An analysis of operator splitting techniques in the stiff case

Résumé : Operator splitting methods are commonly used in many applications. We focus here on the case where the evolution equations to be simulated are stiff. We will more particularly consider the case of two operators: a stiff one and a nonstiff one. This occurs in numerous application fields (e.g., combustion, air pollution, and reactive flows). The classical analysis of the splitting error may then fail, since the chosen splitting timestep Δt is in practice much larger than the fastest time scales: the asymptotic expansion Δt→0 is therefore no longer valid. We show here that singular perturbation theory provides an interesting framework for the study of splitting error. Some new results concerning the order of local errors are derived. The main result deals with the choice of the sequential order for the operators: the stiff operator must always be last in the splitting scheme.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2000, 161 (1), pp.140-168. 〈10.1006/jcph.2000.6495〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00532739
Contributeur : Brigitte Briot <>
Soumis le : jeudi 4 novembre 2010 - 13:42:07
Dernière modification le : jeudi 14 avril 2016 - 01:04:55

Identifiants

Collections

Citation

Bruno Sportisse. An analysis of operator splitting techniques in the stiff case. Journal of Computational Physics, Elsevier, 2000, 161 (1), pp.140-168. 〈10.1006/jcph.2000.6495〉. 〈inria-00532739〉

Partager

Métriques

Consultations de la notice

65