Environment-driven Distributed Evolutionary Adaptation in a Population of Autonomous Robotic Agents

Nicolas Bredeche 1, 2 Jean-Marc Montanier 2, 1 Wenguo Liu 3 Alan Winfield 3
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : This paper is concerned with a fixed-size population of autonomous agents facing unknown, possibly changing, environments. The motivation is to design an embodied evolutionary algorithm that can cope with the implicit fitness function hidden in the environment so as to provide adaptation in the long run at the level of the population. The proposed algorithm, termed mEDEA, is shown to be both efficient in an unknown environments and robust to abrupt and unpredicted changes in the environment. The emergence of consensus towards specific behavioural strategies is examined, with a particular focus on algorithmic stability. To conclude the paper a real world implementation of the algorithm in a population of 20 real-world e-puck robots is described and the algorithm is shown to perform remarkably well in the face of environmental constraints and technical issues.
Type de document :
Article dans une revue
Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis, 2012, Modelling the swarm - analysing biological and engineered swarm systems, 18 (1), pp.101-129
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00531450
Contributeur : Nicolas Bredeche <>
Soumis le : lundi 20 juin 2011 - 14:08:54
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : jeudi 30 mars 2017 - 11:52:13

Fichier

bredeche2011MCMDS-medea.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00531450, version 2

Collections

Citation

Nicolas Bredeche, Jean-Marc Montanier, Wenguo Liu, Alan Winfield. Environment-driven Distributed Evolutionary Adaptation in a Population of Autonomous Robotic Agents. Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis, 2012, Modelling the swarm - analysing biological and engineered swarm systems, 18 (1), pp.101-129. 〈inria-00531450v2〉

Partager

Métriques

Consultations de la notice

359

Téléchargements de fichiers

494