A Hyperquadric Model for {2-D} and {3-D} Data Fitting

Abstract : We present in this paper some improvements to the hyperquadric model allowing an efficient representation of the shape through a numerical parameterization and an energy minimization approach for data fitting. This last feature gives an accurate location of the image edge points independently of the implicit description of the shape. The advantage of our model is that it describes global shape properties through a unique implicit equation yielding a representation of the shape by means of its parameters, independently of the chosen numerical resolution
Type de document :
Communication dans un congrès
Proceedings of the International Conference on Pattern Recognition, 1994, Jerusalem, Israel. 1994, 〈10.1109/ICPR.1994.576961〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00532676
Contributeur : Brigitte Briot <>
Soumis le : jeudi 4 novembre 2010 - 13:37:28
Dernière modification le : mardi 17 avril 2018 - 11:29:08

Identifiants

Collections

Citation

Isaac Cohen, L. Cohen. A Hyperquadric Model for {2-D} and {3-D} Data Fitting. Proceedings of the International Conference on Pattern Recognition, 1994, Jerusalem, Israel. 1994, 〈10.1109/ICPR.1994.576961〉. 〈inria-00532676〉

Partager

Métriques

Consultations de la notice

90