D. Achlioptas, Database-friendly random projections, Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '01
DOI : 10.1145/375551.375608

. Fig, Recovery rate for different initial conditions for chaotic sequence, database systems (PODS), pp.274-281, 2001.

L. Applebaum, S. Howard, S. Searle, and R. Calderbank, Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery, Applied and Computational Harmonic Analysis, vol.26, issue.2, 2009.
DOI : 10.1016/j.acha.2008.08.002

R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, A Simple Proof of the Restricted Isometry Property for Random Matrices, Constructive Approximation, vol.159, issue.2, pp.253-263, 2008.
DOI : 10.1007/s00365-007-9003-x

D. Baron, S. Sarvotham, and R. G. Baraniuk, Bayesian Compressive Sensing Via Belief Propagation, IEEE Transactions on Signal Processing, vol.58, issue.1, pp.269-280, 2010.
DOI : 10.1109/TSP.2009.2027773

R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. J. Strauss, Combining geometry and combinatorics: A unified approach to sparse signal recovery, 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp.798-805, 2008.
DOI : 10.1109/ALLERTON.2008.4797639

R. Berinde and P. Indyk, Sparse recovery using sparse random matrices, 2008.

R. Calderbank, S. Howard, and S. Jafarpour, Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. Selected Topics in Signal Processing, IEEE Journal, vol.4, issue.2, pp.358-374, 2010.

E. J. Candès, The restricted isometry property and its implications for compressed sensing Compte Rendus de l'Academie des Sciences, Series I, pp.9-10, 2008.

E. J. Candès and T. Tao, Decoding by Linear Programming, IEEE Transactions on Information Theory, vol.51, issue.12, pp.4203-4215, 2005.
DOI : 10.1109/TIT.2005.858979

E. J. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? Information Theory, IEEE Transactions on, vol.52, issue.12, pp.5406-5425, 2006.

E. J. Candès and M. B. Wakin, An Introduction To Compressive Sampling, IEEE Signal Processing Magazine, vol.25, issue.2, pp.21-30, 2008.
DOI : 10.1109/MSP.2007.914731

R. A. Devore, Deterministic constructions of compressed sensing matrices, Journal of Complexity, vol.23, issue.4-6, 2007.
DOI : 10.1016/j.jco.2007.04.002

S. Howard, R. Calderbank, and S. Searle, A fast reconstruction algorithm for deterministic compressive sensing using second order reed-muller codes, 2008 42nd Annual Conference on Information Sciences and Systems, 2008.
DOI : 10.1109/CISS.2008.4558486

W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Contemporary Mathematics, vol.26, pp.189-206, 1984.
DOI : 10.1090/conm/026/737400

S. Mendelson, A. Pajor, and N. Tomczak-jaegermann, Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles, Constructive Approximation, vol.340, issue.3, pp.277-289, 2008.
DOI : 10.1007/s00365-007-9005-8

URL : https://hal.archives-ouvertes.fr/hal-00793740

A. Vlad, A. Luca, and M. Frunzete, Computational Measurements of the Transient Time and of the Sampling Distance That Enables Statistical Independence in the Logistic Map, Proc. International Conference on Computational Science and Its Applications (ICCSA), pp.703-718, 2009.
DOI : 10.1007/978-1-4612-4286-4

K. Wang, W. Pei, H. Xia, M. G. Nustes, and J. A. Gonzalez, Statistical independence in nonlinear maps coupled to non-invertible transformations, Physics Letters A, vol.372, issue.44, pp.6593-6601, 2008.
DOI : 10.1016/j.physleta.2008.08.054