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Observability Normal Forms for a class of switched systems
with zeno phenomena

L. Yu, J.-P. Barbot, D. Boutat and D. Benmerzouk

Abstract—This paper deals with necessary and sufficient in section IV. In section V, conditions for the existence of
conditions to transform a class of switched systems to a diffeomorphism which transforms the system into one of the
particular form dedicated to observer design with and without  +vo normal forms for the linear hybrid system are proposed.

zeno phenomena. Meanwhile, sufficient observability conditions In the last ¢ b built for the t |
for switched system with or without zeno phenomena are given. n the fast part, some observers are built for the two norma

In the last section, some observer structures are proposed upon forms at the end of this paper.
two academical examples.

Index Terms—Zeno phenomena, switched system, observ- Il. PROBLEM STATEMENT
ability. Let us consider the following class of switched system:
[. INTRODUCTION &t = fqlx), qe{1,...,N} (1)
Eno phenomenon is well known in physical domain, y = h(x) (2)

for example the bouncing ball case leading to many ) .
theoretical developments and simulations [2],[20]. In systerﬁ@here z(t) € U C R |s_the state,y(t) € R is the
theory, the first order sliding mode [23] and high ordefMeasured output and functionf : U — #",¢ € Q and
sliding mode [14] [24] have been powerfully used in controf* : U — Jt are smooth for each. ¢ is the discrete state
design, as well as in observer design for many years. i§ich may be driven by a switching functiom, where
control design problems, the main property of sliding mode i€ ° R—-Q={1,.. % N}. - _
convergence of the system behavior in finite time under son}g order to deal with observability of systems (1), we will
matching condition [11] (respectively some observabilitASSUme within this paper the following:
condition [27] in observer design problems). Moreover, this , . .
property corresponds to a particular type of Zeno phenomena”\SSumption 1:For eachy € Q the pair(y, f,) is regularly
(i.e. chattering zeno [2] for the first order sliding mode)Weakly locally observablé. Thus, rank{dL} h, j =0 :
Based on this correspondence, this paper presents obséiv- 1} =n. )
ability conditions for hybrid system with zeno phenomena Hereafter we give two normal forms, each of them corre-
by considering sliding mode and normal form approache§P°”d3 tp a particular hybrld observability form and_dn‘ferent
These lead to two normal forms: one directly inspired oﬁssu_mptmns on the d|s_crete_state are requested in order to
the observer matching condition and the other one on tff@nsider state observation with zeno phenomena.

Filippov theorem [16] and geometrical results [17]. For 3y st observability form
sake of simplicity, we don'’t consider a switch on the output

function and reset function at switching time. The first proposed normal form gives the following form:

Obviously, both observability forms presented in this paper & 0 f
can make sense only if there exist at least one observer £ & 61
for estimating the states when there exists zeno phenomena. £ _ & n 0 3)

Consequently, it is necessary to give some samples of build-
ing observers for each observability form presented in this k :
paper. This paper is organized as follows: Section Il gives &n §n—1
the two proposed observability forms. Then conditions for y = /E(g) _ (4)
the existence of diffeomorphism which transforms the system
into one of the two normal forms are proposed in section lIvhereg € @ is the discrete state.
Afterwards, sufficient observability conditions are presented Remark 1:

1-) It is clear from the form (3)-(4) that the observation of
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system in this form are similar to the observability matchind. Condition for the existence of a diffeomorphism in the

condition [27]. second case

B. Second observability form Hereafter, we will exhibit sufficient and necessary condi-
The second case considered in the next section is Hons for the existence of the diffeomorphism for the second

exhibit sufficient and necessary conditions for the existen&@Se¢, which transforms the system (1)-(2) into the system
of diffeomorphismz = ¢(z) such that the system (1)-(2) is (5)-(6).

transformed into the following form: Thgprem 1:Under e}ssumption 1 sufficient. and necessary
) conditions for the existence of diffeomorphisgi{z) such
2= ao(z) +7y), ¢€@ (®)  that the system (1)-(2) is transformed into system (5)-(6)
Yy = Zn (6) are:

Remark 2:The local weakly observability property of There exi§t a family of independent vector fielfgs, ...7,,}
system (5-6) doesn't depend on the termng{y). Thus, Such that
it is equivalent to the observability of the pdito(z), z,,). a)— dh -7, =1

dh-1,=0, Vie{l,..,n—1}
In this section, the structural conditions is analyzed in ¢)— [1;,7] =0, V(i,75) € {1,...,n} x {1, ...,n}
order to transform by diffeomorphism system (1)-(2) into d)

[11. M AIN RESULTS b)—
. . . — ivfa ]=0,Vie{l,..,n—1},Vk,v €
one of both cases previously introduced. Here the difference [7i: o] red n— 1} Ve v eQ

; : . i Proof:
between two functions is considered: 1) Sufficiency: As the family{r;}1<i<» is a basis of the
Ia,, (@) = feo(z) = fu(z), R,veEQ tangent fibre bundlg’U of U and thanks to conditiom)

And this function will be used in the analysis of both case?here exists a change of coordinates: ¢(x) such that the

N i ) o differential function of¢ satisfies:
A. Condition for the existence of a diffeomorphism in the

first case bu (1) = 81 forallie {1,...,n}. 8)
Hereafter, sufficient and necessary condition are given for ) “i ) )
the existence of diffeomorphisgi= 1 (z) such that system Now we will calculatefs, , in the = coordinates, fromi)
(1)-(2) is transformed into the form (3)-(4). Moreover, theBnd the linearity of, we have fori € {1,...,n —1}:
proof of the next proposition is a constructive one. 0
Proposition 1: Under assumption 1, there exist a diffeo- P (04(fan,)) = [¢«(7i), 6 (fa)] = O, )
morphism¢ = v (z) which transforms the system (1)-(2)
into the form (3)-(4) if and only if the following conditions
are fulfilled:

Lis, L5 th=0Vr,veQandVje{l,...n—1} (7)

which implies that:

" 0
6ullan) = 3o i)
i=1 g

Conditionsa) andb) mean that,, = y. Therefore there exist
Proof: Necessity: the form (3)-(4) satisfy assumptionfunctions¢;"” (y)1<i<» on U such that:
1 and condition (7). n
Sufficiency: settingz, = 1, = h, condition (7) gives fa., = o ()7 (10)
(L¢.h = Ly h) and assumption 1 implies thalt, dLs_h ’ Pt
are linearly independent, consequently it is possible tQ

define » o ]y Finally by induction the ) Conditionsa), b), ¢) andd) are necessary. In fact, assume
n—1 — fr = n—1-

diffeomorphism is defined as follow,,_; = L}Nh for that N
iE{l,...n—l}. | _ K,V i _
Remark 3:If fa,, is not trivial then assumption 1 and Janu(@) =3 @) o and y =, (1)

condition (7) imply thatZL;, L7 ~'h # 0. Note that, this = _ ) ‘
condition is closed to the notion of relative index [26] andhen the seek base is = - fori € {1,...,n}. u
observability matching condition [27]. Moreover, under this Remark 5:A class of dynamical systems which fulfill the
condition and for a switclr without Zeno we can estimate conditions of theorem 1 are the dynamical systems, lineariz-
the discrete statg. (For more details see [6][15]). able by the same diffeomorphism and output injection, which

Remark 4:From the observability concept introduced byare characterized by the theorem of Krener and Isidori [17].
M. Fliess and S. Diop [13] in the theoretical frames of differ- Here after we will give an example of dynamical system
ential algebra, proposition 1 is equivalent to the existence #fhich satisfies the theorem 1, however, it doesn’t satisfy the
a common functiorn® (F is independent tq), for all sub- theorem ofKrenerandlsidori [17] This means that the class
systems, which verifies the following algebraic equation: which satisfies the theorem 1 is larger than the class which

B (n—1) satisfies the theorem éfrener andlsidori, this is obviously
T =F(y,...y ) due to the fact that we avoid a linear condition fay.

wherey) denotes thg" derivative ofy. Example 1:Consider this dynamical example,



From these and proposition 1, it is possible to set the

1 B —z1(z9 — 1) (z2 — 21)? following corc?llary: _ N N
o = 21 (21 — 22 — 1) + 0 Corollary 1: Under assumption 1, a sufficient condition
o for the observability of the continuous state of system (5)-
Yy = To— T (12) . .
. 9 (6) with zeno phenomena is:
( il ) _ ( —331(.232 — xl) ) + ( 2(332 — 331) ) ‘
g z1(xy — 20 — 1) 0 Ly, L4 'h=0Vk,veQandVj={l,....n—1}
Yy = T2—11
) ) ) B. Case two
Now after assemble calculations, the vector fieldse given _ ) _
1 0 In the form (5)-(6), the discrete stateis not considered
by 7 = < 1 andr, = g 1) as a perturbation, consequently, the following assumption is
From system (12), the difference between the associatégquested:
two dynamical functions can be obtained As(z1,z2) = Assumption 2:The discrete state is known.
(e — )2 i i ion i i i ;
(o — 1) 2 By some calculation, the condition a) Obwously, th|s assumption is practically impossible to
0 be guarantied in the case of zeno phenomena, such as for

and b) can be easily verified. And the condition c) is obvioughe Chattering Zeno (i.e. after some time the dwell time is
since the vector fieldsy, 7> are with constant values. For exactly equal to zero) or for the Genuinely Zeno (i.e. the

condition d),[71, fa] = Lr, fa = 0. dwell time is never equal to zero)[2]. So assumption 2 is
Through the following diffeomorphism replaced by the following one:
3 1 Assumption 3:
< & ) = ¢(z) = < Lo — 1 ) a- The discrete state is Henstock-Kurzweil-Pettits inte-
grable[18][8][28] or NV-Integrable[12] and its averages is
The switched system (12) can be transformed as measured via a low pass filter of sufficiently large bandwidth
é vy ¢2 on time interval[0, ]
( ! > = ( 152 > + < 2, ) b- The system (1)-(2) is affine with respect to the discrete
13 —& —& stateg
. ¥ = & The second condition of the assumption above and the con-
( {1 > _ ( —&1&2 > T < 263 > ditions of theorem 1 imply that there exists a diffeomorphism
&2 —& —2¢3 such that system (1)-(2) can be transformed into:
y = & )
Remark 6:A necessary condition for the existence of z = ?‘O(Z) +7(y)e (3)
diffeomorphisme(x) such that the system (1)-(2) is trans- y = h(z)=2, (14)

formed into system (5)-(6) is: , . . . i )
So practically, it is only possible to obtain the filtered discrete

fa Oh stateq, (instead of the real discrete stafp

k( 9 ) =Rank(=)=1 ar :

Ran < % ) Ran (am) ’ Now, let us consider the system (5)-(6) reduced to the
common dynamics:

onU.
Remark 7:It is important to mention that the previous i = ag(2) (15)
theorem gives a necessary and sufficient conditions for Trn
y = h(z)=z, (16)

transforming the system (1)-(2) into the system (5)-(6) but it

is necessary to introduce also some extra conditions on th@d assuming:
knowledge of the state (or equivalentlyo) in order to be  Assumption 4:For the system (15)-(16), there exist an
able to design an observer. observer such that the continuous state observation error (i.e.
the difference between the continuous state ant its estimate)
is exponentially stable.

A. Case One Remark 8:Under some specific assumptions as Lipschitz

For system of the form (3)-(4) algebraic estimator [3], [21)condition, persistent excitation,.. it is possible to use classical
or step by step sliding mode observer [4], [15] work well inhigh gain observer [5] or adaptive observer [7] For these
the continuous state estimation, because in the first equati@Bserver classes, the exponential stability of the continuous
of (3), & is never considered. state observation error is guarantied.

More precisely, the output derivative is considered only until From the previous assumption and theorem 1, it is possible
n—1 in algebraic solution and the last step is a sliding modt® set the following proposition:
observer of one in the step by step sliding mode observer, i.e.Proposition 2:

it is requested that; is bounded and the bound is known. ® — A) Assumptions 1, 2, 4 and conditions of the
theorem 1 are sufficient conditions for the continuous state

2When the switched system is only composed of two subsystems, then
fa, , can be abbreviate tfa. 3see also Denjoy-Khinchine integrable.

V. SUFFICIENT OBSERVABILITY CONDITIONS



observability of system (1)-(2) with zeno phenomena. with lim,_o O(p) = 0. And (19) gives
e — B) Assumptions 1, 3, 4 and conditions of theorem 1

are sufficient conditions for the practiéatontinuous state

observability of the system (1)-(2) with zeno phenomena. Vi) < —KV(e)

16%V

Proof: Proof of the partd of the proposition: there t 15502 1<[00p) ® (ao(2) /5'(573/,@))]’(26)
exists an observer of the form:
P o= BGy9) (17) Asforall e > 0, there exists a filter anéy > 0 such that
) ) t
§ = 2, (18) vt > t1, we have||p|| = supg<;<r ’ftl Y(y) (g — Qf)’ <E.

) ) . ) Consequently, it is possible, for eath > 0 to sete << %
which ensures the exponential stability of the continuoug,g the inequality (26) becomes

state observation errer= z — 2. Consequently, there exists
a Lyapunov functionV (e) with respect to (15),(16) and V(e) < —KV +|0(e)|
(17),(18) such that: -

ov (a0(2) — B2, 9,7)) < —KV (19) So, one can conclude that fer¢ Ev, := {e/V(e) < Vy4},

= De such that
with K > 0. . K
Modifying (17),(18) as follow: V() <=5 V(e
2 = B(2y,9) + () (20)  Becauses << ¥ guaranties thalO(z)| < %. n
g = zn (21)
The state observation error for system (5)-(6) and observer V. LINEAR VIEWPOINT
(20)-(21) is exponentially stable, because the previous Lya-
punov function in this case gives: For linear case, system (1)-(2) would be written as
.oV S
V= S-(a0(2) = B2 .9) + %) — () < —KV & = Ag, ge{l...,N} (27)
Proof of the partB: the observation error becomes: y = Cz (28)
é=ao(2) = B(£,9,9) +7(y)(a — ar) (22)  whereA, is an x n matrix andC' is ann x 1 vector.
From condition a) of the assumption 3, it can be obtained
that A. Condition for the first case
p=)(q—qr) (23)

The sufficient and necessary condition for the existence

which is Cauchy problem in the sense of Henstock-Kurzweilst |inear diffeomorphisnt = &z such that system (27)(28)
Pettis integrals. Using the same method as Filippov in [1&]an pe transformed into the form (3)-(4) is given by,

page 17, itis possible to set= ¢ —p and it can be obtained o sition 3: Under assumption 1, there exists a linear

that ) o diffeomorphism¢ = ®x which transforms the system (27)-
€= ao(z) — B(2.y.9) (24)  (28) into the form (3)-(4) if and only if the following

which admit a local solution in the framework of condition is fulfilled:

Carathodory fort € [0,I] C [0,c]. Moreover, the assump- , CAi = CAJ, wherej =1,...n—1, kv €Q

tion 4 and the observer (17)-(18) ensure that there exist a

. : Lo Proof: Necessity:
Lyapunov functionV'(e) for (15)(16), which verifies (19). . L
Consequently, derivation df (¢) with respect to (24), gives ?gt?;(;g]d(3)_(4) shows that for eache {1,...n —1}, it is
. 121% A ) )
Vie) = E(ao(z) - 6(2,9,9)) (25) Y@ = 40 (29)
As ¢ = e — p, it implies that2¥|. = 2Y|. and from the

this means that theé-th derivative is independent from the

;ilsolivrr;ption 4, itis possible to rewrite the equation (25) HFiscrete state, i.e. the necessity of the condition is verified.
oy Sufficiency:
V(e) = E‘e(ao('z) —B(2,9,9)) Construct a diffeomorphism as
1 82‘/ “ N _ n—k
=5 5oz |L0(p) @ (a0(2) = B(2, 4, 9))] &k = CAy

4The observation error can be assign in any measurable vicinity of zeNYherek € {1,....,n — 1} andq =  or ¢ = v.
5The observation error must be as small as it can be but not zero. ~ Then, we can easily verify the sufficiency of conditionm



B. Condition for the second case

The sufficient and necessary condition for the existence -
of linear diffeomorphism: = ¥z such that system (27)-(28)
can be transformed into the form (5)-(6) is given as,

Proposition 4: Under assumption 1, a sufficient and nec-
essary condition for the existence of linear diffeomorphism
z = Wz such that the system (27)-(28) is transformed int@ig. 1. (Leff)Result of ALIEN Observer without noise;
system (5)-(6) is that there exist a family of independenRight)Corresponding Error.
vectors{ry, ..., 7,,} such that:

a)C-1,=1;

b) C-7,=0,withiel,..,n—1;

c) (Ax—A,) -7, =0,withiel,...,n—1,andVk,v € Q. , , ;;WMMWWWMW

Proof: a) Sufficiency
Because the vector§ry, ..., 7, } are independent, there ex-
ists a diffeomorphism which iz = Uz, where v =

col{r, ot Tn} ) Fig. 2. (Left)Result of ALIEN Observer with noise;
So, consider the following system (Right)Corresponding Error.
A+ A A, — A

one state of system (30)-(31). ALIEN algorithm is numerical

-1 for ¢q=&k
1 for q=v
And rewrite the first derivative of with the system above

where H, =

5 = Ug respect tos starting from Taylor expansion in the time
Ac+A, -, A, — A, domain of the original signal. In this paper, we use the
= v 2 Vet HeY 2 e individual estimation algorithm [3].
From condition(a) — (b), we obtain thaty = Cz = z,. And Meanwhile, the second order sliding mode observers are
from condition (c), Hq\p%\pflz = B,z, = Byy. built for the continuous states[23] [15] [24]. Fig 1, 3 are
b) Necessity: the results of ideal condition without any noise in the
Suppose there exists a diffeomorphism= Uz, then measurement, and Fig 2, 4 are the results of observers with
noisy measurements, which makes the simulation a little
z = Wz more realistic, and the power of the noise are assigned to
— \I;A“ + AV\Ij_lz +H \I;A“ — Aqu—lz E,.ise = 0.01. The left figures of Fig 1,2,3,4 are the results
2 ? 2 - -
of observer and the right are the difference between observer

differential algebraic approach, proposed by M. Fliess et al.
in [3], and roughly speaking, the main fundamental principle
of this method is the derivative of Laplace transform with

In fact col{ry,...,7} = ¥~1, then the condition(a) — (¢)  and original value of the state. Obviously, the statean be
can be easily verified. m observed from these observer structures, and from the error

VI. SIMULATIONS observer structures can be considered satisfied.

The objective of this section is to highlight the efficiencies
of these observability conditions. Moreover, some observegs Example for second observability form
for each system with zeno phenomena are given. To make

plot, defined as.,., = |21 — 21|, the performance of the

the simulations more general, three observer structures ard-€t us consider another very simple academical system in

adapted, ALIEN observer [21][3][22][9], the second or-the form (5)-(6)

der sliding mode observer[23][15][24], and the high-gain ) ) 3
observer(5]. fo= -z, h=un+ (-2t (32)

y = 2z (33)

A. Example for the first observability form
Let us consider the very simple academical system in the
form (3)-(4) ’
21 = fe(z1,22), Z2a=21 (30)
Yy = 2z (31)

with f, = —2z1 — 229 + ¢ andq = sign(w) wherew = N is
a white noise. This form of theoretically leads to the Zeno

phenomenon. For this system, we apply the ALIEN observesg. 3. (Left)Result of second order sliding mode observer without noise;

and the second order sliding mode observer to estimgte (Right)Corresponding Error.



e - | [

. - , 2]

. . I [3]
Fig. 4. (Left)Result of second order sliding mode observer with noise;

(Right)Corresponding Error.

[4]

with ¢ = 1.5 + 0.5sign(w) andw = N + e~t, where N is 5]
a white noise. This form of theoretically leads to infinite

commutation in finite time. [6]

In this case, due to assumption 4, high-gain observer is
adapted.
For this system (32)-(33), the high-gain observer is de-

signed as follows [8l
2= A2 +6(2) — AN 'Ko(Coz —y) (B4 (g
where 4o = (0,—1;1,0), Co = (0,1) and ¢((2)) = [10]

(0,—23 + qf)*. Here, we choose = 10, K, = (0,100)"
and A(\)~! = diag(1,\). The results are shown in Fig 5 [11]
without noise in the measurement, and Fig 6 with noise in[ 2]
the measurement. Obviously in both cases the observers Worjk
well. (13]

(14]

(15]

(16]

(17]

Fig. 5. (Left)Result of High-Gain Observer without noise; [18]
(Right)Corresponding Error.

(19]

(20]

[21]

(22]

(23]
(24]
Fig. 6.

(Left)Result of High-Gain Observer with noise;
(Right)Corresponding Error.

(25]
(26]

Above all, we can make a conclusion that it is possible[27]
to observe a hybrid system under specific conditions even i
zeno phenomenon occurs. Obviously this work considers
very primary case and many other forms and cases should
be considered. One of the most difficult problem for us is to
observe hybrid systems with jumps under Zeno phenomenon
(i.e. the case of bouncing ball).

28]
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