Skip to Main content Skip to Navigation
Conference papers

The Arithmetic-Geometric Progression Abstract Domain

Abstract : We present a new numerical abstract domain. This domain automatically detects and proves bounds on the values of program variables. For that purpose, it relates variable values to a clock counter. More precisely, it bounds these values with the i-th iterate of the function [X |-> aX+b] applied on M, where i denotes the clock counter and the floating-point numbers a, b, and M are discovered by the analysis. Such properties are especially useful to analyze loops in which a variable is iteratively assigned with a barycentric mean of the values that were associated with the same variable at some previous iterations. Because of rounding errors, the computation of this barycenter may diverge when the loop is iterated forever. Our domain provides a bound that depends on the execution time of the program.
Document type :
Conference papers
Complete list of metadata
Contributor : Jérôme Feret Connect in order to contact the contributor
Submitted on : Thursday, October 21, 2010 - 5:15:44 PM
Last modification on : Thursday, March 17, 2022 - 10:08:25 AM

Links full text




Jérôme Feret. The Arithmetic-Geometric Progression Abstract Domain. the 6th International Conference on Verification, Model Checking and Abstract Interpretation - VMCAI 2005, Radhia Cousot, Jan 2005, Paris, France. pp.42-58, ⟨10.1007/978-3-540-30579-8_3⟩. ⟨inria-00528450⟩



Record views