Finite-Sample Analysis of Least-Squares Policy Iteration

Alessandro Lazaric 1 Mohammad Ghavamzadeh 1 Rémi Munos 1
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal, Inria Lille - Nord Europe
Abstract : In this paper, we report a performance bound for the widely used least-squares policy iteration (LSPI) algorithm. We first consider the problem of policy evaluation in reinforcement learning, i.e., learning the value function of a fixed policy, using the least-squares temporal-difference (LSTD) learning method, and report finite-sample analysis for this algorithm. To do so, we first derive a bound on the performance of the LSTD solution evaluated at the states generated by the Markov chain and used by the algorithm to learn an estimate of the value function. This result is general in the sense that no assumption is made on the existence of a stationary distribution for the Markov chain. We then derive generalization bounds in the case when the Markov chain possesses a stationary distribution and is $\beta$-mixing. Finally, we analyze how the error at each policy evaluation step is propagated through the iterations of a policy iteration method, and derive a performance bound for the LSPI algorithm.
Document type :
Reports
Complete list of metadatas

Cited literature [21 references]  Display  Hide  Download

https://hal.inria.fr/inria-00528596
Contributor : Mohammad Ghavamzadeh <>
Submitted on : Friday, October 22, 2010 - 10:27:28 AM
Last modification on : Thursday, February 21, 2019 - 10:52:49 AM
Long-term archiving on: Sunday, January 23, 2011 - 2:46:17 AM

File

lspi-jmlr.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00528596, version 1

Collections

Citation

Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos. Finite-Sample Analysis of Least-Squares Policy Iteration. [Technical Report] 2010. ⟨inria-00528596⟩

Share

Metrics

Record views

444

Files downloads

200