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Abstract

We present image analysis and processing tools that can be useful in the ex-
traction of stable and reproducible input data from satellite images for meso-scale .
meteorological systems. The tools used consist of modern geometric machines
capable in quantifying Volterra processes to which the modelled and observed
physical fields are subjected, and filter operations with respect to and coupled to
those Volterra processes. In particular we apply these tools to satellite images in
the visual, infrared and water vapour spectrum in order to retain segmentations
and quantifications of correlated physical fields which in turn can be used in air-
pollution forecast and simulation systems. These physical fields concern the heat
currents due to reflected solar irradiance in the short- and long-wave band. In this
context the analysed and processed radiances serve the estimation of the short- and
long-wave band transmission function.

1 Introduction

The output of air-pollution forecast and simulation systems heavily depends on the
physical principles incorporated into the related mathematical and numerical models.
These principles are normally captured by various conservation laws for the follow-
ing physical fields: air mass density, linear momentum density, potential temperature,
mass fractions or concentrations of chemical constituents of air, fluxes of phase trans-
formations of those constituents, and fluxes of chemical reactions between them. These
conservation laws are in turn expressed in terms of a nonlinear dynamical system with
respect to those physical fields. Such a dynamical system then consists of a system
of partial differential equations and/or integral equations with a set of initial-boundary
value conditions. An important problem related to dynamical systems concerns the ini-
tialisation over space and time of the considered physical fields and their dynamics. An
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initialisation of the system, namely, requires numerically stable and physically repro-
ducible input data representations. Here physical reproducibility of the input data refers
to the more or less independence of those representations under active or passive trans-
formations of the physical fields. Passive transformations concern transformations on
the level of the mathematical model, whereas active ones concern physical transforma-
tions between fields and measuring device (e.g. rotations of satellite around its optical
center or nonlinear scaling of filter characteristics). Given an ensemble of measuring
devices for the physical fields and their dynamics, each with their own resolution and
sensitivity characteristics yielding different primal input data representations for pos-
sibly different meso-scale meteorological systems, the question arises how to retain
(partially) equivalent input and output data representations for these systems. In partic-
ular the initialisation of the input data concerns local as well as boundary information
about the physical fields and dynamics before and during model run.

In order to set stable and reproducible input data for the physical fields processed
in an air-pollution forecast and simulation system various data assimilation procedures
exist among which those based on objective analysis, dynamic initialisation and normal
mode initialisation [1]. In order to improve initialisation of inhomogeneous physical
fields over steep topography a so-called adjoint method has recently been introduced
[2]. All these initialisation procedures aim at generating these data on the basis of
ground, airborn and satellite observations with respect to the physical fields.

In respect to the physical principles underlying air-pollution forecast and simulation
models and the initialisation of their related systems an analysis and processing of the
observed physical fields is indispensable. Image analysis and processing can not only
play a crucial role in this initialisation issue but also in the derivation of other phys-
ical conservation principles by catching more complex processes. The main research
objectives, therefore, in this area of environmental modeling are the development, the
integration and the validation of advanced image analysis and processing tools for air-
pollution forecast and simulation systems.

The imaging tool requirements are subjected to accuracy and computational com-
plexity requirements put forward by a meso-scale meteorological system. E.g., if the
input data representations of the physical fields used by a system should be of a dif-
ferent spatio-temporal dynamic resolution and complexity than the primal input data
representations delivered by the measuring devices reading out those fields, then there
should be tools at our disposal that bring the resolution and complexity of these repre-
sentations in line. These tools should then also be consistent with and coupled to the
spatio-temporal dynamics of air-pollution measured on the ground, airborn or by satel-
lites. In particular we head for developing tools in line with meso-scale meteorological
models, such as GESIMA [3] and REWIMET, capable of generating accurate input
data of various physical fields (for the related system) retrievable from satellite images.
The satellite images in mind are e.g. Meteosat images in the visual, infrared and water
vapour absorption spectrum, and POLDER images providing additionally polarisation
parameters with respect to aerosols.

In order to meet the above requirements we apply a so-called dynamic scale-space
paradigm [4, 5] that combines modern geometry, dynamical system theory and finite
element methods. In image analysis and processing there were developed various scale-
space techniques to quantify the formation of an image [4, S, 6, 7]. Characteristic
for all these techniques is to adopt a certain topology, geometry or dynamics on the
observed image possibly consistent with that of the induced external electromagnetic
field activity. Another feature of these techniques is to filter the coherent image such
that one retains a restoration, enhancement or dynamic ordering of coherent image



structures such as edges. Such filter operations normally result in a data reduction and
compression. The opposite operation is also possible but requires knowledge of the
dynamics of the physical fields on a subpixel level which is in general absent, but gives
rise to a so-called ill-posed problem. How to derive from coarse scale information
about the physical field dynamics a physical sensible splitting process on a lower than
pixel scale will remain one of the outstanding and unresolved questions for the future.
Whether or not the latter will appear to be achievable, the construction of filters or
structuring elements consistent with the induced electromagnetic field activity will still
remain of major importance.

Our paradigm for the construction of filters is data and concept driven. Let us
briefly elaborate on the fundamental principles involved in the paradigm. The past
decade several methods in image analysis have been proposed for the extraction of
physical fields, in particular (apparent) motion fields 8], [9], [10], [11], [12]. All
these approaches are mainly based on the assumption of (point) correspondences [13]
possibly related to integral invariants [11]. The latter requirement of correspondence
or identifiability of spatial configurations is bounded to be violated in general, for a
variation of spatio-temporal resolution properties of a vision system with respect to the
physical fields and non-diffeomorphic transformations of them cause dramatic topolog-
ical chances in the description and interpretation of the spatial sections of the images of
the physical fields. In order to overcome such field analysis problems filtering schemes
of the spatio-temporal images of of the physical fields have been proposed satisfying
field (un)committed scale-space principles [14], [7] and [4]. These schemes do not
intend to guarantee point correspondence, because the inner spatio-temporal scales re-
main always limiting factors and more importantly the scene dynamics certainly cannot
merely be captured in terms of smooth time-dependent spatial deformation fields of one
spatial reference configuration or spatial input image into another. In terms of modern
geometry the dynamics of the physical fields consists not only of a total integrable de-
formational part, but also of non-exact (non-integrable) parts due to the breaking of
symmetries such as rotational or translational symmetry caused by so-called Volterra
processes (insertion and removal processes). Such processes one encounters frequently
in defect theory and gauge field theories [15], [16]. Studying these theories one realises
that the field equations derived from a variational principle may not model processes,
such as defect dynamics that are dissipative in the macroscopic thermodynamic sense,
and occur for open systems [15]. From a mathematical point of view Kadi’s remark
is also true, for in general the evolution equation describing defect dynamics does not -
have a Lagrangian formalism [17]. However, considering a bounded region of the
space-time history of a system a variational approach and a (global) conservation prin-
ciple are still justifiable. The only problem to be tackled in the context of retrieving
suitable input and output data representations then is to derive a consistent similarity
group action ensuring the complexity and resolutions of these data requested by the
system and the user. Updating the spatio-temporal history of the system the evolu-
tion equations of defect dynamics are distorted. This distortion can subsequently be
considered as a manifestation of the updated system dynamics.

The dynamic scale-space paradigm, however, is just developed for obtaining a
multi-scale representation of physical fields on a bounded region of space-time, corre-
sponding to the induced electromagnetic field activity, that is partially equivalent above
some scale for a whole ensemble of slightly distorted images of those fields. These dis-
tortions can be due to fluctuations in the physical fields themselves or due to variations
in which a vision system has acquired the input data (differences in resolution and sen-
sitivity properties, acquisition protocols, etcetera). Our dynamic scale-space paradigm



is based on two insights acquired in biology, computer vision, physics and mathematics
[4, 5, 6]. Firstly, directed and oriented circuits or (path) integrals over a set of physical
observations can reveal the set of rules involved in image formation and so in the in-
duced external electromagnetic field activity. One may conceive that set of rules then
as the primal input and/or output data representations for (meso-scale) meteorologi-
cal systems. Secondly, dynamic scale-spaces of an ensemble of such sets of rules for
slightly perturbed images contain stable and reproducible (partially) equivalent repre-
sentations of this set above some scale. Here scale refers to a particular volume element
spanned by a stencil of pixels, voxels or groups of them operationalising some current,
and used in the creation of the dynamic scale-spaces by sampling, analysing and pro-
cessing the input image with it. Above the mentioned scale the representations are
slightly affected by noise effects, preserve the most salient coherent image structures
such as watersheds, crestlines, edges, plateaus, divides and ridges, channels and ruts,
and defect lines [4, 3, 6, 18].

One of our main goals in this paper is to present our dynamic scale-space paradigm
delivering suitable machines to generate stable and reproducible meso-scale input data
for air-pollution forecast and simulation systems (see (Section 2)). We make explicit
the physical principles underlying the paradigm; we introduce the modern geometric
and statistical physical concepts used in this paradigm for quantifying and qualify-
ing the induced external electromagnetic field activity. Next we point out how our
paradigm can be applied to analyse and process the system output, to compare differ-
ent model setups and to bring observations, models and systems in line (see Section
3.1). The other main goal is to apply the image analysis and processing tools to gen-
erate stable and reproducible input data of the radiance field in the visual, infrared and
water vapour absorption spectrum using Meteosat images (see Section 3.2). We show
how to obtain a multi-scale segmentation of those physical fields controlled by the dy-
namics of those fields themselves. The latter analysis and processing serve various
modules computing the dynamics of different physical fields in meso-scale meteoro-
logical systems such as GESIMA and REWIMET. Especially, the parametrisation of
the heat currents at the model domain bottom and top, i.e., the solar irradiation and the
blackbody’s radiation of the atmosphere’s boundary layer, are addressed for they di-
rectly influence all other modules in the system, e.g., the momentum transport module.
The analysed and processed radiances observed by the satellite are intended to be used
for the computation of of the transmission functions in those wave-bands to be fed into
the system.

2 Dynamic Scale-Space Paradigm

We treat our dynamic scale-space paradigm that is (un)committed to the induced image
formation, i.e., a paradigm that listens only to the geometry of the vision system or in
addition also to the induced dynamics on the vision system inflicted by the external
electromagnetic field. A proper description of this geometry and dynamics is indis-
pensable before a well substantiated image analysis and processing can be carried out
that retrieves stable and reproducible equivalence relations of of the input image, i.e.,
properties of the image invariant under a specific transformation group.



2.1 Initialisation of Equivalences

Let us first mathematically model an image I as a mapping of a vector-valued energy-
density field (current) of the external electromagnetic field activity M onto a vector-
valued density field for the activity IV of the vision system:

Definition 1 An image I is defined by a mapping:
I:M— N,

where M is a possible state of the external electromagnetic field and N is a possible
state of the vision system.

In the above definition M is the present external electromagnetic field activity fallen
onto the vision system, whereas IV can be conceived as the induced vision system activ-
ity given the transducer-mapping I. The above image can be a superposition of several
other images of physical observations. The camera system could, for example, analyse
the fine structures of the energies as function of the frequency of the light fallen onto the
set of detector arrays [19], as function of the chirality (left- or right-handedness) [20]
and/or as function of their polarisation states both energetically and angular-temporally
[21]. It could perform such measurements for a temporal sequence of stereo-images
Iy, and Iy, In this context the bi-reflective distribution function [21] does not need to
satisfy any symmetry relations. Furthermore, the perceived geometric and topological
equivalences of these fine structures of an image depend on the illumination field, re-
flection and absorption properties of surfaces and media between sources and surfaces
and between surfaces and camera system. A

Now our dynamic scale-space paradigm is based first of all, as mentioned in the
introduction, on the derivation of a set-of equivalences of the image (Definition -I)
that are invariant under a gauge group, a group of transformations freely acting on the
underlying physical-objects being the vision system and the external electromagnetic
field activity. E.g., the sensitivity and resolution properties together with the view
of an ensemble of vision systems may be different asking for adaptive analysis and
processing of the primal data such that weakly equivalent input data representations
can be realised.

Definition 2 A gauge group on image (Definition 1) is a group of transformations of
the external electromagnetic density field M, the mapping I and the system density
field N.

A discretisation of image (Definition 1), i.e., a sampling of the vector-valued energy-
density field NV, invariant under such a gauge group can be obtained by aggregates
of detectors satisfying related discrete gauge symmetry group requirements. Among
the gauge groups considered in computer vision and mathematical morphology are
[4,5,6,7, 18}

¢ Groups of Euclidean movements: the semi-direct product of the translation group
and the rotation group on 'Euclidean space,

s Groups of (unimodular) affine movements: the semi-direct product of the trans-
lation group and the general linear group on (unimodular) affine space,

¢ Groups of projective movements: central perspective transformations of planar
objects onto planar imaging domain can be covered by the projective group on
the plane,



» Groups of Galilean movements: the semi-direct product of the group of temporal
shifts and the group of Euclidean movements,

¢ Groups of Lorentzian movements: the group of spatio-temporal transformations
preserving the Minkowski metric ds? = dz? — dt?,

¢ Groups of anamorphoses or homotopies: the product of the group of monotonic
spatio-temporal homogeneous grey-value transformations, and one of the classi-
cal groups above,

¢ Groups of diffeomorphisms: groups of image deformations in a spatio-temporal
as well as a dynamical sense,

o Groups of similarity transformations or scale transformations: the groups are
defined by a spatio-temporal exchange principles for image equivalences of A,
N and I, that are captured in terms of a system of partial differential and/or
integral equations (the similarity solutions form solutions of the related Cauchy
problems) (see Section 2.2).

The action of gauge group G on M, N and I then can either yield, as discussed in the
introduction, a passive or active transformation of the induced state of the vision sys-
tem /N and of the derived observations. Passive transformations concern then mainly
deformations of the mathematical representation of N, M and I, whereas active trans-
formations include non-diffeomorphic transformations of them. Except for the last
group of transformations above all the other groups generate passive transformations.
However, most of these groups are also active but can readily transformed into passive
ones. The similarity group, however, consists of active transformations (morphisms)
of the image that cannot be viewed as deformations of an initial image, i.e., M, N and
1. Besides that active transformations are caused by a particular image analysis and
processing paradigm carried out by the vision system, such as a similarity group ac-
tion, they can also come about by an (discontinuous) inhomogeneous Lie group action
on M, N and I due to morphisms of the resolution and sensitivity characteristics and
position in space-time of the vision system, and due to perturbations of the external
electromagnetic energy density fields. Groups of similarity transformations, however,
allow us to forget partially about morphisms caused by such perturbative active trans-
formations, and to cling to the relevant induced external electromagnetic field activity.
For our purposes we consider in the sequel the Galilean transformation group and the
groups of similarity transformations consistent with the former group. A reason for our
choice is that in meso-scale meteorological modelling the conservation of total energy
or heat (conservation of heat currents) within a closed region of space-time is one of
the basic principles used to formulate a heat module in a related system.

The above mentioned equivalences of the (induced) external electromagnetic field
activity come about after setting up a so-called frame field, metric and connection
consistent with a specific gauge group (Definition 2). In the following we present these
geometric attributes to arrive at gauge invariant physical objects represented by the
induced external electromagnetic energy density fields N to be used in the dynamic
exchange principles proposed in (Section 2.2).

The product space of M and N in image (Definition 1) can be associated a frame
field [4, 5, 6]:

Definition 3 A frame field (v,) = (i, e;, k) is a realisation of a section of the tangent
bundle T (M x N of the image (Definition 1).



By exponentiating the frame vector fields z;, e; and I} one obtains a parametrisa-
tion of space-time occupied by the vision system and a parametrisation of the dynam-
ical aspects perceivable by the vision system. The first two sets of frame vector fields
form a section of the Galilean group on space-time. Besides a frame field there’s also
realised a differential frame field to operationalise the observations through the frame
fields.

Definition 4 A differential frame field (dv®?) = (dz*,de’,dl*) of frame field (Defini-
tion 3) is a section of the cotangent bundle T*(M x N on the image (definition 1).

A frame field and its differential counterpart then satisfy not necessarily a duality
constraint:

Definition § A frame field (Definition 3) and its differential counterpart (Definition 4)
are their duals, if and only if:

d’()p(’l}q) = 55)
where § is the Kronecker delta-function.

In order to relate and compare local states of the vision system besides a frame
field (Definition 3) and its differential counterpart (Definition 4) also a metric g and a
connection I are quite useful [4, 5, 6]:

Definition 6 A metric tensor g is a (non-degenerate) bilinear form on T'(M x N) such
that : :

9(vp,vg) = Opq,
where 6 is the Kronecker delta function.

Note that in a particular reference frame, e.g., a global Cartesian coordinate frame
the components of the metric may still be functions of coordinates (external observer),
whereas on the level of the frame field (Definition 3) these space dependencies are not
felt (internal observer).

Definition 7 A connection I on image (Definition 1) is defined by one-forms o, on the
tangent bundle T(M x N):

Viv, = ol ®uvg o%v) €K,

where ® denotes the tensor product, and V' is the covariant derivative on image
(Definition 1), and K a field of scalar numbers representing physical observations such
as energies and rotations.

Here the covariant derivative operator V! is equivalent to taking an adapted differ-
ential operator d without specifying yet the frame vector field in the direction of which
this derivative is taken. The covariant derivative of a tensor ¢ of type (k, ) yields a new
tensor of type (k,[+1). E.g., the frame vector fields in (Definition 3) are lifted to (1, 1)
tensor fields that yield a representative of the Lie group action only after insertion of a
the frame vector field into of. Now the component functions ¢, .. of the covariant



derivative operator V with respect to frame field vector v, of a tensor ¢ of type (k, )
are given by:

! k
... U} — Up... Uy UL U 1 PUs 41+ U P Us UL .U ¥y
tvl...vk;r - Urtul...vk + Z tul...u: ‘ Fr;) Z tvl...v,_1pvr+1...karu,.‘
s=1 r=1
where I'?, are so-called connection coefficients to be made explicit shortly.

In general the metric g and the connection I" are assumed to be compatible with
each other [4, 5, 6].

Definition 8 The connection (Definition 7) and the metric (Definition 6) are compati-
ble if and only if:

vig=o.

This means that, e.g., the angles between and lengths of vectors measured by the met-
ric tensor g under the parallel transport associated with the affine connection I' are
preserved. The advantage of having no compatibility is that one can detect possible
mass-creation in terms of dilation, shearing and rotational curvature currents [4, 5, 6].
These energy creation currents can be derived by setting up a field dependent classical
metric-connection on space-time and consider the evolution of the curvatures of a field
dependent connection not necessarily compatible with the former metric and compute
the energy creation currents by means of equivalences, to be introduced shortly, with
time running.

If the metric g is, however, compatible with- connection T, then the connection
coefficients I'}, are'normally assumed to be set by the metric (see also (Example 3) for
" an affine-metric connection that is not torsion-free):

: 1
F;q = §grs (Upgfls +Vegps — 'Usgpq) .

At discontinuity, singularity and bifurcation sets of an image (Definition 1) physical
observations are path-dependent. Let us clarify this path-dependency by first selecting
a two-dimensional surface S, parametrised by u* = u¥(d,§), on the set of energy-
states of the detector array, i.e., the jet 77V (I) of the image, and by taking § and h as
vector fields generating an infinitesimally small circuit ¢ = (pop1p2pspo) around p
in S. Next let us study the frame field V = (e;) consisting of a set of independent
physical observations e; such as the image itself or the covariant derivative VI of
the image. Now let us quantify the variation of frame field V at point py along path
C = (pop1p2pspo) with respect to the local frame Vj,, (see figure 1).

Figure 1: A closed circuit C' = (pop1p2pspo) on S and the frame field V' along the
upper part and lower part of circuit C.



In general the local frame Vj, is not equal to local frame Vj,,. The change of
the frame field along the upper part Ct = (popsps) of the circuit C' generated by
(dg)(6h) and its lower part C~ = (pop1p2) generated by (67)(dg) defines curvatures
®; of the physical observations e; at the point p on S [22, 16, 5]. In order to quantify
the formation of the vision system itself and the induced external electromagnetic field
activity, in our dynamic scale-space paradigm, curvatures V; of frame field (Definition
1) are read out.

Definition 9 The curvature V; of a frame vector field in (Definition 3) at point p on a
two-dimensional surface S parametrised by frame field ( Definition 3) is defined by:

Vi(p, S) = f s
C

where the sense of traversing circuit C is chosen such that the interior of the circuit C
on surface S is to its left.

Note that on S at point p one can still distinguish directions but that Cartan’s affine
transport is actually directed [4, 5, 6]. The latter directional aspect is in many text-
books on differential and integral geometry neglected or obscure [22]; forgetting about
it leads naturally to an unwanted averaging of morphisms. Furthermore, that the vision
system is in general gauged for his own internal topological, geometric and dynamical

- intricacies; whether the system is initially in any sense curved or twisted only partly
influences the analysis, processing and interpretation of the induced external electro-
“magnetic field activity. Clinging through the induced dynamics suffices to forget or to
correct those intrinsicacies.

Using Stokes’ theorem curvature (Definition 9) can be expressed as:

W S)= [ 9 avu= [  Olu,
CoCS CocCS

where C is the interior of the circuit C in S, VT A the covariant exterior derivative in
which A.is the wedge product consistent with metric g and/or connection I, and O?
represent the curvature two-forms. These curvature two-forms also pop up in the (Car-
tan) structure equations in case of a differential geometric treatment of the curvature of
a connection [6].

In defect theory [15, 16] the above curvatures are known as so-called Burgers and
Frank vector density fields for the inhomogeneity of the translation group action and
that of the rotation group action, respectively (see Fig. 2).
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Figure 2: To the left: Burgers vector density field b due to a screw dislocation caused by
a displacement field u parallel to defect line L. The underlying Volterra process breaks
the cubic lattice symmetry by creating a cut line. Traversing a circuit C around L one
returns to the initial cubic lattice to the starting point, whereas in the defected lattice
one ends up being Burgers vector b from the starting point. To the right: Frank vector
density fields §2 due to a wedge (a), splay (b) and twist (c) disclination. The underlying
Volterra process breaks the cubic lattice symmetry by cutting from or opening the initial
cubic lattice segments along Volterra surfaces S and applying a specific rotation {2 with
respect to defect line L in order to connect the surfaces S or to twist them to each other.

From these curvatures we can in turn derive higher order curvatures Vi, ..j, by
taking successively covariant derivatives V,, with respect to frame vector fields vj, .
Together they form locally and directionally equivalence relations that quantify the
formation of the vision system, and that of the induced-external electromagnetic field
activity.

Equivalence 1 The local and directional equivalences of the formation of the vision
system and those of the induced external electromagnetic field activity are given by:

_ ol r 1
Vi;j1--~jk - VUJ-k Teeet vv,-lvl’
where ; indicates taking a covariant derivative (see also (Definition 8)).

If there are some symmetries, such as those of rigid Euclidean movements, under-
lying the formation of the vision system and the induced external electromagnetic field
activity, then it can be valuable to try to find the irreducible equivalences [22]. (Equiv-
alence 1) allows the quantification of the homogeneity of the formation of the vision
system and the above induced activity [4, 5, 6]. They can be used to locate coherent
structures, as we’ll demonstrate in Section 3, in either the system or its induced activity.

If one considers a set of circuits, {C}, on a set of related surfaces, {S}, through
point p, then (Equivalence 1) at p satisfies obviously a local conservation law (super-
position principle) such that the directional information is obsolescent.

Equivalence 2 The local equivalences of the formation of the vision system and those
of the induced external electromagnetic field activity are given by:

‘/i§j1--~jk (p7 {S}) = Z V'i;j] . (pa S)a
{s}

being total curvatures of the vector fields v; in frame field (Definition 3) over the set of
surfaces, {S}, each of which contains one corresponding circuit C, through point p.
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The integral geometric conservation laws (Equivalence 1) and (Equivalence 2) ap-
pearing in differential geometry as Bianchi identities (curvature and torsion two-forms
form together with the metric, connection and frame field a closed system sufficient and
necessary to capture any local equivalence) applies in particular for dislocations and
disclinations, i.e., Volterra processes inserting or removing coherent image structures
(see Fig. 2), in which one averages Cartan’s affine transport over all possible patches S
to quantise the formation of the vision system or the induced external electromagnetic
field activity at interfaces between regions with different formation aspects. In the case
of dislocations and disclinations a superposition principle holds that coincides with the
well-known law of Kirchoff for electric currents in a circuit [5].

(Equivalence 2) can be complemented by a global conservation law for a region U
on the vision system.

Equivalence 3 The global equivalences of the formation of the vision system and those
of the induced external electromagnetic field activity are given by:

Vi3 ({8}, 0) = /U Viss.oin (02 {S)AU,

in which U is a region on N not necessarily of constant dimension nor simply con-
nected to point p.

An important property of a physical object F' related to a gauge group G and the
induced external electromagnetic field activity NV is its invariance under this group.

" Definition 10 A physical object F is invariant under the gauge group G if and only if:
GF =F.

All above meﬁtioned geometric objects are by definition unaffected by the gauge group
G. -

Theorem 1 The frame field (Definition 3), its differential counterpart (Definition 4),
metric (Definition 6), connection (Definition 7), and equivalences (Equivalence 1),
(Equivalence 2) and (Equivalence 3) are invariant under gauge group G.

Example 1: Polarisation It is well-known that the observation of an energy by a
detector is not affected by the observation of energy by another detector, whereas the
brightness is. The brightness of a white object within a black background and that
of the same white object within a grey background are different. Furthermore, the
brightness of a white object within a black background and that of the black background
surrounding the same white object are as well different.

Several energy to contrast models exist among which a logarithmic one that also
appears in Weber’s law. This law states that, if the energy I, of an object is just notice-
ably different from the energy I, of its surrounding, then the following ratio p should
be constant:

|Is _IO|

E
T TI" <) LTI,

p=Alogl =

where T is the total number of detectors in the set of arrays. Let us assume that this We-
ber law is applicable to our image (Definition 1). The image then consists of a finite set
of objects with total energies I,. Let us consider the objects with energies I, and ;41

11



that touch each other and are simply connected regions on the set of detector arrays
(the restriction of adjacency and simply connectedness is not compulsory though).

Now let us define the brightness-function for two objects labelled by k and k + 1
as follows:

Bipy1 = [log i + Apkir log 1],
in which
Iy — I,
Dppyrlogl = %
&

is a generalisation of a contrast-function (well-known in almost any field of exact sci-
ence as a so-called Weber-fraction). One could also conceive each sequence of the
contrast function as coupling constants between objects (see also Section 2.2).

Both the brightness- and contrast-function we conceive as two-point functions de-
pending on both the objects’ energies and their order (kk + 1). The contrast function
determines the energy change between the objects relative to one of the energies. Thus
one knows exactly how to construct both objects energetically from each other. The
energy-change |I; — I5| has only meaning at the interface between the objects and rel-
ative to the energies I; and I, going from the first object to the second and vice versa,
respectively. Let us now take for each order (k& + 1) the contrast function as frame
field v.

Computing a curvature (Definition 9) related to frame field v one experiences at
the interface of two objects with energies 1 and I a jump going from the first to the
second object given by (see also Fig. 3):

-1 1 3]

/ = =L -L)| =+ =)d I ® —.

! ,}{va (I 2)<II+I2) T Ad ®8I

At discontinuity sets such as edges between objects this oriented physically dimen-

sionless curvature, i.e., a polarisation of the induced electromagnetic field activity, is

considerably higher than at the interface between objects that differ only say I¢ in
energy.

Figure 3: Circuit integral around C reading out polarisation V.

Given V' # 0 at discontinuity sets the question arises what will happen with its
value at junctions in a temporal slice of a (2, 1)-dimensional image. On the basis of
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superposition principle (Equivalence 2) this curvature will be just the sum of curva-
tures over the pairs of objects having a common interface ending at the junction. The
latter result is from a geometrical and topological point of view quite disappointing
as one rather would like to point out differences between different junctions that have
by coincidence equal curvature. The reason for this is, as mentioned above, that the
circuit integrals are located by point p within the interior of C of S [22]. Applying
Stokes’ theorem seemingly sums the curvature information and apparently projects a
sequence of geometric and topological quantum numbers onto one number. Therefore,
we introduce directed circuit integrals with the initial point pg and the endpoint p; lo-
cated, and determining the direction of a vector p; — po. In general we obtain a set
of circuits parametrised by a unit vector on a hypersphere X that enables to read out
the geometric curvatures V' in any direction (see also half-space method in [S]). This
hypersphere may live on a subset of the tangent spaces to the image. Doing so one can,
e.g., determine the valency (a topological curvature) of a junction, i.e., the degree of
a vertex on a graph, in a two-dimensional grey-valued image on the basis of the num-
ber of jumps occurring in curvature V' around the junction. The valency changes in a
natural manner over the discontinuity set. At end-points the valency is one, between
end-point and junction it is two, at the junction it is just the number of components of
the discontinuity set arriving at the junction and elsewhere it is zero.

Example 2: Phases Performing again a directed circuit integral but now with respect
to the already found curvatures allows us to measure the coherence, homogeneity or
inhomogeneity in the image formation. The curvature or just the covariant derivative
(be aware of the direction!) of curvatures allows us to quantify coherency measures for
image structures among which textures [5]..For example, a change in polarity between
the curvature V- at the interface of the objects {abelled by k and k + 1, and the curvature
V at that of those labelled by k& + 1 and &k + 2 indicate in relation to the sense of the
circuit the presence of non-isolated singularity sets, crest lines of the image gradient
field, watersheds, divides and ridges, channels and ruts, and defect lines. Thus the
number of changes of polarity (a topological curvature) of the curvature V' refines the
dynamic quantification of the image formation. Note that the superposition principles
(Equivalence 2) and (Equivalence 3) also hold for these refined topological and geo-
metrical quantifications. Furthermore, that at a bifurcation in a spatio-temporal image
these quantifications can be achieved again by performing directed circuit integrals of
the frame field V'° but now carried out on an infinitesimally small sphere around the bi-
furcation. Conceiving the valency of a point as a kind of local topological dimension of
the discontinuity set, it is clear that the discontinuity set can be of non-constant dimen-
sion. Last but not least, instead of the energies of the objects also other properties such
as elliptic moments, orientability and Euler-Poincaré characteristics [5] can be used to
quantify optic flow and non-integrable deformations of the image caused by splitting
and merging processes [5]. Extending this all to a stereo pair of images one can define
a topological-geometric current to match the pair of images [5] (see also Section 2.2).
Let us to conclude consider a two-dimensional grey-valued image I:

I{z,y; xo,y0) = R[Vz — 202 + 20), 2 =2 +1y,20 € C.
Choosing as frame field v:

VI

*T v
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the curvature V' becomes:
2v if (z,y)€Q°
V=¢ v if (z,9)€8Q
0 if (z,9)¢@Q

where () is the so-called branch cut of the image gradient v (see figure 4).

Figure 4: Image I with branch-cut discontinuities on @ for V.

In order to retain global equivalences it is crucial to extract coherent structure be-
fore applying the superposition principles mentioned in Section 2.2. Fortunately, the
circuit integrals are directed and the circuits in a discrete setting do not need to be
taken infinitesimally small. One can assess at a vertex, junction or bifurcation whether
a set of topological and/or geometric equivalences along a certain component of their
discontinuity or singularity set is satisfied until one reaches a next vertex, junction or
bifurcation. Repeating the same procedure at those new physical objects along other
components than already examined for a certain property, one can start connecting
equivalent components. For example, take a two-dimensional topographic image sub-
jected to a gauge field group (Definition 2). Computing the image gradient field it is
clear that the essential physical objects of the transformed image that can also be traced
in the original topographic image can be obtained by measuring whether the polarity of
the image gradient is consistently changing along paths in the imaging plane. Whether
a component of a discontinuity set or singularity set in a region is a ridge or rut can sub-
sequently easily be verified by measuring the lengths and the increment or decrement
in the grey-values between begin and end point on each component, and ordering them.
Note that this assumes a well-defined ordering of the components of the singularity set
[23, 5], and that this ordering is not influenced by the gauge field transformation which
in general destroys these ordering relations. The latter destruction of the grey-value or-
dering caused by a general gauge field transformation shows that physical objects such
as crest lines, ridges, ruts and plateaus strongly depend on a certain dynamic ordering
(see also Section 3.2.2. The latter dependency does not imply that grey-values are the
only physical objects that can allow a topological classification of grey-valued images
in terms of crest lines, ridges, ruts, plateaus and alike. Even if true gauge field transfor-
mations are allowed, then still it is possible on the basis of the regions partitioned by
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the net of crest lines, etcetera, to achieve a topological classification for these regions.
For example, the topological or geometric properties of the net or those regions, re-
spectively, can be used to define grey-value like entities not affected by the gauge field
transformation of the grey-valued image. Subsequently, again crest lines, ridges, ruts,
plateaus and alike can be conceived but now for these more complex physical objects.

Example 3: Torsion and Curvatures Tensors In the sequel we compute the torsion
and curvature tensors involved in the formation of a (2, 1)-dimensional spatio-temporal
image I of a density field M. We assume that the gauge group G to consist of the group
of Galilean transformations in space-time and the group of spatio-temporally homoge-
neous and linear density field transformations (where the Galilean group does not affect
the density field). The fundamental physical object N that is invariant under G is the
set of dynamically ordered isophotes together with the corresponding flowlines. Con-
sidering space-time as a regular square grid and temporally equidistant lattice, one can
conceive image I as a singular transformation of Galilean space induced by the density
field. Furthermore, the group of singular transformations = generated by G can also be
viewed as a representation of the fundamental physical object itself.

With respect to a vision system, modelled as a manifold parametrised by coordi-
nates z and endowed with spatio-temporal frame field e, a Galilean metric g (having
components g, = g(ep,eq)), a flat and non-twisted connection (I' = 0) and a lin-
ear sensitivity profile for the density field, the fundamental physical object IV can be
concisely modelled as a manifold parametrised by singular coordinate transformation
£ = £(z) of Galilean space and endowed with an affine frame field ¢, and a metric-
affine connection (v, Z). All the above three fundamental physical objects, to be made
explicit shortly, are induced by I. o '

The induced affine frame field € in terms-of that of the vision system and the differ-
ential structure of I reads:

- P
€a = epef o (z),ef, = %

Subsequently, the induced metric tensor -y is assumed to have components vy, deter-
mined by the induced frame field e and the metric tensor g of the vision system:

Yap = 9(€ar€8) = € o€pp: €98 = Gpe€’ -
At the non-degenerate points the following orthonormality relations hold:
6, %€ g = 8%, P ue, =67,

In order to determine the connection = we write the components of ordinary gradi-
ent of a vector field v = (vp(z)) in the Galilean frame field e in terms of the singular
frame field e:

81) « =
—a;% = Gp €qﬁv'3'()a,
with
= ov e, ov
z, _ Y% v o — e v
Vigue = B¢ (e,, 8§ﬁ>1}7 = 5eb L Vs
where
OeP
Tga' = 6" 0¢s
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are the affine connection coefficients of =.
Now it is readily shown that the covariant derivatives of €4, €* and « vanish locally
(even when the reference system is curved and twisted):

Va€® =0, Ve =0, Voy =0,

guaranteeing the compatibility of the connection Z with the metric +.

Studying the symmetry relations for the metric-affine connection (y, Z) by setting
up the Cartan structure equations (see (Definition 9)) it appears that the affine connec-
tion I' can be decomposed into a symmetric part S and a skew-symmetric part 7

I=8+T,

with components

g 7 = 1 5 (0vss + 0725 07ap
aff 2 oL & o¢s )
1
TO(,@’Y = E(Faﬁ’y - Fﬁaﬁy).

Here T defines the torsion associated with the metric-affine connection (v, Z). If the
torsion tensor vanishes identically then the metric-affine manifold N is called a sym-
metric or Riemannian manifold, else an Einstein-Cartan manifold. Besides establishing
the torsion tensor 7 the Cartan structure equations also determine the components of
the curvature tensor R associated to the metric-affine connection (v, E):

R,5.0 = egl

aBy

§ 8 ) )
ay ~€algy’ +TayTes” = TpyTea”

with symmetry relations:

5 & _ Y
Raﬁ"/ - —Rﬂav - _Raﬁé :

Note that these symmetry relations are different from a manifold with a general con-
nection = not compatible with a metric 7. Furthermore, that the components "

are related to the so-called torsion and curvature two-forms, Q¢ and Q4 (see Stokes’
version of (Definition 9)):

0 = Tﬁwawﬂ/\uﬂ,

08 = Ra,ﬂ;ﬁuﬂ AW
where w® are the connection one-forms associated to =.

Now we are ready to set up the reference frame field e, connection one-forms o
and o;'- and those for the physical object IV induced by the density field represented by
image I.

For the vision system we choose simply as frame field e, Galilean metric g and
Galilean connection I' given by:

@ = (o500 25)
zt’ 0z2’ dx3 )’

g = dzt®dgt,

(o) = (dz',dz®, dz®),

() = 0,
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where 2 is the time coordinate.

For the induced physical object NV such a choice is far from trivial, because iden-
tifying moving non-rigid spatial objects in Galilean space can only be achieved by
inflicting some kind of projection field [5]. Nevertheless, assuming sheer deformations
before topological or morphological transformations, approximate velocity or momen-
tum fields can be derived (see also Section 3.2.2). Here, however, we advocate the
following induced frame field € given by:

(ea) = 8logli Blogli Ologl &
Y\ 0s? s’ 0s? 8s2’ At Ot)’

where s! and s? are the Euclidean arclength along the isophotes and flowlines in the
spatial segments of the image I, respectively. Here the vector fields 8/9s® with @, 8 =
1,2 are oriented, orthonormal and represented by:

o _ VEﬁ/\IVF

Os! verr =«
r

0 Vel or

0s? Vel

with
Vs 1)l = /9(VE, I,V I).

The reason for this choice of induced frame field is that it forms a physical object
invariant under the imposed gauge group G (scaling effects of density field are incon-
sequential for the field analysis and processing). .

The connection one-formsw® are retained on the basis of the duality constraint,
w(eg) = 5. The remaining connection one-forms wg come about by the definition
of the affine connection, VZ¢, = wgeg. However, the connection coefficients E5y
already suffice to compute the induced torsion and curvature, What is really needed for
the derivation of those coefficients are the components of the following matrix E:

dlogl _ dlogl 0

1
_ | % a8
EONE 3
O Blogl
Ox3

The connection coefficients ZF, can then readily represented by:

(Ep)%, = (eglogE)®,
= (E—léﬂE)a,y.

We observe that, because of the fact that the Euclidean curvatures and the higher
order differential structures of the density field represented by I on flowlines deviates
from those on isophotes, the induced metric-affine connection is associated a non-zero
torsion and curvature with components in terms of the induced reference frame given
above. If the the induced spatio-temporal frame field €3 would also have some kind of
momentum field part (retrieved by following coherent structures over time [5]), then
there would also appear true spatio-temporal torsions and curvatures.

We also reckon that by the requirement of the duality constraint essential singular-
ities are introduced at those locations where the frame vector fields ¢, are branching
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[6]. Such singularities are in fact artificial and would not occur if the duality constraint
would be replaced. By imposing the connection one-forms w® to have the same com-
ponent functions as the frame field ¢, the connection and its associated torsion and
curvature will never become essentially singular at physical objects. If the gauge group
G would include also anamorphoses, then another gauge invariant frame field would
be required and the corresponding connection would again become essentially singular.
Although this singular behaviour would then not be removable for continuous images
it would be unnoticeable for discrete ones. In case we locally assume space-time to be
modelled as a Minkovski-space, the above statements still hold.

In order to obtain stable and reproducible physical field representations of the solar
irradiance field in Section 3.2 we partition Galilean space-time by considering phases
of the induced frame field (see also Example 2). The above found curvatures integrated
over cells then become physically sensible representatives above some dynamic scale.

2.2 Exchange Principle for Equivalences

In order to extract from image (Definition 1) a stable and reproducible set of equiva-
lences despite perturbations in this image or defects in the vision system’s layout or
dynamics there exist a possibility to derive a dynamic scale-space paradigm committed
to the connection and metric living on the image of the induced external electromag-
netic field activity [4, 5, 6]. This can be achieved by coupling the exchange principles
intrinsically to the vision system’s geometry and to the induced activity. Essential
in these principles are the assessment of the topological interactions activated on the
vision system. These interactions can be operationalised by the vision system as a
topological current. o 7
For all irreducible equivalences a committed ordering of the the activated vision
system can be succinctly formulated through the use of a statistical partition function
Z related to free energy F' for (Equivalence 1), (Equivalence 2) and (Equivalence 3).

Equivalence 4 The statistical partition function Z related to free energy F for irre-
ducible (Equivalence 1), (Equivalence 2) and (Equivalence 3) of the formation of the
vision system and those of the induced external electromagnetic field activity is defined
by:

7= Z Hexp [-F [Vi(2)]],

V a,i

with

F[‘/l(m)] = —IOgZ = Z d,UP (f)i;?rk(gl..‘gk)(zaTi;ﬁk(gl...gk))> *
i,k,p

where z labels any state of a detector of the set of arrays giving field V, my, a permu-
tation of a sequence of k > 0 integers (g1 . .. gr) with k = 0 for labeling frame vector
Jields vy, and To.x, (g, ...g) (inner) scale-parameters consistent with the gauge group

G and the equivalences Vi, (g, ...gx)-

Note that all equivalences are incorporated in the partition function Z by taking all
products of equivalences Vi;m(gl...gk) that reside in (Equivalence 1), (Equivalence 2)
and (Equivalence 3). Thus one ensures that curvature aspects of Volterra processes are
operationalised through an additional weight in free energy F via Vz’;n(gl...gk)- One
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could in this context conceive the partition function and its constituting factors as mea-
sures of complexity of the induced system activity. Furthermore, that each component
of each density vector field (a finite sequence of topological and geometric numbers) in
the local partition function Z(z) forms a factor in the total statistical partition function
Z. Last but not least, realise that for each polarisation direction and path one should
compute the associated factor in the partition function. Each component of the ten-
SOr Vi, (g1...95) determines a factor in this function. One could equally well apply a
probability argument for yielding configuration V. E.g., in the case that curvature V; is
parallel to v; has a lower probability than that it is antiparallel (recall that Z and Z(z)
can be used to define probability measures for field configurations V).

Because the redistribution of states/currents of a vision system should be inde-
pendent of the topological, geometric and dynamic intricacies of the vision system at
ground state the standard approach is just to operationalise a gauge invariant frame
field, metric and connection supported by the vision system but induced by the exter-
nal electromagnetic field activity. Note that in these parametrisations it becomes for
certain gauge groups still indispensable to apply the related Lie group to the frame
fields. Doing so and using related integral measures, allows us to retrieve the necessary
equivalences. This situation occurs in wavelet theory as well as mathematical morphol-
ogy [7]. It’s clear that this approach has a computational drawback residing in the fact
that a overcomplete set of kernels is needed to analyse and process images. Only in a
globally Euclidean, Galilean or Lorentzian setting those scale-space paradigms can be
of equal computational costs as the induced dynamic ones [4, 5, 6, 7]. E.g., in the full
globally affine case a suitable measure for identifying equivalent grey-valued image
details is obtained by considering affine invariant structures in the two-jet. An analysis

“and processing of this primal image data is then carried out most effectively and in a
concise manner by applying an affine geometric flow with respect to this data [4, 5, 6].

Besides the induced gauge invariant canonical parametrisation of space-time and
dynamics also a topological interaction is needed to ensure an evolution towards a
hierarchy of partially equivalent states of the vision system for an ensemble of induced
external electromagnetic field activities that are slight perturbations of each other. This
topological current is in our dynamic scale-space paradigm [4, 5, 6] brought about by
the statistical partition function (Equivalence 4). Studying two local factors Z (p; ) and
Z(p2) in the statistical partition function going from state p; to state p; involves a
factor k(i, §) to generate Z(p;) from Z(p;), whereas going from p; to p; requires a
factor K (i,7) (assume k < K) to generate Z(p;) from Z(p;) (such that kK = 1, i.e.,
the notable Artin-Whaples formula in disguise). Realising that the interaction can only
be defined through the interactions between detector states, it is more than reasonable
to let a topological current between states p; and p; to be controlled by the partition
function Z" for two-state interactions capturing all the possible couplings between the
states of all pairs of detectors:

z = [T 2 = [T (K200 - [ ot (Pip) - Pl

i#] i#j i#j

Note that these interactions between two states do not exclude long range forcings as
Z(p;) already incorporates (also instantaneously) such field properties.

With this two-state coupling partition function, Z", there’s associated also a two-
state coupling free energy F'":

Fr=—logZ".
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Assuming the vision system to be a closed system for a particular region of space-
time realised on the vision system, then the change in the state of that part of the
vision system in order to dynamically scale the acquired image should be governed
by a change in the two-state coupling free energy F". Keeping in mind that the free
energy, see (Equivalence 4), should be preserved, i.e., dF(p;) = ~dF(p;), this change
in the two-state coupling free energy, dF7, is given by:

dFT = =" tanh (F(p:) - F(p;))dF (p;).
i#j
Thus the geometric or topological charges have become the generators of the induced
external electromagnetic field activity on the vision system. Now let us consider again
the interaction mechanisms between pairs of states p; and p; and define the topolog-
ical current to be the spatio-temporal curl of the induced connection on the two-state
coupling free energy:

Definition 11 The topological current for the free energy on activated vision system is
defined by:
VL F

jF=VIAdF" =~
cosh? ( g(VE F, VI F)

dv® A dF,

where vs is connecting free energy states F(p,) and F(ps) of the vision system.

Note that the topological current is steered by (Equivalence 1), (Equivalence 2) and
(Equivalence 3) [4, 5,.6]. E.g., the fact that a pixel belongs to a long spatial edge-
segment can be used as some kind of stopping criterion or local reflective boundary
condition during the dynamic exchange principle stated below.

As the free energy (Equivalence 4) to the vision system should be preserved the
dynamic exchange principle for free energy is in our dynamic scale-space paradigm
made manifest through a physical law involving topological current (Definition 11):

Law 1 The dynamic exchange principle for free energy says that the change per unit
scale T in the free energy (Equivalence 4) in a region Q1 of the vision system is equal
to the exchange of free energy F. between this region and its surrounding across their
common boundary S = 0S) quantised by topological current (Definition 11):

5TF = —jFa
with suitable initial and boundary conditions

For (Equivalence 1), (Equivalence 2) and (Equivalence 3) one can subsequently
derive similar laws keeping in mind their tensorial character and effects of the gauge
symmetries in taking covariant derivatives of them [4, 5, 6].

3 Applications

We briefly indicate in Section 3.1 how by means of the modern geometric and statistical
techniques presented in Section 2 new meso-scale meteorological models can be de-
rived and compared, and the output of existing meso-scale meteorological models can
be analysed and processed. In Section 3.2 we apply our dynamic scale-space paradigm
to visual, infrared and water vapour Meteosat images in order to find measures for solar
irradiation of the earth’s surface and cloud cover needed in GESIMA [3].
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3.1 Models and Model Outputs

In the following paragraphs we recall briefly the physical principles, the subgrid scale
and meso-scale decompositions of physical fields and their dynamical equations, the
meso-scale assumptions, and parametrisations used in deriving meso-scale meteoro-
logical models.

3.1.1 Conservation Laws

Meteorological models are based on various conservation principles concisely repre-
sented in terms of a system of integral equations:

W vt + / v(jy, dS)dt = / JydVdt,
o Ot a0 Q

with initial and boundary value conditions:

’/T(.’I),O) = Tobsy F:¢’J¢aA¢7
[ stiwdsia = = [ oz, ds)it+ [ stav.asiat
80 a6 a8
where
¥ = (p,pv,p0,pgi, pX;),
jdl = TP%

Jy = (prJpv,Jp@aJquJPXf)'

Here dV is a differential volume element in Euclidean space, E3, dt is a differen-
tial time element in Buclidean space E1, Q is a fixed finite region in space-time, 8Q is
its boundary, v is the ordinary Euclidean metric on space, dS is the unit normal vector
field to the spatial part of 852, 82 is the model domain boundary, and ) represents the
set of conserved physical fields to be predicted and simulated. Among those fields are
the mass-density, p, of a parcel of air, the linear momentum per unit volume, pv, the po-
tential temperature times p, p©, water phase mass-fraction times p, pg; = pMy, /Mu;r,
and aerosol phase mass-fraction, px; = pMy; [ Meir.

Imposing the following meso-scale assumptions [1]:

e Local thermodynamic equilibrium, i.e., locally radiation is isotropic, and tem-
perature is independent frequency and direction of electromagnetic radiation but
dependent on the molecular collisions,

e Avogrado’s principle, i.e., gasses at the same pressure and temperature contain
the same number of molecules,

e Ideal gas law (Boyle’s and Chasles law):

P=pRT, R= 2
Hatm
with
* PO% 3 —1
R* = = 8.314310°JK ", (Po,To, Vo) = (1014mb, 273K, 22.4kl)

0

where a = p~! is the specific volume, (Py, To, Vo) corresponds to 1 kmol of air
of pagm kg mass, and R* is the universal gas constant,
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e Dalton’s law of partial pressures:

P:ZPi

and

R*T .
Pa = =quPa=ZZ—’;RT

Matm

with apparent molecular weight g4, of air:

. ZQk

Matm = "
B

yields the following expression for the potential temperature:

R
%

in case of isentropy:

dT dp ., dT dp
T Ry =G Ry =0

ds=(Coa + R) »

where Tz and Pg are a ground temperature and pressure, Cj, is the specific heat at
constant pressure and C, is the specific heat at constant volume (for earth’s atmosphere
Cp:Cq=7:5). ]
The entity jy, is the flow of 1/ with v the velocity vector field belonging to a parcel
of air, and Jy is the current of sources and sinks of 1 per unit volume and per unit time.
The momentum p of a parcel of air with respect to the earth’s center and a rotating
coordinate frame can be quantised as:

= @—'+ wXx Ry j= 4R _ v
P—PdT—J P VI =P EAY

where R is the position vector with respect to the earth’s center. Using the conservation
of mass law, the change of momentum with respect to a rotating coordinate frame can
be expressed as:

dp _ dp
el E-wap
= %(v—kwxR)+p%§+pw><v+p(wxv+wxwxR)
dj

= a¥+p(2wxv+wxwa)
consisting of the force exerted by the rotating earth on the parcel of air, a Coriolis force
and centripetal force, respectively. This temporal change in momentum is balanced by
external forces such as pressure gradients and gravity, and internal forces caused by
fluid self-interactions such as molecular frictional momentum dissipation (neglected).
Consequently, the current for the momentum field J,,, is given by:

Jpv = =(VP + pg + 2§ x w),
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with gravity force:

g=wxwxR-G, G:—Mem,thﬁ}z%.

The potential heat current Jg is caused by (freezing - melting), (condensation -
evaporation), (deposition - sublimation), (exothermic - endothermic) chemical reac-
tions, net radiative flux (convergence - divergence) and dissipation of kinetic energy by
molecular motions.

The water phase current J,, can be decomposed in terms of a water ice phase
current Jy, consisting of the sum of (freezing - melting), (deposition - sublimation) and
(fallout from above - fallout from below); the rain and cloud water phase current J,
consisting of the sum of (melting - freezing), (condensation - evaporation) and (fallout
from above - fallout from below); and the vapour water phase current Jg, consisting of
the sum of (evaporation - condensation) and (sublimation - deposition).

Jy; consist of the aerosols phase, chemical transformation and reaction, precipita-
tion (fallout due to phase change or chemical reaction) and sedimentation (fallout not
due to phase change or chemical reaction) currents.

Note that p,; = pg; and p,; = px; are just the mass concentration of the various
phases of water and those of other chemical species. Furthermore, that the potential
temperature © and the mass fractions g; and x; are considered as internal variables
of the parcel of air of mass-density p. Furthermore, that the momentum field is cou-
pled to the mass density p of an air parcel and not to the individual chemical mass
concentrations pg; and py ;.

In the initial-boundary value conditions 1,55 are the observed physical fields, j{j}‘t
is the outward vector density field not necessarily perpendicular to 8 nor balancing
. and Ay is the total accumulation or dissipation vector density field at Q.

There exist various initialisation procedures of a meso-scale model based on ob-
jective analysis, dynamic initialisation and normal mode initialisation [1]. Objective
analysis extrapolates the initial dependent physical fields ¢ to grid-points using varia-
tional analysis to minimise the difference between the observations and analysed fields.
With dynamic initialisation the model equations are integrated over time so that the ob-
served fields that are not representative at a meso-scale resolution are minimised. This
type of initialisation can be realised by initialisation integration or nudging. In practice
one adds to the conserved total physical field 1 a global constraint of the form:

/ G (thoss — D)V,
Q

where G, is the so-called nudging coefficient for field +. In the normal mode initial-
isation high frequency components, assumed to be of no meteorological significance,
are filtered by means of horizontal and vertical structure functions being product de-
compositions of the dependent variables.

The spatial boundary conditions can be divided into [1]:

¢ Lateral boundary conditions,
¢ Top boundary conditions,
¢ Bottom boundary conditions.

The lateral boundary conditions can on the basis whether they are open or closed
be subdivided into:
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¢ constant inflow, gradient outflow conditions: 7/ remain unchanged at inflow
boundaries such that Vi) = (Q°) — 1(Q)

e radiative boundary conditions: minimising the reflection of outward propagating
perturbations to the flow, back into the model by means of 8¢ /8t = —cg(V, dS)

* sponge boundary conditions: damping advective and wave disturbances in 1 as
they move towards 9Q by 01/0t = —v - Vi) — (2 — o), where 7 a relaxation
coefficient (maximal at Q) and 1y = 1 (80)

¢ periodic boundary conditions

The top of the atmosphere is placed deep within the stratosphere, at the troposphere
or within the stable layer of the troposphere. Its shape is assumed to be rigidly or
dynamically set by the the variables ¢. Furthermore, the top may be represented by an
absorbing layer or a local upper boundary condition.

The bottom boundary conditions generate terrain-induced and synoptically-induced
meso-scale systems. In this context the effects of the interactions between ocean and at-
mosphere and between land and ocean have to be quantised in terms of the observables

.
3.1.2 Decomposition of Fields and Dynamics

In order to arrive at a meso-scale meteorological model first of all a decomposition
of the physical fields 1) is carried out into a geometric mean ) over a spatio-temporal
region ( of fixed volume and a subgrid scale perturbation ¢’

Y=+,
with

Jsq WVt

V=T wva

Subsequently, a similar decomposition with respect to the conservation laws (see Sec-
tion 3.1.1) is performed on regions 6Q' = 69.

Next a layer-domain averaging procedure decomposes the geometric mean ) into
a synoptic scale mean 1y and a meso-scale deviation 1"

’(/; = ’(f)o + 1/)”,
with
o = / PdsS.
s
where S is a layer-domain on which the second decomposition is carried out.
3.1.3 Meso-scale Assumptions

After performing scale analysis the following meso-scale assumptions are imposed [11:

¢ Reynolds assumption
b=4, ¥ =0.
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¢ Soundproof assumption; on a synoptic scale the mass conservation law can be
rewritten as:

V- (po'U) = 0.

e Hydrostatic assumption; on a synoptic scale the vertical equation of motion can
be written as:
Opo _
Bz —gp00.
e Geostrophic assumption; on a synoptic scale geostrophic wind velocity field can
be written as:

ol = — 7 x o,
po

where
f=2|w x ey
is the Coriolis parameter.

o Boussinesq assumption; on a synoptic scale thermodynamic fields p and O can
be split into isentropic reference values and deviations from that:

ﬁ = Do +p”7

6 = Qo + @”,
such that, using the ideal gas law and the expression for the potential temperature,
the mass density variation can be approximated by:

11 "
F~ (1 — -9—> .
Po o

3.1.4 Parametrisation of Currents, Turbulent Fluxes and PBL

Incorporating these assumptions in the averaged system of integral equations with
initial-boundary value equations for the decomposed physical fields yields a new sys-
tem in which the currents J, of the physical fields ¢ and the turbulent momentum flux
tensor, turbulent heat flux vector, turbulent water phase flux vector and the turbulent
aerosol phase flux vector still need to be parametrised [1, 3]. In this context it should
be remarked that, e.g., in the parametrisation of the turbulent momentum fluxes on
the basis of the so-called flux or gradient Richardson number the parametrisations and
observations of the heat currents are of eminent importance.

Besides these parametrisations of the currents and turbulent fluxes a planetary
boundary layer parametrisation is required. The planetary boundary layer can sub-
divided in a viscous sublayer, a surface layer and a transition layer. Furthermore, there
exist the possibility of internal boundary layers separating layers with different turbu-
lence characteristics. The viscous sublayer lies between 2 and 2z and is characterised
by @ = 0. The surface layer lies between zg = 10 m and h; ~ 100 m, whereas the
transition layer lies between hs; ~ 100m and z; > 3 km. At height 2; the ground
surface no longer influences the dependent variables through the turbulent transfer of
mass. The depth of the planetary boundary layer can usually be associated with some
kind of inversion:
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e Inversions caused by cooling:

- Radiational cooling at night night, or above stratiform clouds and smog
layers

- Evaporative cooling over moist ground
¢ Inversions caused by warming:

— Synoptic subsidence

— Cumulus induced subsidence
¢ Inversions caused by advection

— Frontal inversions
— Warm air over cold land, water, or snow

~ Vertical differences in the horizontal advection of temperature

Other parametrisations of the boundary layer can be based on different sets of balances
of forces [1]. Furthermore, the layers are characterised each by their typical turbulent
flux representations which depend on the chosen closure forms [1].

3.1.5 Output, Sensitivity and Setup of Systems

Every meso-scale meteorological system’s output in terms of the physical fields ) de-
termines a partitioning of space-time into regions characterised by specific.dynamical
states of the atmospheres. As we show also in Section 3.2 the fields, i.e., the currents,
themselves induce a particular canonical parametrisation of space-time with which are
related a specific frame field, connection and/or metric and consequently a set of equiv-
alence relations as presented in Section 2.1. For example, the mass-density p of the air
parcels over space-time determines a net of isophotes, i.e., surfaces of iso-densities,
and flowlines, i.e., the integral curves of the mass-density gradient field, with a charac-
teristic segmentation in spatio-temporal fore- and background dynamics.

An ensemble of (similar) meso-scale meteorological systems will show various out-
puts because of different model assumptions, closure forms, current and turbulent flux
parametrisations and errors in the initialisation phase of the observed physical fields
among which the parametrised currents and initial physical fields on the model domain
[1]. Again our dynamic scale-space paradigm yields a mean to unravel the dynamical
structures of and differences in the evolutions of the observed physical fields under
various systems. Performing a multi-scale analysis and processing of the outcomes
of these systems analogous Section 2.2 we can derive a set of stable and reproducible
equivalence relations despite various types of noise, e.g., related to observation sys-
tems, for each system, and compare these sets with each other. Besides on the level
of the outputs of the systems such a comparison can equally well be carried out on the
level of the models by subjecting the symmetries involved in the various models, hav-
ing different complexities, parametrisations and assumptions, to a modern geometric or
Lie theoretic examination. A major impact of such an analysis will be that a sensitivity
analysis yields then not only local measures of influences of e.g. changing parametri-
sations but also non-local and topological-geometrical measures. Whether there will
apppear more than one heat island due to changing human activities in an area, for
instance, will then be retrievable from the model and the initialisation of the system. A
refined and immediate scenario analysis thus becomes feasible and into sight through
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a modern geometric analysis and processing. Last but not least, (not time-causal and
recurrence) effects of adjoint methods [2], during the initialisation phase of the system,
on the evolution of the physical fields can qualitatively and quantitatively determined
by our presented methods.

More importantly, novel models can be found by adapting the models to the ob-
served physical field dynamics. The adaptations concern the various decompositions
and averaging procedures of physical fields and dynamics, meso-scale assumptions,
parametrisations of currents, turbulent fluxes and planetary boundary layer. Let us
point out more precisely which strategy to follow to couple the model, system and
observed dynamics to each other.

On the basis of the observed physical field dynamics a decomposition of physical
fields and dynamics is possible in which the subgrid scale and synoptic scale averaging
procedures couple to the dynamics of those fields (see Section 3.1.2). This implies
that the regions 62 become spatio-temporally and field dependent. The latter can be
brought about by a Galilean frame field induced by the physical fields or derived fields
such as the Burgers and Frank vector density fields mentioned in Section 2.1. A subgrid
and synoptic scale subsequently have a pure field or dynamics based substantiation.
These field dependent scales for averaging and decomposition then allow a validation
of meso-scale assumptions over space-time (see section 3.1.3). For example, we might
be bound to abandon Reynolds assumption in certain regions of space-time where there
are sharp transitions in the fields and the dynamics. The partitioning of space-time by
the physical fields or currents (see also Section 3.2) then also permits a better parametri-
sation of currents, turbulent fluxes and PBL (see Section 3.1.4). E.g., turbulent flux
exchange coefficients dictated by the observed physical field dynamics will turn out to
be spatio-temporally inhomogeneous, a-symmetric and anisotropic. Furthermore, the
regimes (regions in space-time and in field dynamics) that are normally determined on
the basis of so-called Richardson numbers can be given more solid definitions in terms
of the equivalences and scaling algorithm presented in Section 2.1 and Section 2.2,
respectively.

3.2 Solar Irradiation Input Data

The heat current Jg is dependent on the temporal variation of the grid-volume averaged
absolute temperature or the grid-volume averaged absorbed irradiance due to all wave-
lengths of solar electromagnetic radiation, Je,q, on the heating and cooling, Jo, (4,)»
due to phase changes in water and aerosols, and on the dissipation of kinetic energy by
molecular friction, Jg g1

Jo = j@,a + j@,(q,x) + Jo,dis,
with
Jo, (e = Jo,q + Jo
where
Jo,q = pQo,, Jox = pQoy.

As the Meteosat satellite images mainly deliver information related to Jo o we
concentrate on the fundamentals in the parametrisation of this current (see Section
3.2.1) corresponding to the GESIMA model [3]. In Sections 3.2.2 and 3.2.3 we analyse
and process the solar irradiation currents in the short-wave and long-wave band.
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3.2.1 Solar Irradiance Currents

The absorbed radiant energy from the sun is equal to the opposite of the change in total
heat of an atmospheric layer. In the sequel we treat the contribution of the long-wave
and short-wave band fluxes relevant to the GESIMA system [3]. For a treatment of the
parametrisations of those fluxes in case of clear, clouded and polluted atmosphere we
refer to [1].

The monochromatic intensity (radiance) flux vector of electromagnetic radiation
through dS per time per wavelength is given by:

I((,€) = %es, dQ = dSdAdt

with dey, the differential amount of radiant energy passing through differential surface
area dS in time interval dt and per increment d\ of wavelength. The differential area
on the surface of the earth can be written as:

dS = dA -d¥, d¥ = sin(d(deey,

with dA at the center of the earth a unit surface normal vector to the plane through the
equator and d¥ a differential solid angle in direction direction eg.

Integrating over the hemisphere yields the monochromatic irradiance flux vector on
dA:

21 5
Ro= [ [T (068 aves
o Jo )
which for isotrogic radiation boils down to: -
R,\ = 7T|[)\ ]6A.

The total isotropic irradiance is obtained by integrating over all wavelengths A:

R= 7r/ [In]eadA.
0

A blackbody absorbs all the radiation fallen upon it; in this context the blackbody ir-
radiance that directly relates to the Stefan-Boltzman law is of fundamental importance.
Let N, be the number of oscillators in the ground energy state o and the number
Ney4ne Of oscillators at an energy state ne higher than the ground state governed by
Boltzman statistics:

Negane = Ney €xp (E_ETE)’ €= hv.

Now the total number Ny, of oscillators in energy state e is given by:

’

0 No
Niot = ZNeo-I—ne =
n=0 1—exp ({;‘—T—)

and the total energy F;,, over all energy states by:

Nye
(1-exp (25))
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such that the mean energy < E > becomes:

Etot
< B >= ot
Niot

Planck’s second postulate assumes that the phase changes of the oscillators are quan-
tised. The monochromatic energy density u,,, i.e. the energy per unit volume per unit
frequency interval in a cavity with temperature 7" is given by:

u, =A< E >,
where on the basis of the equi-partition principle, that is if 7' — oo and v |, O:

82
3

Uy kT

follows from w, /kgT — 0O that:

8mv?

A= e

The blackbody irradiance was assumed isotropic such that:

UyC

Bu(T) = 47

which reads in wavelengths A:

2hc?
o (i)

and leads to a total emitted isotropic blackbody irradiance:

BA(T) =

_ 97t k}g

[es)
Y= B A\ =oT* = —==
R /0 ,\(T)d (22 , O 1502113

The blackbody irradiance spectrum can be effectively divided into a short-wave ra-
diation from the sun and long-wave radiation from the earth. Furthermore, the monochro-
matic blackbody irradiance can be used to define so-called monochromatic absorptivity,
ay, reflectivity, 7, and transmission function, £:

9
I

ax = 5> g=a,7‘7ta
A

with
Z g=1L
g

Here the reflectivity can be further decomposed into multiple reflections (scattering) in
direction of source field 75 and those in directions other than that of the source field
7¢. The sum of ay + r§ is called the extinction or attenuation. In local thermodynamic
equilibrium the monochromatic absorptivity is equal to the monochromatic emissivity
€x (Kirchoff’s law):

€\ = a).
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Short-Wave Radiation The solar flux at the surface is retained from the position of
the sun and from either amount of cloud cover or from liquid water path. The solar
zenith angle (., between a horizontal surface element and the solar energy flux vector
is defined by:

Czen = sin ¥sind + cos ¥ cosf costy,

with ¥ is the geographical latitude, and § the declination of the sun which is a function
of the day Ny in the year:

. . <27TND>
sin § = sin esin ,

365

where is the ecliptic earth angle and Np the days after the start of spring. The local
hour angle ¢z is defined 0° at noon and 180 at nidnight and is related to local time
tp by:

(tr, — 12)7
12

The solar radiation flux Sy reaching the surface can be written as {3]:

SO = (5’0,u - SI)TM Hn= COS(zen;

tg =

with short-wave transmission function T in case there’s no explicit cloud parametrisa-
tion, and where Sy and S; are numerical constants.

Long-Wave Radiation Flux In the infrared spectrum the measured radiance relates
to the temperature of the emitting atmospheric column. In the water vapour spectrum
it’s possible to relate the long-wave transmission function 7} the long wave emissivity
€; as follows:

€ = 1- Tl
This long-wave emissivity then supplies information about the precipitable water § P =
J pgsdz between the satellite and either the earth’s surface or the cloud tops [1].
3.2.2 Analysis of Solar Irradiation Currents

We partition a time-sequence of two-dimensional infrared images by extracting spatial
and temporal edges, and spatial ridges, ruts and inflection lines. We choose, thereto,
the following frame field € and one-forms of connection =:

(ei, &) (VE AR, VSR, VER),
@) = (ds, d)
7 o= Wi
(wjwp) = (( )d 0dt>
w§w§=0

where I image (Definition 1), ¢, 7 denote the isophotes and flowlines, ds and « refers
to the Euclidean differential arclength and curvature field on those curves, and ¢ de-
notes the time variable. Note that space-time is locally assumed, for simplicity, to be
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Galilean. Instead we could also adapt the local geometry to the perspective transforma-
tion, induced by the vision system, of the atmosphere’s boundary layer surface geom-
etry. Doing so one can also associate to each visual ray and perceived pixel radiance a
surface area of the boundary layer (see [24] and Appendix A).

Studying the changes of the frame vector field €2 in the direction of this field itself,
one can nicely locate the spatial edges by means of the signature of Viez projected
onto €;; a similar signature can be given for the temporal edges (see also Fig. 5):

a:dge = Sign(’)/(veaze2a€2)),
Uzdge = Sign(viet’et))’

where - denotes the standard inner product.

R

R’.R” R

1

Figure 5: Inflections of solar irradiance R; in the direction of the z-axis R’ and R' are
parallel and subsequently anti-parallel. )

For the spatial stices of the image sequence in the neighbourhood of ridges, ruts and
inflection lines the flowline curvature vector field K5 reverses orientation. Following
the ridge, rut or inflection line and continuing on the tangent inscribing circle, one
traverses this circle clock- or counter clockwise (right- or left-handedness). On the
basis of the sign of the isophote curvature one can subsequently distinguish between
ridges and ruts: x; > O for a ridge and k1 < 0 for a rut. In order to retrieve all these
special curves at once we have voted instead for the signature of Vi €2 projected onto
€1.

Ophase = sign('y(Vieg, €1)).

Note that on either side of the ridges, ruts and inflection lines the frame vector field
ey is the same but the flowline curvature vector reverses direction across them. In
Fig. 7, Fig. 8 and Fig. 9 edges, and ridges, ruts and inflection lines in a time-sequence
of images in the visual, infrared and water vapour spectrum, respectively, occur there
where 0%, 0% and oppaese, respectively, change sign. The sought curves are retrieved by
simple binary operations; one obtains a dynamic cellularisation of the spatio-temporal
infrared image in fore- and background dynamics. For the Ansi-C code we refer the
reader to Appendix B.1 and Appendix B.2. The documentation of the included library
<inrimage>> can be recovered at:

hitp : [ Jwww — syntim.inria.fr/ chieze/public_html/inrimage/.
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The ridges and ruts distinguish themselves from the inflection lines that the polarity
at either side of the curves changes phase, i.e., V1 - V5 < 0, whereas at inflection lines
this phase remains the same, i.e.,, Vi - Vo > 0. Thus a simple algorithm to find the
ridges and ruts consists of summing all gradient information within a cell and compare
it with neighbouring cells. Computing the phases between (neighbouring) cells gives
then a clue whether their interfaces are ridges and ruts, or inflection lines.

However, it should be reckoned that it may happen that ridges or ruts end. But
then one could indeed object that in the case of u-type of junctions (see also Fig. 6)
the branch-cut or ridge/rut cannot be detected in the above manner causing in addition
problems in the assessment of the enveloping interfaces of such a region.
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Figure 6: Ridge in case of u-junction where ¢ are isophotes and j are flowlines (solid
curves) and k are flowline curvature vector fields.

In that case the only machine available seems to be the one measuring the curvature
of the frame vector field using a special frame field €, and connection =:

f vééz
C

(9 1 662
1, 9 ( 1 0€ 9
/Sds A 5eT <|n2|382d8 ),

i

with
_ 1
(61’62) = (61’<@> 61),
@@ = (ds',ds?),
@ = o

At ridges and ruts this curvature is nonvanishing as the normalised flowline cur-
vature vector field k£ changes polarity. At inflection lines this measure is normally
vanishing as an isophote need not be coinciding with an inflection line. However, re-
alising that near an inflection line 07, is changing sign, whereas at ridges and ruts
it preserves sign we can better study this field to locate the inflection lines first. Sub-

sequently, by simple set-theoretic considerations the ridges and ruts can be retained.
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Note that the recovered inflection lines can be ordered going from a rut up to a ridge;
there exist apparently tilted and slanted plateaus. Furthermore, walking along differ-
ent ridges and ruts one can also induce a meaningful ordering on these dual physical
objects.

Figure 7: From left to right: spatial slice of an image in the visual spectrum at noon,
t = 12 h, its temporal and spatial edges coinciding with the interfaces and regions
where a;dge and o4, change or have a particular sign, the ridges, ruts and inflection
lines coinciding with the interfaces where opp45e changes sign, and the ridges occur
where the signature of k; is positive. The input image acquired between ¢ = 9 / and
t = 18 h consists of 18 temporal views of spatial slices composed of 200 x 200 voxels

each with a dynamic resolution of 8 bits.

"”: ':‘L‘. Ry

K A N
L0 ?%i‘“;\ﬁ' R
Figure 8: From left to right: spatial slice of an infrared image at noon, ¢t = 12 A, its
temporal and spatial edges coinciding with the interfaces and regions where o dge and
U:dge change or have a particular sign, the ridges, ruts and inflection lines coinciding
with the interfaces where gpn45e changes sign, and the ridges occur where the signature
of k; is positive. The input image acquired betweent = 9 h and ¢ = 18 h consists of
18 temporal views of spatial slices composed of 200 x 200 voxels each with a dynamic

resolution of 8 bits.
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Figure 9: From left to right: spatial slice of a water vapour image at noon, ¢ = 12 h, its
temporal and spatial edges coinciding with the interfaces and regions where a2, ge and
Oeqge Change or have a particular sign, the ridges, ruts and inflection lines coinciding
with the interfaces where oppqse changes sign, and the ridges occur where the signature
of k; is positive. The input image acquired between t = 9 h and t = 18 h consists of
18 temporal views of spatial slices composed of 200 x 200 voxels each with a dynamic
resolution of 8 bits.

3.2.3 Processing of Solar Irradiation Currents

We give an illustration of our dynamic scale-space paradigm for the images consid-
ered in (Example 1). The reasons for such a filtering scheme is to retain stable and
reproducible input data concerning the short-wave and long-wave transmission func-
tion of the solar irradiation. The generating integral equations with reflective boundary
conditions for our paradigm is given by:

V'R

0,R =
% cosh® (1/g(VLR, VER))

dx A dR,

with x a frame vector field in any direction. We have shown in Fig. 10, Fig. 11 and
Fig. 12 not only the infrared image in Fig. 7, Fig. 8 and Fig. 9, respectively, at dif-
ferent scales, but as well the segmentation in fore- and background dynamics on the
basis of the signatures, mentioned in (Example 1), at those scales. As to be expected
the dynamic scale-space paradigm preserves larger scale edges and alike longer over
scale. There’s, of course, a boundary condition interfering with the analysis at the im-
age domain boundary that is possibly not supported by the input data outside the image
domain. It’s, therefore, in case studies concerning the atmospheric dynamics better not
to include these boundary analyses (unless one has earth covering input data). Nev-
ertheless, the partitioning by edges and alike produce a natural and direct multi-scale
segmentation in terms of micro-, meso- and synoptic scale physical regimes for the
atmospheric dynamics [1]. For the Ansi-C code we refer the reader to Appendix B.3.

A segmentation of the dynamic scale-space of the various sequences of input im-
ages comes about by using simply the following signature o:

Oidge = sz’gn(dT(VfT e )dr(er)),

with

r Br

Note that similar remarks can be made as in (Example 1) concerning the influence
of the geometry involved in the data acquisition. Furthermore, that it might be more
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appropriate to retrieve first currents for the Volterra processes involved in the atmo-
spheric radiation dynamics, and to use them to steer the dynamic scaling [4, 5, 6]. All
the images can supply us with particular mean heat momentum fields by following the
segmented regions over space-time. The processed image sequence in the visual spec-
trum yields us directly a measure for the short-wave transmission function. Using the
geocoding used by Meteosat (see Appendix A) and that used in GESIMA, [3], we can
supply during the day a related meso-scale meteorological system with that function.
On the basis of the correlation between the three types of image sequences we hope to
retain also logical/real values for the cloud coverage or short-wave transmission func-
tion during model run at night and early morning the next day. Furthermore, we can
use the cloud cover measure during the night to represent the long-wave transmission
function during the night. Last but not least, that in case stable and reproducible data
are needed during model run it’s more plausible to restrict the filtering on a cone in
space-time pointing in the past and normalise the filter output in a unique manner (the
latter normalisation procedure is not obligatory and can even be inconsistent with ob-
served dynamics). In this manner the observed history of the radiance fields in the
different spectra determines an initialisation of the transmission functions long- and
short-wave band. If there would be a cloud module and supporting satellite observa-
tions available, then we could also start off forecasting and simulating the transmission
functions system-wise.

Figure 10: From left to right and top down: similar sequence of images as in Fig. 7 at
scale 7 = 1.

Figure 11: From left to right and top down: similar sequence of images as in Fig. 8 at
scale 7 = 1.
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Figure 12: From left to right and top down: similar sequence of images as in Fig. 9 at
scale 7 = 1.

4 Conclusion and Discussion

We have presented the concepts involved in our dynamic scale-space paradigm. After
identifying the relevant gauge group in a vision task we are able to formulate a dynamic
scale-space paradigm. The gauge group supports subsequently a frame field consistent
with the vision system’s topology, geometry and dynamics and with those of the in-
duced external electromagnetic field activity. Furthermore, the gauge group allows
a construction of a suitable metric and/or connection, such that equivalences for the
field activity can be recovered. We showed how a simple geometric analysis of a two-
dimensional grey-valued image can supply us with its edges, ridges, ruts and inflection
lines; the interfaces between physically essentially different image formation processes
invariant under (volume-preserving) diffeomorphisms of the image. The equivalences,
mainly retrieved by performing directed circuit or path integrals over the frame field
along physical objects, such as interfaces between different media, allow in turn the
construction of a partition function that forms the basis for the derivation of (dynamic)
exchange principles for the equivalences themselves. These principles can be suc-
cinctly quantified as a controlled distribution by a topological current of equivalences.
The partition function can be conceived as a measure of the topological, geometric
and dynamical complexity of the external electromagnetic field activity. The advan-
tage of our measure(s) is, as we will become clear shortly, that it readily substantiates
and extends information theoretic measures as proposed in [25]. Furthermore, the new
measures of complexity are to be preferred for their conciseness, i.e., completeness
and irreducibility. Moreover, the dynamic scale-space paradigm falls nicely within the
realm of modern theory of dynamical systems [26).

Of course, our approach raises also a lot of hardly ever addressed research issues.
The frame field, metric and connection and curvatures presented in this paper deter-
mine equivalences of the observed external electromagnetic field activity. They were
acquired by performing just circuit integrals on a two-dimensional surface and inte-
grating them subsequently over other physical objects. Characteristic for these equiva-
lences and thus also for related paradigm is that they are all based on purely local inter-
action mechanisms, i.e., the Green’s functions have all a simply connected support. The
paradigm excludes the operationalisation of really nonlocal, collective (cooperative or
antigonistic) interactions between subprocesses in the induced external electromagnetic
field activity. It should be possible in the line of, e.g., Biot-Savart’s law for the force
between two conducting currents to formulate attractive and and repulsive currents of
related equivalences. We already reckoned in Ref. [27] that among these equivalences
are those of the self-linking numbers, (generalised) Vassiliev invariants for knots and
higher dimensional manifolds, invariants related to links and braids, and Mé&bius en-
ergies [28, 29, 30, 31, 32, 33]. These invariants and energies are true generalisations
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of the presented equivalences, because they can capture the (self)-interactions of phys-
ical processes in the electromagnetic field. The chirality of a medium, i.e., the left-
or right-handedness of the microstructure of a medium manifesting itself as a nonlocal
phenomenon via the dependence of the polarisation and magnetisation of the medium
on the circulation of the electric and magnetic field, respectively, supports the idea that
mechanisms grouping electromagnetic activities by observing linking aspects in the ex-
ternal fields might also belong to the standard operations of a vision system. Although
the mentioned invariants and energies possess a very high computational complexity
they may play a major role as constraints or granulometric characteristics in filtering
schemes restoring, enhancing and/or simplifying coherent dynamical processes. E.g,
they may be used as actions to derive equations of motion upon varying canonical coor-
dinates, metric and connection. After solving these equations structures living on those
topologically or geometrically invariant objects can be diffused using the Beltrami-
Laplace operator consistent with the found metric and connection. These topological
invariants and energies come into play in tracing the transitions in dynamical processes.
Furthermore, the above new equivalences may form new factors in statistical partition
functions, information or topological entropy measures as suggested in the beginning
of our discussion, that engender a hierarchy of dynamical systems that can again be
explored by means of our topological, geometric or algebraic techniques.
Besides having presented our dynamic scale-space paradigm for analysing and pro-
cessing physical observations we also pointed out how to apply it to the output of mete-
- orological systems, how to compare different systems by mean of it, and how to derive,
given the observations, induced meso-scale meteorological models. For instance, sen-
sitivity and scenario analysis can be enhanced and extended supplying decision makers
with objective measures concerning the impacts of e.g. desertification on esosion. In
orderto demonstrate the applicability of our method to the analysis and processing
of physical fields, we segmented Meteosat temporal image sequences in the visual,
infrared and water vapour spectrum into fore- and background dynamics at various
scales. This multi-resolution filtering and segmentation scheme has been considered
in order to retain stable and reproducible input data concerning the short-wave and
long-wave transmission function of the solar irradiation (which plays a very impor-
tant role in several modules in meso-scale meteorological models such as GESIMA,
[3]). Integration and evaluation of our method in such systems, by keeping in mind the
geocoding used in the satllite images and the models, has still to be accomplished.
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A Meteosat Images

A.1 Image Data and Acquisition

Meteosat [24] has three channels measuring radiance in Wm™2sr~! in the visible
spectrum 0.4 < A < 1L.1x m), in the infrared spectrum 10.5 < A < 12.54 m) and
in the absorption spectrum of water vapour 5.7 < A < 7.1y m). Highest possible
spatial resolutions of the three channels on the ground are 2.5 x 2.5 km?, 5 x 5 km?
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and 5 x 5 km?, respectively. The temporal resolution of each channel, i.e. the time of
image acquisition by scanning, is 25 min with a 5 min delay before next acquisition.
For all three channels the dynamic sensitivity is 8 bits and the spectrum is covered
from 24 h.

The radiance R measured together with the known solar irradiance .S allows us to
measure for the visible channel the albedo A:

R
A= 5 ¢))
In case of cloudy air and sharp incidence angle of solar radiation or viewing angle with
the earth’s surface unit normal vector the isotropic reflection principle does not apply
anymore. Consequently, the measured radiance includes also absorption and diffusion
phenomena.
In case of the infrared and water vapour channel the radiance R given by:

R = a(C - C()) (2)

with calibration parameters « and Cy, supplied by Meteosat [24], can be related to the
blackbody irradiance as follows:

>\2 >\2
R= dAF(\, THI\T) = dAF(\,Te(A)B(A,T), 3)
A A1
where [ is the spectral luminance of the observed object, € is the emissivity of the
object, F' is the filter characteristics of the channel at operational temperature 7" and
B is the blackbody irradiance at absolute temperature T'.

A.2 Image Data Geolocation and Geocoding

Meteosat is geostationary, i.e., it is located over approximately the Greenwich meridian
and the earth equator at Rg = 42.164,0 km from the earth’s center. Assume the
world Cartesian coordinate system to be located at the earth’s center with Meteosat on
the z-axis, such that its coordinates are Xg = (Rg,0,0), and the earth’s equator in
the zy-plane. Now a geocentric spherical coordinate system (r, 6., ) is related to the
world Cartesian coordinate system through the following transformation rules:

(z,y,2) = (rcosb, cost),rcosb,siny,rsinf,) @)
and
z
(r2,tan(9c,tan¢) = (.'172 +y2+22,\/—a—:—2_:—;'2‘,i‘> . (5)

As the earth’s surface is not exactly spherical it’s important for the computation
of the solar irradiation of the earth’s surface to change from geocentric to geodetic or
geographic latitudes 6,4. The latter latitude is defined as the angle between the local
normal at the earth’s surface and the the equatorial plane. In order to find the relation-
ship between the geodetic or geographic latitudes, let us first parametrise the earth’s
surface as an ellipsoid in terms of the world coordinates:

$2 +y2 22
S("an)z): +'_:1: (6)
R R}
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in which the equatorial radius R, = 6378.140 km and the polarradius R, = 6356.755 km.
Now the unit normal vector 7i to the earth’s surface is simply defined as:

. VS
"= s @)

such that the geodetic latitude is in world coordinates:

zZ

04 = L 8
e = T ®
R?
Now it’s readily shown that the geocentric and geodetic latitudes are related as follows:
R? 1
tan@d = —Rétanﬁc = W, (9)
where the oblateness () is given by:
R.—-R
Q= P 10
R (10)

Using the earth’s surface parametrisation in world coordinates one can now also
give readily that parametrisation in spherical or geographical coordinates:

RR?

2 _,2 _
< - - )
. RZcos? 0. + R? sin? @,

tanf, = (1 — Q?) tand,. (1)

-In the next sections we treat the conversions between geographic and digital data.

A2.1 Geographic to Digital

The vertical and horizontal resolution dy = dg = & are just the fraction of Meteosat’s
field of view (27 radials) and the number of lines N, or sample points N, depending
on whether the image concerns an infrared and water vapour image, or an image in the
visual spectrum.

The digital pixel coordinates in an image corresponding to a particular geographic
coordinate P = (z,y, z) can be obtained simply by expressing the geocentric latitude
in terms of the geodetic latitude (see equation 9), by expressing the surface parametrisa-
tion in terms of equatorial and polar radius, oblateness and geodetic latitude (see equa-
tion 11), and by expressing the world coordinates through the spherical into geograph-
ical coordinates (see equation 4). With Xs = (Rg,0,0) and taking O' = (z,y,0) the
line number n; and the sample number n; on a line can be given by:

I

arctan ZPSO' = arctan = z = n;0y, 12
G EEYEE 10y (12)

1
arctan Z0'SO = arctan 05 = arctan (_ng——z) =nslH. (13)

The visibility condition boils down to the requirement that the angle between viewing
angle and earth’s surface normal is less than 90 degrees:

(Xs—Pn) >0 (14)
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A.2.2 Digital to Geographic

It is more important, however, to express the digital data in geographical data because
we need the reflection of solar irradiation at the corresponding geographical coordi-
nates to be fed in to the air-pollution forecast and simulation systems. In particular the
transmission function T' of the solar radiation I projected onto and averaged over the
related surface area, I, has to be computed and compared to the observed reflected
solar radiation I,. For the latter we need to integrate the inner product of the solar
irradiation vector density field and the surface unit normal vector field to the earth’s
surface, over the earth’s surface area spanned by a digital pixel and multiply by half the
total solid angle, i.e., the field of view (assuming isotropic reflection):
Io A A ~ ~ ~
T = 27r}—; Iy = (7, 1)dS, dS = fi.dy Adz + fiydz A de + 7idz A dy
8

In this context it is equally crucial to parametrise the transmission function 7" in
terms of geographical coordinates. Thereto we have to solve a simple problem in find-
ing a condition for the intersection of a viewing line and the earth’s surface. Let the
position of the satellite Xg and the point viewed on the earth’s surface P determine
these so-called viewing lines [

Uk) = X5+ kv, v=(Xs—P) = (p,q,r), kEER. (15)

The angles along vertical and horizontal directions, ay and a g, are available through
equations (12) and (13), and are linked to the v-components as follows:

tanay = —————, (16)
tanag = -,

in which we may choose p = 1 without loss of generality.

Now the intersection condition for viewing line [ with a point P on the earth’s
surface boils down to substituting the viewing line representation (k) into the earth’s
(surface world coordinates) parametrisation (6), making above choice for p and sub-
stituting the relations between the remaining v-components, ¢ and r, and the angles
along vertical and horizontal directions, ay and ayr. One obtains a quadratic equation
for k with coefficients all expressed in observed entities. In case of complex conjugated
roots there’s no intersection for that particular digital point. Whereas in the cases of
one or two real roots the minimum of the sets of solutions results in a really visible
intersection point.

After substitution the found k-value into the viewing line (k) (and using p =
1) one has obtained the world coordinates of the observed earth’s surface point P.
Now from these world coordinates one retains readily the geocentric and geographic
coordinates using the transformations rules presented in the previous section.

B | Ansi-C Codes

In the following subsections one finds the Ansi-C codes for the computation of the dis-
crete ordinary derivatives, for the segmentation algorithms presented in Section 3.2.2,
and for the dynamic scale-space filtering algorithm presented in Section 3.2.3.
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B.1 derivatives.c

#include <stdio.h>
#include <math.h>
#include <inrimage/image.h>

extern struct image *image_();
extern char xi_malloc();

extern int debug_;

void alloc_threedimmatrix

(double xxxxthreedimmatrix,

long dimX, /% size in x direction ¥/
long dimY, /% size in y direction */
long dimT) /x size in t direction */

allocates storage for threedimmatrix of size dimX * dimY * dimT */

{

long i,j;

xthreedimmatrix = (double x#x) malloc (dimX x sizeof(double x));
if (xthreedimmatrix == NULL) ’
{
printf("alloc_threedimmatrix: - not enough storage
available\n");
exit(1);
}
for (i=0; i<dimX; i++)
{
(xthreedimmatrix)[i] = (double xx) malloc (dimY = sizeof(double *));
if ((xthreedimmatrix)[i] == NULL)
{
printf("alloc threedimmatrix: not enough storage
available\n"),
exit(1);

for (j=0; j<dimY; j++)
{
(xthreedimmatrix)[i][j] = (double ) malloc (dimT x sizeof(double));
if ((xthreedimmatrix)(i][j] == NULL)
{
printf("alloc_threedimmatrix: not enough storage
available\n"})
exit(1);

}
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}
}
return;
}

void disalloc_threedimmatrix

(double xxxthreedimmatrix,

long dimX, /% size in x direction */
long dimY, /% size in y direction %/
long dimT) /x size in t direction */

disallocates storage for threedimmatrix of size dimX x dimY x dimT +/

{

long i,j;

for (i=0; i<dimX; i++)

{
for (j=0; j<dimY; j++)
{
free(threedimmatrix[i][j]);
}
}
free(threedimmatrix);
return;
}

call_derivative( char xin, char =out)

{
struct image *nfi, *nfo;
Fort.int Ifmti[9], Ifmto[9];
long dimXV, dimYZ;
long dimX, dimY, dimT,dimV;
float xnfibuffer;
float =nfobuffer;
int size, type, imagetype;

nfi = image_(in,"e"," ", ifmti);

dimXV = ifmti[I_DIMX];
dimYZ = Ifmti[I. DIMY];
size = Ifmti[I_BSIZE];
type = Ifmti[I_.TYPE];
dimX = IfmtifI_ NDIMX];
dimY = Ifmti[I NDIMY];
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dimT = Iifmti{I NDIMZ];
dimV = Ifmti[[ NDIMV];
imagetype = Ifmti{I_EXP];

nfibuffer = (float *)i_malloc(dimXV * dimYZ * sizeof(float));

c_lptset(nfi,1);
c_lecfit(nfi,dimYZ,nfibuffer);
fermnf_(&nfl);

Ifmto[I_ DIMX] = dimXV;
Hmto[I.DIMY] = dimYZ;
Ifmto[I_BSIZE] = sizeof(float) ;
Ifmto[I.TYPE] = REELLE;
Ifmto[I NDIMX] = dimX;
Ifmto[I.NDIMY] = dimY;
Ifmto[I NDIMZ] = dimT;
Ifmto[I NDIMV] = I;

Ifmto{I_ EXP] = imagetype;

nfo = image_(out,"c"," " lfmto);
nfobuffer = (float *)i.malloc(dimXV * dimYZ x sizeof(float));
do_derivative(dimX,dimY,dimT,&nﬁbuffer,nfobuffer);

c_éér(nfo,'dimYZ,nfobuffer);
fermnf_(&nfo);

i_Free(&nfobuffer);
}
do.derivative(long dimX,
long dimY,
long dimT,

float *xnfibuffer,
float «nfobuffer)

longi,j, k, I;

double #xxthreedimmatrix;
double sxxxcomthreedimmatrix;
double xxxycomthreedimmatrix;
float * tmpbuf ;

alloc_threedimmatrix (&threedimmatrix, dimX+2, dimY+2, dimT+2);
tmpbuf = xnfibuffer ;

for (k=0; k<dimT; k-++)
for (j=0; j<dimY; j++)
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for (i=0; i<dimX; i++)

threedimmatrix[i+1]{j+1][k+1] = (double) *(tmpbuf + i + dimXxj +
dimXxdimYxk);

free(xnfibuffer) ;

derivative(dimX,dimY,dimT,threedimmatrix,xcomthreedimmatrix,ycomthreedimmatrix;

for (i=0; i<dimX; i++)
for (j=0; j<dimY; j++)
for (k=0; k<dimT; k++)

nfobuffer[i + jxdimX + kxdimXxdimY] = (float)
threedimmatrix [i+1][j+1][k+1];

}

disalloc_threedimmatrix (threedimmatrix, dimX+2, dimY+2,dimT+2);

}
derivative( long dimX,
long dimY,
long dimT,
double *xxf)
{
fong i, j, k; /% loop variables */
double *xxg; /x work copy of f %/

alloc_threedimmatrix (&g, dimX+2, dimY+2, dimT+2);

-—- copy finto g — %/
for (i=1; i<dimX; i-++)
for (j=1; j<dimY; j++)
for (k=1; k<dimT; k++)
glilljlik] = fl] (K]

—- create ghost boundaries for g —- %/

for (i=1; i<dimX; i++)
for (j=1; j<dimY; j++)
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{
gli](j](0] = gL
}g[i][i][dimTH] = gi][jI[dimT];

for (j=1; j<dimY; j++)
for (k=0; k<dimT+1; k++)

gldimX+ 111k = gldimX](1[K];
}

for (i1=1; i<dimX+1; i++)
for (k=0; k<dimT+1; k-++)

{
glilldimY+1]{k] = g[i][dimY][k];

for (j=1; j<dimY+1; j++)
for (k=0; k<dimT+1; k++)
{
}g[O][j][k] = gl LI}k

for (i=0; i<dimX+1; i++)
for (k=0; kgdimTﬂ; k++)

{
glil[0](k] = gli][1](k};
}
—- computation of e.g. discrete x-derivative —- %/

for (i=1; i<dimX; i++)
for (j=1; j<dimY; j++)
for (k=1; k<dimT; k++)

{
fli](j]k] =
((gli+11{j1(k] - glIGIKD) +
(gliIG1IK]D - gli-1]G1kD) +
(gli+11[j+11(k] - glil(j}kD) / sqrt(2.0) +
(elilGk] - gli-111j-111k1)/sqre(2.0)) / 4.0;
}

disalloc_threedimmatrix (g, dimX+2, dimY+2, dimT+2);
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return;

static char Ucmd|[]=
"[-D] [-k nbXKo] [input | -] [output]";

static char Udetail[]=

"\tDERIVATIVE (2,1) SPATIO-TEMPORAL IMAGE\n\

\t\n\

\tAlfons Salden, 09/98\n\

\e\n\

\tinput : input image of type float( stdin if '-’)\n\
\toutput : output image of type float( stdout if
absent) ";

main(argc,argv)

int argc;

char xxargv;

{
char in[256], out[256];
inr_init(argc,argv," ", Ucmd,Udetail);
lgetopt( n n, ] %S u, in’ " u, O’ " n, O),
Igetopt( nn , n %S n s Out, [TI] s 0, L] , O)’
if(tstopts())

tusage_(Ucmd, Udetail);

call_derivative(in,out);
return 0,

}

B.2 signature.c

#include <stdio.h>
#include <math.h>
#include <inrimage/image.h>

extern struct image ximage_();
extern char *i_malloc();

extern int debug_;
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void alloc_threeddimmatrix

(double #*xxthreeddimmatrix,

long dimX, /% size in x direction */
long dimY, /% size in y direction */
Iong dimT) /x size in t direction x/

allocates storage for threeddimmatrix of size dimX x dimY * dimT */

{

long i,j;

xthreeddimmatrix = (double *xx) malloc (dimX * sizeof(double xx));
if (xthreeddimmatrix == NULL)

{

printf("alloc_threeddimmatrix: not enough storage
available\n"),

exit(1);

for (i=0; i<dimX; i++)
{
(xthreeddimmatrix)[i] = (double *x) malloc (dimY x sizeof(double x));
if ((*threeddimmatrix)[i] == NULL)
{ ]
printf("alloc_ threeddimmatrix: not enough storage
available\n");
exit(1);

for (j=0; j<dimY; j++)

(xthreeddimmatrix){i}{j] = (double *) malloc (dimT * sizeof(double));

if ((+threeddimmatrix)[i](j] == NULL)
{

- printf("alloc_threeddimmatrix: not enough storage
available\n");

exit(l);
}

}

return;

void disalloc_threeddimmatrix
(double x*xthreeddimmatrix,

long dimX, /% size in x direction %/
long dimY, /x size in y direction ¥/
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long dimT) /% size in t direction %/

disallocates storage for threeddimmatrix of size dimX = dimY x dimTx/

{

long i,j;

for (i=0; i<dimX; i++)

{

for (j=0; j<dimY; j++)

free(threeddimmatrix[i]{j]);

}

free(threeddimmatrix);
return;

}

void alloc_threeucdimmatrix

(unsigned char ssxxthreeucdimmatrix,

long dimX, : /* size in x direction */
long dimY, /% size in y direction %/

iong dimT) /% size in t direction */

allocates storage for threeucdimmatrix of size dimX = dimY * dimT */

{

long i.j;

xthreeucdimmatrix = (unsigned char *x*) malloc (dimX * sizeof(unsigned char
*));
if (xthreeucdimmatrix == NULL)
{
printf("alloc_threeucdimmatrix: not enough storage
available\n");
exit(1);
}
for (i=0; i<dimX; i++)
{
(xthreeucdimmatrix)[i] = (unsigned char *x) malloc (dimY =* sizeof(unsigned
char x));
if ((xthreeucdimmatrix)[i] == NULL)
{
printf("alloc_threeucdimmatrix: not enough storage
available\n");
exit(1);
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for (j=0; j<dimY; j++)

(xthreeucdimmatrix)[i][j] = (unsigned char %) malloc (dimT * sizeof(unsigned
char));
if ((xthreeucdimmatrix)[i][j] == NULL)
{
printf("alloc_threeucdimmatrix: not enough storage
available\n");
exit(1);

void disalloc_threeucdimmatrix

(unsigned char x*xthreeucdimmatrix,

long dimX, /% size in x direction */
long dimY, /% size in y direction */
long dimT) /% size in t direction */

disallocates storage for threeucdimmatrix of size dimX * dimY * dimT =/

{

long ij;

for (i=0; i<dimX; i++)

{
for (j=0; j<dimY; j++)

free(threeucdimmatrix[i}{j]);
}
}
free(threeucdimmatrix);

return;

}

call_signature(char *x1der, char xylder, char x x2der, char xy2der, char xx1ylder,
char xout)
{
struct image *nfx 1, nfyl, +nfx2, *nfy2, snfx1yl, *nfout;
Fort_int Ifmtx 1{9], Ifmty 1 [9], ifmtx2[9], Ifmty2[9], Ifmtx 1y {9], Ifmtout{9];
fong dimXV, dimYZ;
Iong dimX, dimY, dimT,dimV;
float xnfx L buffer, xnfy 1 buffer, ¥nfx2buffer, *nfy2buffer, *xnfx 1y [ buffer;
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unsigned char snfoutbuffer;
int size, type, imagetype;

nfx1 =image_(xlder,"e"," " Ifmtx1);
nfyl =image_(ylder,"e"," " Ifmtyl);
nfx2 = image_(x2der,"e"," " Ifmtx2);

nfy2 =image_(y2der,"e"," " Ifmty2};
nfxlyl = image_(xlylder,"e"," v Ifmtx1yl);

dimXV = Ifmtx1{I DIMX];
dimYZ = fmtx 1 {I.DIMY]Y;
size = Ifmtx 1{I_BSIZE];
type = ifmtx 1[I.TYPE];
dimX = ifmtx 1 [I_NDIMX];
dimY = Ifmtx1[INDIMY};
dimT = Ifmtx 1[I NDIMZ];
dimV = Ifmtx | [[NDIMV];
imagetype = Ifmtx I [[_LEXP];

nfxIbuffer = (float *)i_malloc(dimXV * dimYZ x sizeof(float));
nfylbuffer = (float *)i_malloc(dimXV x dimYZ * sizeof(float));
nfx2buffer = (float *)i_malloc(dimXV * dimYZ * sizeof(float));
nfy2buffer = (float *)i_malloc(dimXV * dimYZ * sizeof(float));
nfxlylbuffer = (float *)i_malloc(dimXV * dimYZ x sizeof(float));

c_lptset(nfx 1,1);
clecflit(nfx1,dimYZ,nfx 1buffer);
fermnf_(&nfx1);
cIptset(nfyl,1);
clecflt(nfyl,dimYZ,nfylbuffer);
fermnf_(&nfyl);
cIptset(nfx2,1);
clecfit(nfx2,dimYZ,nfx2buffer);
fermnf_(&nfx2);
c_Iptset(nfy2,1);
c_lecflit(nfy2,dimYZ,nfy2buffer);
fermnf (&nfy2);
c_Iptset(nfx1yl,1);
clecflt(nfx1yl,dimYZ,nfx 1ylbuffer);
fermnf_(&nfx1yl);

Ifmtout{I DIMX] = dimXV;

Ifmtout{I DIMY] = dimYZ;
Ifmtout[I_BSIZE] = sizeof(unsigned char);
Ifmtout{I_ TYPE] = FIXE,

Ifmtout[I NDIMX] = dimX;

Ifmtout[I. NDIMY] = dimY;

Ifmtowt[I NDIMZ] = dimT;
Ifmtout{INDIMV] = dimV;
Ifmtout[I.EXP] = 0;
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nfout = image _(out,"c"," ",Ifmtout);
nfoutbuffer = (unsigned char *)i_malloc(dimXV * dimYZ
sizeof(unsigned char));

dosignature(dimX,

dimY,

dimT,

&nfx 1buffer,
&nfy lbuffer,
&nfx2buffer,
&nfy2buffer,
&nfx lylbuffer,
nfoutbuffer);

c-ecr(nfout,dimYZ,nfoutbuffer);
fermnf_(&nfout);
i_Free(&nfoutbuffer);

do_signature( long dimX,

long dimY,

long dimT,

float x*nfx 1 buffer,

float xxnfy]buffer,

float xxnfx2buffer,

float «xnfy2buffer,

float xxnfx 1ylbuffer,

unsigned char snfoutbuffer)

longi, j, k, I;

double sxxx I threeddimmatrix, **xy 1 threeddimmatrix,
wokxx2threeddimmatrix, sxxy2threeddimmatrix, xxx1ylthreeddimmatrix;

unsigned char xxxoutthreeucdimmatrix;

float x x [tmpbuf, * yltmpbuf, * x2tmpbuf, * y2tmpbuf, * x 1y Itmpbuf;

alloc_threeddimmatrix (&x Ithreeddimmatrix, dimX, dimY, dimT);
x Ltmpbuf = #nfx 1 buffer ;

for (k=0; k<dimT; k++)

for (j=0; j<dimY; j++)

for (i=0; i<dimX; i++)

x Ithreeddimmatrix[i]{jl[k] = (double) x(xItmpbuf + i + dimXx*j +
dimXxdimY=k);

free(*nfx 1 buffer) ;

alloc_threeddimmatrix (&y I threeddimmatrix, dimX, dimY, dimT);

yltmpbuf = *nfylbuffer ;
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for (k=0; k<dimT; k++)

for (j=0; j<dimY; j++)

for (i=0; i<dimX; i++)

ylthreeddimmatrix[i][j][k] = (double) x(y [tmpbuf + i + dimXxj +
dimX*dimYx*k);

free(xnfy 1buffer) ;

alloc_threeddimmatrix (&x2threeddimmatrix, dimX, dimY, dimT);

x2tmpbuf = xnfx2buffer ;

for (k=0; k<dimT; k++)

for (j=0; j<dimY; j++)

for (i=0; i<dimX; i-++)

x2threeddimmatrix[i][jl[k] = (double) *(x2tmpbuf + i + dimXxj +
dimXxdimYx*k);

free(xnfx2buffer) ;

alloc_threeddimmatrix (&y2threeddimmatrix, dimX, dimY, dimT);

y2tmpbuf = xnfy2buffer ;

for (k=0; k<dimT; k++)

for (j=0; j<dimY; j++)

for (i=0; i<dimX; i++)

y2threeddimmatrix[i][j][k] = (double) *(y2tmpbuf + i + dimXxj +
dimX*dimYx*k); -

free(xnfy2buffer) ;

alloc_threeddimmatrix (&x1yIthreeddimmatrix, dimX, dimY, dimT);

x 1y Itmpbuf = *nfx1ybuffer;

for (k=0; k<dimT; k++)
for (j=0; j<dimY; j++)
for (i=0; i<dimX; i++)
xlylthreeddimmatrix[i1{jl[k] = (double) *(x1yltmpbuf + i + dimXsxj +
dimXxdimY#k);
free(xnfx1ylbuffer) ;
alloc_threeucdimmatrix (&outthreeucdimmatrix, dimX, dimY, dimT);
signature(dimX,
dimY,
dimT,
x 1 threeddimmatrix,
ylthreeddimmatrix,
x2threeddimmatrix,
y2threeddimmatrix,
xlylthreeddimmatrix,
outthreeucdimmatrix);

disalloc_threeddimmatrix (x [threeddimmatrix,dimX,dimY,dimT);
disalloc_threeddimmatrix (y [threeddimmatrix,dimX,dimY,dimT);
disalloc_threeddimmatrix (x2threeddimmatrix,dimX,dimY,dimT);
disalloc_threeddimmatrix (y2threeddimmatrix,dimX,dimY,dimT);
disalloc_threeddimmatrix (x 1y I threeddimmatrix,dimX,dimY,dimT);
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for (i=0; i<dimX; i++)
for (j=0; j<dimY; j++)
for (k=0; k<dimT; k++)

{

nfoutbuffer[i + jxdimX + k«dimXxdimY] =

outthreeucdimmatrix[i][j]1[k];

disalloc_threeucdimmatrix (outthreeucdimmatrix,dimX,dimY,dimT);

B

}

signature(long dimX,
long dimY,
long dimT,
double #xx*x 1f,
double *xxy1f,
double #xxx2f,
double ##xy2f,
double *xxx1ylf,
unsigned char xxxoutf)

long i, |, k;

double temp;

for (k=0; k<dimT; k++)
for (i=0; i<dimX; i++)
for (j=0; j<dimY; j++)
{
temp =
if(temp > @)

outfTilfj1Ik] = 0;
}

else

outf[i]jik] = 1

}
}
return;
}
static char Ucmd[}=

"[-D] [-k nbKo]l [-xlder xlder]

/* loop variables */

/x see bottom latex code %/

[-ylder ylder] [-xlylder



xlylder] [-x2der x2der] [-y2der y2der] [-out outl";

static char Udetail[]=
"\t SEGMENTATION ON BASIS OF SIGNATURE\n\

\t\n\

\tAlfons Salden, 09/98\n\

\t\n\

\t-xlder : filename x derivative of input image\n\
\t-ylder : filename y derivative of input image\n\
\t-xlylder : filename xlyl derivative of input image\n\
\t-x2der : filename x2 derivative of input image\n\
\t-y2der : filename y2 derivative of input image\n\
\t-out : filename of output image\n\

\tinput : derivative images of type float( stdin if
-)\n\

\toutput : output image of type unsigned char{ stdout if
absent) ";

main(argc,argv)
int argc;
char sxargv;

{

char x1der[256], y1lder{256], x2der[256], y2der[256], xly1der[256];
char out[256]; .

inr_init(argc,argv, " ",Ucmd,Udetail);
igetoptl( "-x1der", "%s", xlder);
igetoptl( "-ylder", "%s", ylder);
igetoptl( "-x2der", "%s", x2der);
igetoptl( "~y2der", "%s", y2der);
igetoptl( "-xlylder", "$s",xlylder);

igetoptl( "-out", "%s", out);
if(tstopts())
iusage_(Ucmd,Udetail);
call_signature(x 1 der,ylder,x2der,y2der,x1ylder,out);

return O;

}

signature for segmentation in fore and background dynamics
of temporal image sequence */

temp = t1f[i][j}[k] = e2f[i][j1[k];

signature for segmentation in fore and background dynamics
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of spatial slice of temporal image sequence %/

temp = (xIf[i](jITk] * x2€[i] [j1(k] + y IfTi](j](K] * x Ly HTGIK) + x L) (j3K] +
(x MG + xy IE](1k] + y M1 GIKD + y2£GIKD * y UK

signature for segmentation on the basis of the phase of the
normalised flowline curvature vector field spatial slice of
temporal image sequence x/

temp = x H[i][}{k] * ((x1y HEIGITKD + x U] {10K] + y2f(i ]k * y HTIGIKD) *
(xU][00K] = x LEGIG1K] + y HGIGIKD + y LEIG1KD) -
y UEGIGIK] * (AEQTG10K] + x26Ti] (k] * x LT [1Tk] +
2.0 = x H[i1[j1Ik] * xLy LEG1GIK] = y TG K] +
y UKD = y2f[]G1kT + y HGH kD) -
yUTIGIK] = (2fLIGIKT * x TGk + x Ly W1k = y LEG]GIKT) *
(x L[] (GI0KT * x LEGI(G10K] + yUTHGIKD + y IIGITKD -
xHE)GIKT « (xULi[G10] * x26GIGIKT * x H(HGIKT +
2.0 % x 1KY = x Ly Q[ K] # y LA 0Kk] +
y UGIGIK] = y26Ti][j11K] * y HTEGIKD);
signature for segmentation on the basis of the isophote
curvature */

temp = - (x Lf[i][j][k] * le[i][i][k] * y2A[i]{j]{k] +
y UKD # y (10K = x2€Ti](j1k] -
2+ x UKD * x By QTG EK] = y LEGIGICK);

B.3 dynamic.c

#include <stdio.h>
#include <math.h>
#include <inrimage/image.h>

extern struct image *image_();
extern char xi_malloc();

extern int debug_;

void alloc_threedimmatrix

(double x*x*xthreedimmatrix,

long dimX, /% size in x direction */
long dimY, /% size in y direction x/
long dimT) /+ size in t direction ¥/
{
long i,j;
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xthreedimmatrix = (double *x*) malloc (dimX * sizeof(double *x));
if (xthreedimmatrix == NULL)
{
printf("alloc.threedimmatrix: not enough storage
available\n");
exit(1);
}
for (i=0; i<dimX; i++)
{
(xthreedimmatrix)[i] = (double **) malloc (dimY * sizeof(double *));
if ((xthreedimmatrix){i] == NULL)
{
printf("alloc_threedimmatrix: not enough storage
available\n");
exit(D);
}

for (j=0; j<dimY; j++)

(xthreedimmatrix)[i}[j] = (double x) malloc (dimT * sizeof(double));
if ((xthreedimmatrix)[i][j] == NULL)

{

printf("alloc_threedimmatrix: not enough storage
available\n");

exit(1l);
}
-} -
}
return;
}

void disalloc_threedimmatrix

(double **xthreedimmatrix,

long dimX, /% size in x direction */
long dimY, /% size in 'y direction */
long dimT) /% size in t direction */
{
long i,j;

for (i=0; i<dimX; i++)
{
for (j=0; j<dimY; j++)

free(threedimmatrix[i][j1);

58



free(threedimmatrix);
return;

}

void alloc_fourdimmatrix

(double *x*xxfourdimmatrix,

long dimX, /% size in x direction */
long dimY, /% size in y direction */
long dimT, /x size in t direction */
long dimS) /% size in s direction ¥/
{
long i,j.k;
int tempo ;

xfourdimmatrix = (double #xxx) malloc (dimX = sizeof(double #xx));
if (xfourdimmatrix == NULL)
{
printf("alloc_fourdimmatrix: not enough storage
available\n");
exit(1);
}

for (i=0; i<dimX; i++)

(xfourdimmatrix)[i] = (double *xx) malioc (dimY * sizeof(double %x));
if ((xfourdimmatrix)[i] == NULL)
{
printf("alloc_fourdimmatrix: not enough storage
available\n");
exit(1);
}
for (j=0; j<dimY; j++)
{
(xfourdimmatrix)[i][j] = (double ) malloc (dimT x* sizeof(double x));
if ((«fourdimmatrix)[i][j] == NULL)
{
printf("alloc_fourdimmatrix: not enough storage
available\n");
exit(1);
}
for (k=0; k<dimT; k++)

(xfourdimmatrix)[i]{j]{k] = (double *) malloc (dimS *
sizeof(double));
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if ((xfourdimmatrix)[i]{j][k] == NULL)
{

printf("alloc_fourdimmatrix:

storage available\n");
exit(1);

}

}

return;

}

void disalloc_fourdimmatrix

(double *xxxfourdimmatrix,

long dimX,
long dimY,
long dimT,
long dimS)
{
long i, j, k;

not enough

/*x size in x direction
/x size in y direction
/% size in t direction
/% size in s direction

total_mem_size -= sizeof(double ***)*dimX + sizeof(double *x)xdimXxdimY +
sizeof(double x)xdimXx*dimYx*dimT + sizeof(double)*dimX*dimY*dimT+dimS ;

for (i=0; i<dimX; i++)
for (j=0; j<dimY; j++)

for (k=0; k<dimT; k++)
{

}

free(fourdimmatrix[i]{j][k]);
}
}
free(fourdimmatrix);
return;

}

call_dynamic(long dimS§,
char xin,
char xout)

struct image *nfi, *nfo;
Fort_int Ifmti[9], Ifmto[9];
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long dimXV, dimYZ;

long dimX, dimY, dimT,dimV;
float *nfibuffer;

float xnfobuffer;

int size, type, imagetype;

nfi =image_(in,"e"," " lfmti);

dimXV = Ifmti[l_DIMX];
dimYZ = Ifmti[[_ DIMY];
size = Ifmti[I_BSIZE];
type = Ifmti[I_ TYPE];
dimX = Ifmti{I NDIMX];
dimY = Ifmti{I NDIMY];
dimT = Ifmti[I NDIMZ];
dimV = Ifmti[[ NDIM V],
imagetype = Ifmti[I_. EXP];

nfibuffer = (float *)i_malloc(dimXV * dimYZ * sizeof(float));

c_Iptset(nfi,1);
c_lecfit(nfi,dimYZ, nfibuffer);
fermnf_(&nfi);

Ifmto[[ DIMX] = dimXV * dimS;
Ifmto[I DIMY] =dimYZ; .
Ifmto[I_BSIZE] = sizeof(float) ;
Ifmto[I_.TYPE] = REELLE;
Ifmto[I NDIMX] = dimX;
Ifmto[INDIMY] =dimY;
Ifmto[INDIMZ] = dimT;
Ifmto[I NDIMV] = dimS;
fmto[I_ EXP] = imagetype;

nfo = image_(out,"c"," ,Ifmto);

nfobuffer = (float *)i_malloc(dimS * dimXV * dimYZ * sizeof(float));
do_dynamic(dimX,dimY,dimT,dimS,&nfibuffer,nfobuffer);
c-ecr(nfo,dimYZ, nfobuffer);

fermnf_(&nfo);

i_Free(&nfobuffer);
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do_dynamic(long dimX,
long dimY,
long dimT,
long dimS,
float **nfibuffer,
float *nfobuffer)

longi,j, k, [;
double x*xthreedimmatrix;
float * tmpbuf ;

alloc_threedimmatrix (&threedimmatrix, dimX+2, dimY+2, dimT+2);
tmpbuf = xnfibuffer ;

for (k=0; k<dimT; k++)

for (j=0; j<dimY; j++)

for (i=0; i<dimX; i++)

threedimmatrix[i+1][j+1][k+1] = (double) x(tmpbuf + i + dimXxj +
dimXx*dimYxk);

free(xnfibuffer) ;

for (I=0; 1<dimS; 14+)

fprintf(stderr,"scale %d\n",l);
dynamic(dimX,dimY,dimT,threedimmatrix);

for (i=0; i<dimX i++)
for (j=0; j<dimY; j++)
for (k=0; k<dimT; k++)

{
nfobuffer[l + dimS#(i + jxdimX + kxdimXxdimY)] =
(float) threedimmatrix[i+1][j+1][k+1];

}
}

disalloc_threedimmatrix (threedimmatrix, dimX+2,
dimY+2,dimT+2);

}

dynamic(long dimX,
long dimY,
long dimT,
double *xxf)

{

long i, j, k; /% loop variables */

3

double xxxg; /* work copy of [ +/
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alloc_threedimmatrix (&g, dimX+2, dimY+2, dimT+2);

—- copy f into g — */

for (i=1; i<dimX; i++)
for (j=1; j<dimY; j++)
for (k=1; k<dimT; k++)
glil(jlik] = flil {1k

—- create ghost boundaries for g — %/

for (i=1; i<dimX; i++)
for (j=1; j<dimY; j++)

glij1{0] = gli1(j]{1];
glil(j}[dimT+1] = g[i][j}[dimT];

}

for (j=1; j<dimY; j++)
for (k=0; k<dimT+1; k++)
{
gldimX+1](jl{k] = gldimX][jl{k];
}

for (i=1; i<dimX+1; i++)
for (k=0; k<dimT+1; k++)
{
glil[dimY+1][k] = g[il[dimY][k];
}

for (j=1; j<dimY+1; j++)
for (k=0; k<dimT+1; k++)
{
glO1G1Ik] = g[1]{jllk];
}

for (i=0; i<dimX+1; i++)
for (k=0; k<dimT+I; k++)

{
gliJ[0][k] = glil[11[k];

—- dynamic filtering —- */
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for (i=1; i<dimX; i++)
for (j=1; j<dimY; j++)
for (k=1; k<dimT; k++)

110k = glil[IK] +
( (gli+1TI71(K] - ghlGIIKD) /
(cosh(gi+1][j](K] - glil[jIIk]) * cosh(gli+11G1TK] - glilljlIk]) * 26.0)
+ (gi-111IK] - gBIGIkD /
(cosh(gli-111[K] - glil[1Tk) * cosh(gli-11[j1[K1 - gliI1K]) * 26.0)
+ (gliG+1IK] - gliKD) /
(cosh(g[i][j+11K] - gll[jITK]) * cosh(glillj+ 1[I - glilG1IK]) * 26.0)
+ (glill-111K) - gLk /
(cosh(glil[j-111k] - gli]GIK) * cosh(gfil[}- 11[K] - glil[j)(k]) * 26.0)
+ (gli+1] - ghilIKD) /
(cosh(gil[j1Tk+11 - glil[jIIK]) * cosh(g[il[j1lk+11- gli[j1{K])  26.0)
+ (gl k-1 - gLIGIKD) /
(cosh(g[ilfjlTk-11- glil[1[k) * cosh(glil{1lk-1]- gliI1LKk]) * 26.0)
+ (gli+1[+111K] - Gk /
(cosh(gli+11j+111k] - gliIGIKD) * cosh(gli+11[j+11[K] - ghl[j)Ik]) * 26.0)
+ (gli+11-11[K] - gill{1IkD) /
(cosh(gfi+11(j-11(k] - glGIIkD) * cosh(gli+11[j-111K] - glljlIk]) * 26.0)
+ (gli- 1+ 1K1 - glilfIKD) /
(cosh(gli-11[j+111k] - glil[IIk]) * cosh(eli-1)[j+111K] - glil[{IIK]) * 26.0)
+ (gli-11[5-170k] - glIGIKD) /
(cosh(gi-1][j-11[K] - g[i]G1K) * cosh(gli-11[j-11[K] - glil[jIIk]) * 26.0)
+ (gli+ G+ 1k+1] - glll11KD) /
(cosh(gli+11[j+ 11Tk+1] - glIIIkD) * cosh(gli+11[j+111k+1] - ghGIIK]) * 26.0)
+ (gli+G+11k-11 - liIGIKD) /
(cosh(gli+11[j+11[k-1] - g[i)j1[K]) * cosh(gli+ ][+ 1][k-1] - gfi}[j][k]) * 26.0)
+ (gli+ - 1k+11 - gl /
(cosh(gli+1][j-11Tk+1] - gfiIIK) * cosh(gli-+L1[j-110k+1] - gfIGIKD) * 26.0)
+ (gli+ - 11k-11 - gD /
(cosh(gli+11[j-11Tk-11 - glilj1Ik]) * cosh(gli+11-111k-11- glil[il[k}) * 26.0)
+ (gli- 1+ 11k - gD /
(cosh(gli-1][j+11Tk+1] - gliIGIIKI) * cosh(gli-11[j+110k+1] - KD * 26.0)
+ (gli-N+111k-11 - gfIGIKD) /
(cosh(gli-1][j+11Tk-11 - gliIIk]) * cosh(gli- 11+ 11[k-1] - gEITkD) * 26.0)
+ (gli- 1l 11k+11 - glilG{KD) /
(cosh(gi-111j-110k+11 - gI[Ik]) * cosh(gli- 11[j-1]Tk+1] - gll(K]) * 26.0)
+ (gli-1[j-11lk-11- glIGKD) /
(cosh(g[i-1][j-11[k-1] - g[il[jIIK]) * cosh(gi-111j-11k-11 - glIGIIK]) * 26.0)
+ (glG+Tk+1] - gl /
(cosh(glil[j+11Tk+1] - gliIGIIkD) * cosh(glillj+11[k+11- ghllilIk]) * 26.0)
+ (glillj-1k+11 - glGIKD) /
(cosh(g[ilj- 11Tk+11- gilE1IKD) * cosh(g[illj-11[k+11- glilfi1Tk]) * 26.0)
+ (glillj+ k-1 - lIGIKD /
(cosh(glilj+11Tk-11 - g[iIIK]) * cosh(glil[j+11k-1] - ghil{j1(k]) * 26.0)
+ (g[if-11(k-11 - ghITkD) /
(cosh(glilj-11rk-11 - gliIIKD)  cosh(glillj-11{k-11 - gl  26.0)
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+ (gli+1110k+11 - gliIKD) /

(cosh(gli+11(j]lk+1] - gli] j][k1) * cosh(g[i+1][1[k+1] - gfilljIIK]) * 26.0)
+ (gli- 1) [k+1] - glIGIKD) /

(cosh(gli-1[j]k+11 - glil[j][k]) * cosh(g[i-1][j][k+1] - g[ilj1(KI) * 26.0)
+ (gli+1)[{10k-11 - gfIGIKD) /

(cosh(g[i+1][j1(k-11 - ghI[jTk]) * cosh(gli+1][j1[k-11 - glil[j1[k]) * 26.0)
+ (gli- [ k-1 - gl GIKD) /

(cosh(g[i-11[j]1k-11- gl 1K) * cosh(gli- 11[j}[k-1] - glil (k) * 26.0)

),
}
disalloc.threedimmatrix (g, dimX+2, dimY+2, dimT+2);

return;

}

static char Ucmd[]=
"[-D] {-k nbKo] [-1da a] [-idimS dimS] [input | -]
[output] *;

static char Udetail[]=

"\tDYNAMIC SCALE-SPACE FILTERING\n\
\t\n\

\talfons Salden, 09/98\n\

\t\n\

\eTt = - §7 \n\
\t26-connectedness\n\

\t-idimS : number of scales\n\

\tinput : no-vectorial input image of type float( stdin
if r-)\n\
\toutput : vectorial output image of type float( stdout

if absent)";

main(arge,argv)
int argc;
char sxargv;

{
long dimsS;
char in[256], out[256];
inr_init(argc,argv, " " ,Ucmd, Udetail);

igetoptl("-idims","%1d",&dimS);

1get0pt( " u, n %S u’ in’ " u’ 0’ H ||, O);
lgetopt( n n’ n %S n’ OU[, n n, 0’ 1 n, O)’
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if(tstopts())
iusage (Ucmd,Udetail);

call_dynamic(dimS,in,out);

return O;
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