
comparing two solutions separated by a single variable �ip: we can say that
a variable is Pareto optimal if under a �ip it cannot increase the number of
SAT clauses of one objective without strictly increasing the number ofUNSAT
clauses for the other one.

With the chosen value of the clause density (3.1), each sub-problem taken alone
can be madeSAT , henceforth the Pareto set contains solutions for which one
of the 2 sub-problem isSAT . This leads us to consider the ensemble of valid
warning con�guration in which a variable cannot receive contradictory warning
emitted from the same sub-problem. We are looking for warning con�gurations
which may have mutual con�icts between sub-problems, but for which internal
con�icts, i.e., contradictory warnings send by clauses pertaining to the same
sub-problem, are excluded. Then a variable may be in three di�erent situations
which all imply a local Pareto equilibrium:

� the variable is unconstrained, it does not receive any warning and can take
either T RUE or FALSE value without modifying any of the objective.

� the variable receives at least one warning but without any contradiction,
so that it takes the value obeying to the warnings.

� the variable receives at least one warning fromF0 and F1 and these are
contradictory. In that case the variable can chose to conform to eitherF0
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or F1. Under a �ip, one of the sub problem will lose at least oneSAT
clause while the other will gain at least one.

3.2 Deformed SP equations

To cope with this new speci�cation, considering �rst the quantity � c
i ! a associ-

ated to these type of contradictions:

� c
i ! a(wi ) = � + �

i ! a(wi ) + � � +
i ! a(wi );

where

� + �
i ! a(wi ) =

h Y

f b3 i=a g\F a

�
�wb! i + � aib wb! i )

�
�

Y

f b3 i=a g\F a

�wb! i

i

�
h Y

f b3 i=a g\ �F a

�
�wb! i + �� aib wb! i )

�
�

Y

f b3 i=a g\ �F a

�wb! i

i

� � +
i ! a(wi ) =

h Y

f b3 i=a g\F a

�
�wb! i + �� aib wb! i )

�
�

Y

f b3 i=a g\F a

�wb! i

i

�
h Y

f b3 i=a g\ �F a

�
�wb! i + � aib wb! i )

�
�

Y

f b3 i=a g\ �F a

�wb! i

i

represent warning con�guration where i receive at least onea-compatible warn-
ing from sub-problem Fa containing a and onea-incompatible warning from the
other sub-problem �Fa , or vice versa. A variable, submitted to two incompatible
requests from the two sub-problems has now the freedom to choose to which
one it obeys. Averaging over this choice induces anyway some correlations be-
tween warnings which are di�cult to handle, so we �x from the beginning the
choice that will take each variable in case of a contradiction. Let� i 2 f 0; 1g
represent this binary choice. The rule to send a warning is then determined by
the relation

wa! i =
Y

j 2 ana

�
� �

j ! a(wj ) + �� ai � c
j ! a(wj )

�
; (3.2)

where � ai = � a � i + �� a
�� i 2 f 0; 1g if � a 2 f 0; 1g gives the appartenance setFa of

a.

The survey propagation equations are then adapted as follows, by taking into
account con�icting sets of warning but with some penalization factor q:

� a! i =
Y

j 2 ani

� �
j ! a(� j ) + q�� ai � c

j ! a(� j )

� 0
j ! a(� j ) + � +

j ! a(� j ) + � �
j ! a(� j ) + q� c

j ! a(� j )
: (3.3)

The di�erence with the basic survey-propagation scheme is that contradictions
between warnings are allowed as long as they do not arise within a single problem
component. For each variable experiencing a contradiction between warnings,
the warnings con�guration is weighted by a factor q < 1. The basic SP scheme is
recovered in the limit where q = 0 while when q = 1 all warnings con�gurations
with contradictions between sub-problems are taken into account with equal
weight.
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3.3 Complexity and Clause Elimination Criteria

Each value ofq de�nes a statistical ensemble where contradictions are more or
less �ltered out. The best con�guration are expected to be in the non-empty
ensemble with lowest valueq� . A simple criteria to determine q� is based on
the computation of the corresponding entropy of that ensemble,

q� = argmin
q

f �[ � (q)] = 0 g;

where � (q) denotes the set of surveys obtained for a given value ofq and �
denotes the complexity (i.e. the logarithm of the number of cluster solutions).
Let � ai

def= 1+ J ai
2 and consider the quantities

� 0
i (� i )

def=
Y

a3 i

�� a! i ; � +
i (� i )

def=
Y

a3 i

�
�� a! i + � ai � a! i

�
� � 0

i (� i );

� �
i (� i )

def=
Y

a3 i

�
�� a! i + �� ai � a! i

�
� � 0

i (� i ); � c
i (� i )

def= � � +
i (� i ) + � + �

i (� i );

where �� a! i
def= 1 � � a! i and � ��

i are de�ned as products of � �
i restricted to

sub-problems 1 and 2. The complexity is expected to take the following form

� =
X

a

logZa +
X

i

�
(1 � di ) log Z i + E i

�
(3.4)

where
E i = � � c

i logq; Zi = � 0
i + � �

i + � +
i + q� c

i ;

and Za expressing the probabilistic weight of each warning con�guration wa

from the set of surveys� a reads:

Za =
Y

i 2 a

Z i ! a �
Y

i 2 a

�
� � 0

i ! a + � ��
i ! a + q� � +

i ! a

�

+ ( q3 � 1)
hY

i 2 a

� �
i ! a �

Y

i 2 a

�
� � 0

i ! a + � ��
i ! a

� i

+ ( q3 � q)
X

i 2 a

�� ai

h
� c

i ! a

Y

j 2 ani

� �
j ! a � � � +

i ! a

Y

j 2 ani

�
� � 0

j ! a + � ��
j ! a

� i

+ ( q3 � q2)
X

i 2 a

h
� �

i ! a

Y

j 2 ani

�� aj � c
j ! a �

�
� � 0

i ! a + � ��
i ! a

� Y

j 2 ani

�� aj � � +
j ! a

i

(omitting the argument � i in the � 's) with

Z i ! a
def= � 0

i ! a + � �
i ! a + � +

i ! a + q� c
i ! a ;

represent local partition functions attached to variables and factor node. The
di�erent subtractions terms to the bold product of independent statistical contri-
butions, which appears inZa , correspond to the impossibility to have contradic-
tions within the same sub-problem (�rst subtraction term) and the reweightings
due to additional variables under contradiction. The other terms correspond to
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cases wherea is violated, so that all its neighbours variables are subjected to
contradictions, while some were already withouta and some where not. The
q3 � 1 term is for a causing to its neighbours to have contradiction, while there
where no, without a. The q3 � q term is for a causing to two of its neighbours
to become contradictory, while the 3rd one was already. And lastly theq3 � q2

term corresponds to for a causing on additional neighbor to be contradictory
while the two others were already under contradictionbecause ofa.
Analogously we can express also the probability

P v
a = q3 � c

a

Za
�

Y

i 2 a

�� ai ; (3.5)

for a clause to be violated, with

� c
a

def=
Y

i 2 a

� c
i ! a +

hY

i 2 a

� �
i ! a �

Y

i 2 a

�
� � 0

i ! a + � ��
i ! a

� i

+
X

i 2 a

�� ai

h
� c

i ! a

Y

j 2 ani

� �
j ! a � � � +

i ! a

Y

j 2 ani

�
� � 0

j ! a + � ��
j ! a

� i

+
X

i 2 a

h
� �

i ! a

Y

j 2 ani

�� aj � c
j ! a �

�
� � 0

i ! a + � ��
i ! a

� Y

j 2 ani

�� aj � � +
j ! a

i

We can distinguish between two contributions,

P v
a = q3

Q
i 2 a

�� ai � c
i ! a

Za
+ � P v

a ; (3.6)

where the �rst contribution is coming from the environment of the clause, and
the second term represents the direct impact of the clause, causing some new
variables to be under contradiction. This quantity, � P v

a will be useful when
trying to identify which clauses are the most di�cult to satisfy.

4 BP compliance

The equations presented so far, although having simple rules su�ers from an
important drawback which we describe now. Some compatibilities between sur-
veys, at the basis of the BP schema are not satis�ed, this preventing us from an
exact evaluation of P v

a as well as� , and henceforth a reliable estimation of the
Pareto front. This motivates a closer investigation of the compliance of these
equations with the basic belief propagation (BP) equations. This question has
been addressed in various ways for SP, �rst in [13], using a dual formulation on
an extended factor graph and in [14] by introducing the notion of cover. We
propose here another connection holding directly at the level of warnings.

In general, BP yields 2 sets of exact or approximate marginalsf bi (x i ); i 2 Vg
and f ba(xa); a 2 Fg , called the beliefs, wherex i are the variables of a given
problem and xa = f x i ; i 2 ag the variables attached to a given factor. The
convergence of BP enforces the compatibilities between beliefs:

bi (x i ) =
X

x j ;

j 2 a n i

ba(xa); 8i 2 a (4.1)
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for all factor a 2 F if F is the set of factors of the underlying joint probability
measure. In our context, at the level of the warning description, the variables
are wi

def= f wb! i ; b 3 ig and the factors correspond to the clauses, with corre-
sponding attribute wa

def= f wb! i ; b 3 i; i 2 ag, and the beliefsbi (wi ) and ba(wa)
may be obtained in principle from the surveys, but without any guaranty that
the compatibility (4.1) holds. For instance, the computation of P v

a may be
performed in four di�erent and in principle equivalent ways:

� by using the joint belief ba(wa) yielding the form (3.6)

� by using the joint belief bi (wi ) and � a! i for any of the three variables
i 2 a, and expressing the probability that a send a message toi while i
has to conform to the sub-problem not containinga (which automatically
implies that (and is in fact equivalent to) a is violated):

P v
a = � a! i

�� ai
�
� 0�

i ! a +� + �
i ! a

�
=
�
� 0

i ! a +� �
i ! a +� +

i ! a + q� c
i ! a

�
; 8i 2 a:

The problem is that the equivalence between these di�erent estimations is not
veri�ed, because some correlations between warnings inwa are not taken into
account in ba(wa) and among surveys. To cure this problem let us analyze this
question in the SP context �rst.

4.1 The Case of SP

The mapping of SP to the standard BP schema has been addressed �rst in [13],
using a dual formulation on an extended factor graph and then restated in [14]
by introducing the notion of covers to model cluster of solutions on an extended
variable space. Here we propose in fact to revisit this question, by establishing
a link directly at the level of warnings. Consider that the attribute of a variable
node i involved in the factor graph representation of this problem is the set of
messageswi

def= f wa! i ; a 3 ig, while those of the factor nodes are the set of
incoming warning on variables attached toa, namely wa

def= f wb! i ; i 2 a; b3 ig.
The Markov random �eld associated to the uniform measure of valid warning
con�gurations is then given by:

P(w) =
1
Z

Y

a2F

Ca(wa)
Y

i 2V

Ci (wi ) (4.2)

with

Ci (wi )
def= � 0

i (wi ) + � +
i (wi ) + � �

i (wi );

Ca(wa) def=
Y

i 2 a

�wa! i
�
� 0

i ! a + � +
i ! a + � �

i ! a

�
�

Y

i 2 a

�wa! i � �
i ! a

+
X

i 2 a

wa! i
�
� 0

i ! a + � +
i ! a

� Y

j 2 ani

�wa! j � �
j ! a :

Ca(wa) is de�ned in such a way to encode the rule (2.1) for emitting or not
a message. Note that con�gurations in which a clause emits more that one
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message are excluded. Running the belief-propagation on this MRF results in
the following message update rule:

ma! i (wi ) /
X

wa =w i

Ca(wa)
Y

j 2 a=i

nj ! a(wj ) (4.3)

ni ! a(wi ) = Ci (wi )
Y

b3 i=a

mb! i (wi ) (4.4)

This BP schema is well de�ned but potentially heavy because variableswi are
di -dimensional Boolean vectors, ifdi is the connectivity of wi . A direct relation
to survey-propagation is obtain from the following lemma.

Lemma 4.1. Let � a! i 2 [0; 1], the update rule (4.3) is stable with respect to the
following parametrization of the message,

ma! i (wi ) = wa! i
�
� 0

i ! a(wi ) + � +
i ! a(wi )

�
� a! i

+ �wa! i
�
� 0

i ! a(wi ) + � +
i ! a(wi ) + � �

i ! a(wi )
�
(1 � � a! i ): (4.5)

with � a! i satisfying the SP update rules.

Proof. Inserting the parametrization (4.5) in the left hand side of in (4.3) yields
after a lengthy but straightforward computation:

ma! i (wi ) / wa! i
�
� 0

i ! a(wi ) + � +
i ! a(wi )

� Y

j 2 a=i

� �
j ! a(� j )

+ �wa! i
�
� 0

i ! a(wi ) + � +
i ! a(wi ) + � �

i ! a(wi )
�

�
h Y

j 2 a=i

�
� 0

j ! a(� j ) + � +
j ! a(� j ) + � �

j ! a(� j )
�

�
Y

j 2 a=i

� �
j ! a(� j )

i
:

Normalizing by
Q

j 2 a=i

�
� 0

j ! a(� j ) + � +
j ! a(� j ) + � �

j ! a(� j )
�

we end up with the
SP update rules.

This insure in particular that the BP-based entropy formula is correct as well as
the various probabilities associated to variables and factor nodes obtained from
the surveys.

4.2 Generalization

The MRF associated to the uniform measure of valid warning con�guration is
given by:

P(w) =
1
Z

Y

a2F

Ca(wa)
Y

i 2V

Ci (wi ) (4.6)

with
Ci (wi )

def= � 0
i (wi ) + � +

i (wi ) + � �
i (wi ) + q� c

i (wi )

and Ca(wa) enforcing the self-consistent rules (3.2) used to send or not a warn-
ing. The minimal parametrization of the messages to cope with this MRF
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involves now 3 real independent messages, instead of a single one for SP. These
are the probability coe�cients required to account for the 4 relevant states of
a variable in this case, whether it receives a warning or not froma (wa! i = 1
or wa! i = 0 ) and whether it is forced to contradict a or not. (see table 1). We

wa! i = 0 wa! i = 1

i SAT a xa! i za! i

i UNSAT a ya! i ta! i

Tab. 1: Di�erent states of variable i w.r.t clause a and associated surveys

denote by xa! i , ya! i , za! i and ta! i the associated probabilistic surveys with

xa! i + ya! i + za! i + ta! i = 1

and let � x
i ! a(wi ),�

y
i ! a(wi ), � z

i ! a(wi ) and � t
i ! a(wi ) the corresponding indica-

tor functions on these states. These read:

� x
i ! a

def= �wa! i

�
� 0

i ! a + � +
i ! a + � ai � + �

i ! a + �� ai � � +
i ! a

�

� y
i ! a

def= �wa! i

�
� �

i ! a + �� ai � + �
i ! a + � ai � � +

i ! a

�

� z
i ! a

def= wa! i

�
� 0

i ! a + � +
i ! a + � ai

�
� 0�

i ! a + � + �
i ! a

� �

� t
i ! a

def= wa! i
�� ai

�
� 0�

i ! a + � + �
i ! a

�
:

Checking for compatibility by adding these projectors gives

� x
i ! a + � y

i ! a + � z
i ! a + � t

i ! a = � 0
i + � +

i + � �
i + � c

i ;

as it should. The clause constraints can be rewritten with help of these opera-
tors:

Ca(wa) =
Y

i 2 a

� x
i ! a(wi ) +

X

i 2 a

� y
i ! a(wi )

Y

j 2 a=i

� x
j ! a(wj ) (4.7)

+
Y

i 2 a

� t
i ! a(wi ) +

X

i 2 a

� z
i ! a(wi )

Y

j 2 a=i

� y
j ! a(wj ) (4.8)

and the message is parametrized in the following way:

ma! i (wi ) = xa! i � x
i ! a(wi ) + ya! i �

y
i ! a(wi ) + za! i � z

i ! a(wi ) + ta! i � t
i ! a(wi ):

In turn the variable-to-clause messagesni ! a may be rewritten in the following
manner:

ni ! a(wi ) = � 0
i ! a(wi )

�
�wa! i Q0

i ! a + wa! i Q1
i ! a

�
+ � +

i ! a(wi )Q+
i ! a

+ �wa! i � �
i ! a(wi )Q�

i ! a + qwa! i � 0�
i ! a(wi )Q0�

i ! a

+ q �wa! i � c
i ! a(wi )Qc

i ! a + qwa! i � + �
i ! a(wi )Q+ �

i ! a ;
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whereQ are quantities depending on the incoming messages (see below). Insert-
ing this again in the update rule (4.3) yields after a tedious but straightforward
computation the following survey propagation equations:

xa! i /
Y

j 2 a=i

�
Q0

j ! a + Q+
j ! a + q(� aj Q+ �

j ! a + �� aj Q� +
j ! a)

�

+
X

j 2 a=i
k 2 a= ( i;j )

�
Q0

j ! a + Q+
j ! a + q(� aj Q+ �

j ! a + �� aj Q� +
j ! a)

��
Q�

k ! a + q( �� ak Q+ �
k ! a + � ak Q� +

k ! a)
�

ya! i /
Y

j 2 a=i

�
Q0

j ! a + Q+
j ! a + q(� aj Q+ �

j ! a + �� aj Q� +
j ! a)

�

+
X

j 2 a=i
k 2 a= ( i;j )

�
Q1

j ! a + Q+
j ! a + q�aj (Q0�

j ! a + Q+ �
j ! a)

��
Q�

k ! a + q( �� ak Q+ �
k ! a + � ak Q� +

k ! a)
�

za! i /
Y

j 2 a=i

�
Q�

j ! a + q( �� aj Q+ �
j ! a + � aj Q� +

j ! a)
�

ta! i /
Y

j 2 a=i

q �� aj
�
Q0�

j ! a + Q+ �
j ! a

�

with

Q0
i ! a =

Y

b3 i=a

xb! i

Q1
i ! a =

Y

b3 i=a

�
� aib xb! i + �� aib yb! i

�

Q+
i ! a =

Y

b3 i=a

�
� aib xb! i + �� aib yb! i + � aib zb! i

�
�

Y

b3 i=a

�
� aib xb! i + �� aib yb! i

�

Q�
i ! a =

Y

b3 i=a

�
�� aib xb! i + � aib yb! i + �� aib zb! i

�
�

Y

b3 i=a

�
�� aib xb! i + � aib yb! i

�

Q0�
i ! a =

Y

b3 i=a

�
xb! i (� aib � ai + �� aib

�� ai ) + yb! i (� aib
�� ai + �� aib � ai ) + �� ab �� aib ( �� ai zb! i + � ai tb! i )

�

�
Y

b3 i=a

�
xb! i (� aib � ai + �� aib

�� ai ) + yb! i (� aib
�� ai + �� aib � ai )

�
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Q+ �
i ! a =

h Y

b3 i=a \F a

�
xb! i (� aib � ai + �� aib

�� ai ) + yb! i (� aib
�� ai + �� aib � ai ) + � aib (� ai zb! i + �� ai tb! i )

�

�
Y

b3 i=a \F a

�
xb! i (� aib � ai + �� aib

�� ai ) + yb! i (� aib
�� ai + �� aib � ai )

� i

�
h Y

b3 i=a \ �F a

�
xb! i (� aib � ai + �� aib

�� ai ) + yb! i (� aib
�� ai + �� aib � ai ) + � aib (� ai zb! i + �� ai tb! i )

�

�
Y

b3 i=a \ �F a

�
xb! i (� aib � ai + �� aib

�� ai ) + yb! i (� aib
�� ai + �� aib � ai )

� i

and

Q� +
i ! a =

h Y

b3 i=a \F a

�
xb! i (� aib

�� ai + �� aib � ai ) + yb! i (� aib � ai + �� aib
�� ai ) + �� aib (� ai zb! i + �� ai tb! i )

�

�
Y

b3 i=a \F a

�
xb! i (� aib

�� ai + �� aib � ai ) + yb! i (� aib � ai + �� aib
�� ai )

� i

�
h Y

b3 i=a \ �F a

�
xb! i (� aib

�� ai + �� aib � ai ) + yb! i (� aib � ai + �� aib
�� ai ) + � aib ( �� ai zb! i + � ai tb! i )

�

�
Y

b3 i=a \ �F a

�
xb! i (� aib

�� ai + �� aib � ai ) + yb! i (� aib � ai + �� aib
�� ai )

� i

Once the a set of messages satisfying these equations is found, a certain number
of quantities of algorithmic interest may be computed, like e.g. the probability
P c

i for a variable of being submitted to a contradiction or the probability P v
a

for a clause to be violated. These correspond to local marginals and can be
computed exactly from the messages. Upon using the following quantities:

Q0
i

def=
Y

a3 i

xa! i

Q+
i

def=
Y

a3 i

�
xa! i � ai + ya! i �� ai + za! i � ai

�
�

Y

a3 i

�
xa! i � ai + ya! i �� ai

�

Q�
i

def=
Y

a3 i

�
xa! i �� ai + ya! i � ai + za! i �� ai

�
�

Y

a3 i

�
xa! i �� ai + ya! i � ai

�

Qc
i

def= Q+ �
i + Q� +

i
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with

Q+ �
i

def=
h Y

a3 i \F i

�
xa! i � ai + ya! i �� ai + za! i � ai

�
�

Y

a3 i \F i

�
xa! i � ai + ya! i �� ai

� i

�
h Y

a3 i \ �F i

�
xa! i �� ai + ya! i � ai + ta! i �� ai

�
�

Y

a3 i \F i

�
xa! i �� ai + ya! i � ai

� i

Q+ �
i

def=
h Y

a3 i \F i

�
xa! i �� ai + ya! i � ai + za! i �� ai

�
�

Y

a3 i \F i

�
xa! i �� ai + ya! i � ai

� i

�
h Y

a3 i \ �F i

�
xa! i � ai + ya! i �� ai + ta! i � ai

�
�

Y

a3 i \ �F i

�
xa! i � ai + ya! i �� ai

� i

Concerning a given clausea, from the decomposition (4.7) of Ca(wa), the fol-
lowing quantities are as well useful:

Qx
a

def=
Y

i 2 a

�
Q0

i ! a + Q+
i ! a + q(� ai Q+ �

i ! a + �� ai Q� +
i ! a)

�

Qxy
a

def=
X

i 2 a

�
Q�

i ! a + q( �� ai Q+ �
i ! a + � ai Q� +

i ! a)
� Y

j 2 a=i

�
Q0

i ! a + Q+
i ! a + q(� ai Q+ �

i ! a + �� ai Q� +
i ! a)

�

Qyz
a

def=
X

i 2 a

�
Q1

i ! a + Q+
i ! a + q�ai (Q0�

i ! a + Q+ �
i ! a)

� Y

j 2 a=i

�
Q0

i ! a + Q+
i ! a + q(� ai Q+ �

i ! a + �� ai Q� +
i ! a)

�

Qt
a

def=
Y

i 2 a

q �� ai
�
Q0�

i ! a + Q+ �
i ! a

�

4.3 Complexity, energy and expected number of violated
clauses

Once a �xed point of these equations is found, a certain number of probabilistic
estimations can be made in a fully consitent way, owing to the underlying BP
property. The complexity take again the form (3.4) with

Za = Qx
a + Qxy

a + Qyz
a + Qt

a ;

Z i = Q0
i + Q+

i + Q�
i + qQc

i ;

E i = � Qc
i logq:

For each variable there are two interesting quantities:

bf ix
i =

jQ+
i � Q�

i j
Z i

;

P c
i =

qQc
i

Z i
;
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respectively the bias function quantifying how much a variable is polarized in
one or in the other direction, and the probability of a variable to receive con-
tradictory warnings.
For each clause, we can as well compute the probability

P v
a =

Qt
a

Za
:

that it is UNSAT . These expression can be used to estimate the Pareto front
of a given problem instance by computing the expected number

E� (q; � ) def= E
�
# UNSAT�

�
=

X

a2F �

P v
a ; � 2 f 0; 1g

of UNSAT clause for each sub-problem, given the penaltyq and a set � =
f � i ; i 2 Vg of binary choices. Therefore, for a given choice of(q; � ) we can com-
pute its corresponding estimate(E0; E1; �) . The set of non-dominated parame-
ters choice regarding(E0; E1) and for which � � 0 constitutes the estimation of
the Pareto front corresponding to the 4-surveys equations.

5 Numerical experiments

5.1 Sampling the Pareto set

We have run experiments using the deformed SP equation (3.3) to �nd Pareto
solutions and compared them with max-sat solution obtained with SP-Y. Solu-
tion are generated by the following procedure:

� clause elimination: based on� Pa (3.6) with highest value, a small set
of clauses are successively selected to be taken aside from the problem.
Nelim , the total number of eliminated clauses is �xed in advance and in
practice best results are obtained with a lower value than the one required
to render the problem SAT .

� variable decimation: as in the original survey-propagation algorithm, vari-
able with highest polarization are �xed sequentially, until the problem
becomes paramagnetic or until convergence is lost.

� walksat is run onto the reduced problem a certain number of time to
generate a cloud of solutions.

During both the elimination and the decimation stages, the penalty q is main-
tained at convergence threshold, which avoid to have an additional hyper-
parameter to tune, in addition to Nelim . This is done by trial and error,
performing a gradual increase ofq. The position of the solution found on the
Pareto front, depends on how the clauses are selected in the elimination proce-
dure. In our case it is implicitly determined by how the choice � i (see above in
(3.3) of each variablei is set before letting survey-propagation converge. Among
many possible heuristic, the one given best results so far, consists in eliminating
n0 clauses from problemF0 by letting � i = 1 uniformly, and then to �ip to
� i = 0 uniformly to eliminate n1 = Nelim � n0 clauses from objectiveF1.

RR n° 7424



Multi Objective 3-SAT Problems addressed with Message Passing Techniques18

0 500 1000 1500
time

0

1

2

3

4

5

6

7

nvar(t)/nvar(0)
nf(t)/nf(0)
Entropy
Nf(t)Pav(t)

0 0,2 0,4 0,6 0,8 1

eta,Pol

0,0001

0,001

0,01

0,1

1

di
st

rib
ut

io
n

surveys  Tf
Polarization Tf
surveys Ti
Polarization Ti

alpha=4.5   N=10000

Fig. 5.2: Left panel: Fraction of active variables (nva), clauses (nfa), complexity
and � P v

a as function of time during the clause-elimination, variable-decimation
process with �xed � i = 1 . Right panel: polarization of variable and surveys
distribution at the beginning of the clause elimination (Ti ) and at the end (Tf ).

Let us make a few observations, concerning the clause elimination procedure: the
distribution of surveys indicates that a pure state is obtained at the end of the
process (see Figure.5.2), yielding variables which are either (almost) unpolarized
or (almost) fully polarized. This is interesting both from the practical and
theoretical view. It indicates that the landscape of the problem is progressively
simpli�ed, after each elimination of clause until a single valley remains. As a
result if Nelim is su�ciently large the simpli�ed problem is very easy to solve.
On Figure 5.3 one can see how the quality and position of solutions on the Pareto
front depend onNelim and Nelim 1. Small value ofNelim yield solution on the
center while whenNelim is increased the whole Pareto domain is scanned. The
comparison with SP-Y is made by running it with backtracking and with various
values of the pseudo inverse temperaturey around the optimal y� for which the
complexity vanishes. The Pareto front which is obtained for the best tuning of
Nelim is not far from being optimal in the max-sat region when � < 4:4 but
the performance degrades when� increases, although it is stable with increased
problem sizeN (see Figure. 5.3). Ideally, on this �gure we should see the Pareto
front entering the region below the Gardner energy [12], which is not the case
yet. Clearly, although the convergence threshold is around� ' 6, the relaxed
Pareto criteria underlying our deformed survey-propagation equations (3.3) is
problematic when going deeper inside theUNSAT phase.

5.2 Pareto front estimation

With the 4-surveys equations of section 4.2, we can in principle estimate the
Pareto-front of single problem instances in a consistent way, without providing
any explicit solutions. The main di�culty comes from the large amount of
possible choices for the� i 's. Uniform setting � i = 0 or � i = 1 for all i yields
estimates on the extreme points of the Pareto front, but in the bulk it is not
clear how to �x these additional disorder variables. A random choice yields poor
results, since we have at hand a potentially di�cult optimization problem. The
cheapest and best heuristic we have tested so far amounts to �x this variables
dynamically, by switching uniformly � between 0 and 1 for all variables but
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