Land use classification at meso-scale using remotely sensed data

Résumé : In this paper we present a framework to generate a land cover classification from coarse spatial resolution remotely sensed data acquired by NOAA-AVHRR sensor. We define a model for the pixels’ content and a process allowing to compute the individual proportions of the different land cover types for each pixel. The method is based on a linear mixture model of reflectances and exploits the good temporal frequency of NOAA acquisitions. The result provides a description in terms of land covers percentage within each NOAA pixel. A quality evaluation is performed on a test area for which high spatial resolution and temporal NOAA data are simultaneously available.
Type de document :
Communication dans un congrès
Proceedings of the International Society for Photogrammetry and Remote Sensing (ISPRS), Jul 2000, Amsterdam, Netherlands. XXXIII (Part B7), pp.205-212, 2000
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00532742
Contributeur : Brigitte Briot <>
Soumis le : mercredi 13 avril 2016 - 10:25:59
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : jeudi 14 juillet 2016 - 17:35:24

Fichier

Bouzidi-ISPRS-2000.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00532742, version 1

Collections

Citation

Sonia Bouzidi, Fabien Lahoche, Isabelle Herlin, Volker Hochschild, Helmut Staudenrausch. Land use classification at meso-scale using remotely sensed data. Proceedings of the International Society for Photogrammetry and Remote Sensing (ISPRS), Jul 2000, Amsterdam, Netherlands. XXXIII (Part B7), pp.205-212, 2000. 〈inria-00532742〉

Partager

Métriques

Consultations de la notice

242

Téléchargements de fichiers

58