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Abstract
This paper deals with the problem of automatic interpretation of

oceanographic images for vortices detection, modelization and tracking.
We present a framework allowing the vortices detection. The processing
is split into three parts: apparent motion computation from the image se-
quence, local interpretation of apparent motion and geometric modeliza-
tion of the vortices. This scheme allows an efficient approach for vortices
segmentation on very large image sequences. A set of experimental data
shows the use of such framework for processing Advanced Very High Res-
olution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS)
image sequences.
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1 Introduction

Oceanographics images obtained from environmental satellite platforms present
a new challenge in computer science. The huge amount of data collected each
day and the needs of characterizing some specific structures on these images for
oceanographic monitoring justify our approach for the detection and tracking
of vortices on oceanographic images.
This paper deals with the problem of automatic interpretation of oceano-

graphic images for vortices detection, modelization and tracking.
We present a framework allowing the vortices detection. The processing is

split into three parts:

• Apparent motion computation from the image sequence.

• Local interpretation of apparent motion.

• Geometric modelization of the interesting regions.

This scheme allows an efficient approach for vortices segmentation. The first
step concerns the localization of interesting structures on sequences of satellite
images. These images are too large (typically 2048× 1024 images) for modeling
the vortices structures over the whole image. Instead we use an apparent motion
computation on oceanographic temporal sequences and characterize the vortices
center through a local polynomial approximation of optical flow.
In the regions that have been identified to show a turbulent motion we

apply geometric modelization to obtain simultaneously a segmentation of the
structures (i.e. the external boundary of the vortex), and a quantitative values
(according to the model) allowing a study of the temporal evolution.
The aim of this paper, as it will be explained all over the sections, is to

show that dynamic satellite images need a hierarchical approach with two steps,
localization and segmentation, due to the large amount data. The paper will
also explain our choices for this particular application.
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We emphasize that this paper presents fundamental problems arising from
applicative and context dependent research in an oceanographic application.
Although basic tools like optical flow, vector field interpretation and geometric
modelization are presented, we show how these methods can be reformulated
and improved to incorporate knowledge of the particular application, like the
type of movement occurring on a temperature front or on a vortex.
The paper is organized as follows: section 2 deals with the computation of ap-

parent movement on oceanographic temporal sequences, according to the optical
flow equation. In this section, we will discuss the choice of a variational formu-
lation allowing flow discontinuities. These discontinuities characterize oceano-
graphic patterns: temperature fronts and vortices on sea surface temperature
images obtained by the Advanced Very High Resolution Radiometer (AVHRR)
sensor. In section 3 we present a local polynomial approximation of the flow
field, allowing an interpretation of the apparent movement and its fixed points.
These points allow to initialize a geometric model of external boundary of the
vortex as described in section 4. Finally section 5 presents some results obtained
on AVHRR and Coastal Zone Color Scanner (CZCS) images.

2 Optical Flow Computation

Usually [2, 1], the techniques used for computation of optical flow are based on
the constant grey level value hypothesis:

I = constant (1)

where I is the grey level value of a pixel.
By differentiating this equation over time when a pixel is apparently moving

on an image over a sequence, we obtain:

dI

dt
= 0 (2)

Equation 2 may be rewritten with partial differentiation:

dI
dt
= ∂I
∂x
dx
dt
+ ∂I
∂y
dy
dt
+ ∂I
∂t

= 0

⇐⇒ Ix u+ Iy v + It = 0 (3)

where Ix, Iy and It are the partial derivatives of the image irradiance function
I(x, y, t) at point (x, y) and (u, v) is the velocity of this pixel inside the image.
Equation 3 is evidently not sufficient for computing the image velocity (u, v)
at pixel (x, y) since the two components u and v are constrained by only one
equation, called “optical flow equation”. Therefore, most of the techniques make
use of a regularity constraint which restrains the space of admissible solutions
of optical flow equation, and allows to compute the velocity field on each image
of the studied sequence.
Usually, the regularity constraint is quadratics and therefore enforces the

optical flow field to be continuous and smooth. For instance, to guarantee a
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unique solution to equation 3, one may use a regularizing term by minimizing
the energy function:

E(u, v) =

∫

Ω

(Ix u+ Uy v + It)
2dx+ α

∫

Ω

|∇u|2 + |∇v|2dx dy (4)

where∇ denotes the gradient operator. Here, the regularity constraint is applied

by a quadratic regularizer

∫

Ω

|∇u|2+ |∇v|2dx dy that constrains the optical flow

to be usually continuous.
Unfortunately the interesting structures on oceanographic images like tem-

perature fronts and vortices; correspond to discontinuities in the optical flow.
This can also be true for other applications where discontinuities occur on the
boundary between two surfaces representing two different objects.
A number of authors [4, 8] have studied different methods to allow discon-

tinuities of the optical flow. But most of these approaches require the precom-
putation of the discontinuity points and a specific processing at these points.
For example, equation 4 is used with α = 0., at edge point and with a smooth
increase of α in stationary regions to insure the smoothness of the resulting opti-
cal flow field. In our application, it is impossible to compute these discontinuity
points: on the contrary these points are to be found by use of optical flow.
Naturally, this quadratic regularization is not the only one choice possible.

Its use in most cases is due to its simplicity in computation since searching for
a minimum of E given by Eq. 4 leads to a set of linear equations.
We have defined a new method for constraining equation 3 (see [5] for a

complete description), which is more appropriate since it does not enforce the
optical flow to be smooth but guarantees a unique solution. Figure 1 describes
on the left, the type of real flow fields occurring on an oceanographic front and
on the right, the type of optical flow that would be computed with a continuity
constraint.

Figure 1: Left: Flow field on a temperature front. Right: Optical flow computed
with a continuity constraint.

We are interested in modelling temperature fronts by use of the discontinuity
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property. That is not possible if the optical flow is computed with a continuity
constraint.

Instead of a quadratic regularizer with L2 norm (|u|2 =
∫
u2) we use a

L1 norm (|u|1 =
∫
|u|) regularity constraint. L1 regularizers preserve sharp

signals as well as discontinuities. Another advantage is the ability of this model
to incorporate additional knowledge such as the characteristics of the noise or
the confidence on the stationarity constraint.
We solve the problem of optical flow in the space of functions of bounded

variations in IR2; i.e. the space of functions f = (f1, f2) such that
∫
Ω
|∇f1| +

|∇f2|dx dy < +∞.
Computation of optical flow (u, v) can now be stated as a minimization of

the following energy functional:

∫

Ω

√(
∂u

∂x

)2
+

(
∂u

∂y

)2
+

√(
∂v

∂x

)2
+

(
∂v

∂y

)2
dx dy+

∫

Ω

(Ix u+Iy v+It)
2dx dy

(5)
This energy minimization problem can be translated into Euler Lagrange form:






− ∂
∂x



 ux√
u2x + u

2
y



− ∂
∂y



 uy√
u2x + u

2
y



+ (u I2x + v IxIy + IxIt) = 0

− ∂
∂x



 vx√
v2x + v

2
y



− ∂
∂y



 vy√
v2x + v

2
y



+ (u IxIy + v I2y + IyIt = 0

+ Boundary conditions
(6)

Equations in system 6 are non linear and therefore must be processed in a
particular way by considering the associated evolution equation, or equivalently,
the gradient descend method:





∂u
∂t
− ∂
∂x



 ux√
u2x + u

2
y



− ∂
∂y



 uy√
u2x + u

2
y



+ (u I2x + v IxIy + IxIt) = 0

∂v
∂t
− ∂
∂x



 vx√
v2x + v

2
y



− ∂
∂y



 vy√
v2x + v

2
y



+ (u IxIy + v I2y + IyIt = 0

+ Boundary conditions
+ Initial estimation : u(0, x, y) = u0(x, y)

v(0, x, y) = v0(x, y)
(7)

In [5], a solution of system 7 is described by a finite element method. This
solution is done in two steps, first the temporal discretization of Eq. 7 and then
the spatial discretization. This can be done since the temporal variable t and
the space variables (x, y) are independent.
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3 Motion Interpretation

As explained in the introduction, our aim is to make use of the optical flow,
we described in the previous section, to localize interesting regions that have to
be further modelized. The extraction of higher level description is necessary to
characterize different types of movement.
Different studies have been done on linear phase portrait [9, 6, 7] and their

use for characterizing oriented texture field. Zhong et al [10] propose an appli-
cation of linear phase portrait interpretation of structures in a fluid flow. The
main drawback of this method is that it can handle only one critical point.
This is inconsistent for our application as we can observe different vortices on
the data. Recently Ford and Strickland [11] proposed a nonlinear phase portrait
model allowing multiple critical points, but the model seems computationally
expensive, and not very stable.
In this paper, we propose a new method for approximating an orientation

field and for characterizing stationary points of trajectories obtained from an
arbitrary phase portrait.

3.1 Approximation by a polynomial phase portrait model

Suppose that we wish to approximate our optical flow field f = (u, v) by a
polynomial phase portrait model

g(x, y) =






dx

dt
= P (x, y)

dy

dt
= Q(x, y)

(8)

where P and Q ∈ Qn(IR
2) = {p, st p(x, y) =

∑

i,j≤n

aijx
i yj}.

We fit this model into the original field by minimizing locally an energy
function

S(g) =
1

2

∑

k,l∈W

|f × g|2 (9)

where f ×g denotes the cross product of the two vectors f and g and (k, l) ∈W
is the considered neighborhood.
In the following we show that recovering the coefficients of the two polynomi-

als P and Q by minimizing S amounts to an eigenvalue problem. This approach
represents a major advantage since it leads to a linear problem independing of
the chosen polynomials P and Q.
Let X = (xiyj)i,j=0...n be a basis of Qn(IR

2), we can write:

g(x, y) =






P (x, y) =
∑

i,j≤n

ai,jx
i yj = ΩTaX

Q(x, y) =
∑

i,j≤n

bi,jx
i yj = ΩTb X

(10)
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S can be rewritten as:

S(g) =
1

2

∑

W

(ΩTaXf2 − Ω
T
b Xf1)

2 (11)

Let B = (Xf2,−Xf1)T and L = (Ωa,Ωb), we have:

S(g) = S(L) =
1

2

∑

W

(BL)2 (12)

To obtain the unicity of the solution we add a normalization constraint LTL = 1
and finally the similarity measure between the optical flow field f = (u, v) and
the model g = (ΩaX,ΩbX) is obtained by the minimization under constraint of
S(L):

S(L) =
1

2

∑

W

LT BT BL+
1

2
λ(LT L− 1) (13)

A minimum is characterized by the derivatives equations:






∂S

∂L
= BT BL+ λ L = 0

∂S

∂λ
= 1
2(L

T L− 1) = 0
(14)

which lead to the following eigenvector problem:

−BT BL = λ L (15)

along with the normalization constraint:

LT L = 1 (16)

The vector L, representing the coefficients of the model in a polynomial basis,
is characterized as the eigenvector associated to the largest eigenvalue of the
matrix −BT B.

3.2 Interpretation

After approximation of the optical flow field by a polynomial flow field, it be-
comes possible to characterize some high-level information in the vector field.
In the following we report the classification of fixed points for a linear phase
model and in the general case of polynomial models. Linear phase models can
be used in the neighborhood of fixed points of arbitrary polynomial model as a
first order approximation. Indeed, the behavior is the same as for the first order
approximation (i.e. linear case) except that when the characteristic roots are
pure complex, we have a center or a focus [3]. Nevertheless, the experiments
shown in this paper were obtained with a third order polynomial model (i.e Q3).
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3.3 Linear case

Consider a linear phase model where the polynomials P and Q are in P1(IR
2) =

{p st p(x, y) = a00 + a10x+ a01y}.
The vectors base may be written X = (1, x, y) and the model may be rewrit-

ten: 




dx

dt
= a00 + a10x+ a01y = (a00, a10, a01)X

dy

dt
= b00 + b10x+ b01y = (b00, b10, b01)X

(17)

Once we have recovered at each point the coefficients of the linear model a fixed
point xf can be classified according to the eigenvalues, λ1 and λ2, of the matrix

A =

[
a10 a01
b10 b01

]

, and we obtain the following classification:

• if λ1 and λ2 are real:

– if λ1 and λ2 are distinct and of the same sign, then xf is a node,

– if λ1 = λ2 < 0 or λ1 = λ2 > 0, then xf is a degenerate node,

– if λ1λ2 < 0, then xf is a saddle point,

– if λ1 = λ2 = 0, then xf is a singular node,

• if λ1 and λ2 are complex:

– if Re(λ1) = 0, then xf is a center,

– if Re(λ1) < 0, then xf is a stable focus,

– if Re(λ1) > 0, then xf is an unstable focus.

In the case of a polynomial model, the previous linear approximation holds
in the neighborhood of a fixed point and hence can be used for its classification
but it requires the computation of the fixed points i.e. the solution of a set of
polynomial equations of arbitrary degree. Instead we make use of the index of
a flow field.

3.4 Index of a flow field

Let F = (P,Q) be a vector field defined over a Jordan curve J in the Euclidean
plane, with no critical point on J . The index of F over J is proportional to the
angular variation of the vector F(M) (applied at M ∈ J) as M describes J .
For the system (??), the index over an oriented Jordan curve J is given by:

Index(J) =
1

2π

∮

J

d

(

arctan
Q

P

)

=
1

2π

∮

J

PdQ−QdP
P 2 +Q2

. (18)

A classification of the flow field F can be obtained by computing the index
over a small circle surrounding an isolated critical point. Since it is hard to
compute the stationary points of the system (??), it leads to solve a system

7



of polynomials with arbitrary degree. We have chosen to compute locally the
index of F = (P,Q) over the whole flow field. At each point we consider a circle
contained in the centered window W and we use the following classification:

• The index of a focus, a center or a node is equal to +1,

• The index of a saddle point is −1.

Although this characterization is compendious, it characterizes the most
important structures in a fluid flow field. The index measure computed over
all the flow allows us also to obtain critical points locations without computing
the roots of the system (??). Once we located these points we may use the
linearization of polynomial model at the neighborhood of fixed points to obtain
a complete description of the flow field in these points.
In this approach, we have proposed a two step method based on first comput-

ing an optical flow field preserving motion discontinuities and then fit locally a
polynomial phase model to the obtained field. We could have used a polynomial
model for flow computation [?] and its characterization. Using such a model
has some limitations. Indeed, flow discontinuities and non uniform tessellation
which are two important properties in oceanographic image sequences, cannot
be used with a polynomial model.

4 Vortex segmentation and quantification

Optical flow and polynomial phase portrait methods allows to characterize some
regions of interest. These regions correspond to node and focus points of the
phase portrait model and we will modelize them as vortices in the following.
This modelization is based on the following properties of vortices:

• The region including the vortex is the result of a cold and a warm front
meeting: so it is characterized by an important variation of gray level
values,

• Edge detection within the image shows that a lot of points on the struc-
ture’s boundary have a high gradient norm value,

• Variance calculus with application of hysteresis thresholding, allows to
localize vortex rolls,

• Geometrically, the external shape of the vortex may be approximated by
an arc of a circle.

4.1 Segmentation of the vortex rolls

The rolls of the vortex are small circle-like regions characterized by an important
variation of gray level values. We have chosen to extract them by using the
variance image, which is defined for each pixel of the data image, by the variance
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of a window centered around that point. A window of radius 10 pixels leads to
fair results regarding to the size of the studied phenomena.
Regions of interest are then extracted by hysteresis thresholding of that

image. Thresholding values are automatically computed as corresponding to
the classical 95 percent threshold on the variance histogram.
After this process, we still have to eliminate remaining false regions. We

then use the fact that the regions we are searching for, have a small extension
and have approximately the shape of a circle -or an ellipse with eccentricity
close to −1-. This is done by computing principal directions of the region, and
its extensions along those directions. A simple thresholding on the ratio of these
extensions is enough to retain only good regions.

4.2 Segmentation Model

We modelize vortices by computing their center regions and by an arc of a circle
delimiting their extension. We there use a half of a circle. We then have to
determinate, firstly, the center and the orientation of this arc. This depends on
the type of vortex and we distinguish two main cases :

• Symmetric case : the vortex is made of two rotating regions evolving in
the same way. The extreme points of the arc will be on the axis between
centers of gravity of the two regions, and the center will be the center of
symmetry of the regions.

• Other cases : only one vortex has evolved enough. We then center the arc
over the center of these regions.

The arc must be such that gradient norm is maximal along it. We express
that with the help of the following energy functional :

E(r) =
1

2r

∑
‖∇I(x(r), y(r))‖2 (19)

where r represents the radius of the circle’s arc of our model.

5 Application on oceanographic images

Image processing tools have been applied quite successfully these past few years
in the domain of land cartography. The shapes to be extracted are numerous
and complex (roads, rivers, airports,..). On the other hand, oceanographic
“shapes” have received very few attention up to now. Structures such as fronts
and vortices can often be found on sea surface temperatures images (AVHRR).
These structures may vary a lot with time, and therefore a specific process
is required to detect them. Several problems arise in vortices detection and
tracking :

• AVHRR images represent a huge amount of data to process daily. We then
need to localize area of interest within a wide image, in order to work on
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a smaller one. This suppose that a vortex is never missed, and also that
we minimize the number of false hits;

• a mathematical framework for segmenting the structure within the smaller
image is required ;

• at last, we need a modelization of structure’s shape that allows wide de-
formations.

This paper has focused on the first and the third points above. We will now
present some results obtained on temperature and CZCS images .
We have started our process by a optical flow computation over an AVHRR

image sequence. Figure 2 shows an overlay of the obtained displacement field
on a frame. Some particular flow patterns can be seen over the whole image.
We can distinguish node points, vortex points and saddle points. The purpose
of the motion interpretation explained in section 3 is to localize automatically
those regions. We have used a cubic polynomial phase portrait to classify the
different flow patterns. Figure 3 shows the obtained regions of interest, where
grey regions represent nodes and white regions, vortices.
The geometrical modelization is then applied on a small window centered

on the region classified as vortices points. The maximization of the energy
function described in equation 19 yields on a CZCS image (figure 4), an efficient
representation of the vortex. An overlay of the model on the image data is
shown in figure 5.
Finally, we have applied our geometric model on CZCS image sequence to

characterize the evolution of the spatio-temporal deformable structure. This
variation involves position, extension and geometry (and even topology, if two
vortices merge for instance) as can be seen in figure 6 showing three successive
frames of the image sequence. Those structures have a temporal evolution which
depends on their location, size and the period of the year. We expect to use the
obtained geometric model to characterize their evolution.

6 Conclusion

This paper has presented a global methodology to localize, segment and track
vortices on oceanographic images. We make use of some information on the
physical processes occurring on the images. In the future we plan to:

• reconsider the validity of optical flow equation for different applications :
would it be possible to make use of a different assumption on the variation
of the gray level value?

• compare image processing and geophysical modelling for vortices detection
and tracking in order to study if image processing of dynamic satellite
image may be an alternative way of processing these data for a daily
analysis.
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Figure 2: An overlay of the optical flow field and the corresponding AVHRR
image.
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Figure 3: Interpretation of optical flow by a cubic polynomial phase portrait.
Gray regions represent nodes while white regions represent vortices.
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Figure 4: A CZCS image of the western french coast (given by the OCEAN
project).

Figure 5: Vortex model applied to a CZCS image after localizing vortex rolls
and fitting the arc representing vortex boundaries by maximizing Eq. 19.
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Figure 6: Results obtained on three consecutive CZCS images. An overlay of
the obtained model is displayed on each frame.
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• consider the problem of data fusion. Information coming from Infra-red
data (AVHRR) and color data (CZCS) are highly correlated but contrast
and statistical properties of grey level values vary from one sensor to an-
other. Moreover, the stability of the process is different for the different
types of data.

7 ACKNOWLEDGEMENTS

We thank ACRI company for providing us AVHRR images under a research
contract, and also for giving us information about the data and oceanic struc-
tures. The OCEAN (Ocean Color European Archive Network) project is the
data source of the CZCS images.

References

[1] Brian G. Schunck. The image flow constraint equation. Computer Vision,
Graphics, and Image Processing, 35:20–46, 1986.

[2] Berthold K.P. Horn and G. Schunck. Determining optical flow. Artificial
Intelligence, 17:185–203, 1981.

[3] Solomon Lefschetz. Differential Equations: Geometric Theory. Dover Pub-
lications, New York, second edition, 1976.

[4] J. Aisbett. Optical flow with an intensity-weighted smoothing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 11(5):512–522, May
1989.

[5] Isaac Cohen. Nonlinear variational method for optical flow computation. In
Proceedings of the 8th Scandinavian Conference on Image Analysis, pages
523–530, Tromso, Norway, June 1993. IAPR.

[6] Chiao-Fe Shu and Ramesh C. Jain. Vector field analysis for oriented pat-
terns. In IEEE Proceedings of Computer Vision and Pattern Recognition,
pages 673–676, Urbana Champaign, Illinois., June 1992.

[7] A. R. Rao and R. C. Jain. Computerized flow field analysis: Oriented
textures fields. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 14(7):693–709, July 1992.

[8] H. H. Nagel and W. Enkelmann. An investigation of smoothness constraints
for the estimation of displacement vector fields from image sequence. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(5):565–593,
September 1986.

[9] Ralph M. Ford, Robin N. Strickland, and Bruce A. Thomas. Image models
for 2-D flow visualization and compression. CVGIP: Graphical models and
Image Processing, 56(1):75–93, January 1994.

15



[10] Jialin Zhong, Thomas S. Huang, and Ronald J. Adrian. Salient structure
analysis of fluid flow. In IEEE Proceedings of Computer Vision and Pattern
Recognition, pages 310–315, Seattle, Washington, June 1994.

[11] Ralph M. Ford and Robin N. Strickland. Nonlinear phase portrait models
for oriented textures. In IEEE Proceedings of Computer Vision and Pattern
Recognition, pages 644–645, New-York, June 1993.

16


