
HAL Id: inria-00532897
https://hal.inria.fr/inria-00532897

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Study of Shared-Memory Mutual Exclusion Protocols
using CADP

Radu Mateescu, Wendelin Serwe

To cite this version:
Radu Mateescu, Wendelin Serwe. A Study of Shared-Memory Mutual Exclusion Protocols using
CADP. 15th International Workshop on Formal Methods for Industrial Critical Systems ’2010, Sep
2010, Antwerp, Belgium. 2010. <inria-00532897>

https://hal.inria.fr/inria-00532897
https://hal.archives-ouvertes.fr


A Study of Shared-Memory Mutual Exclusion

Protocols using CADP

Radu Mateescu and Wendelin Serwe

Inria Grenoble – Rhône-Alpes, Inovallée, 655, av. de l’Europe,
Montbonnot, F-38334 Saint Ismier, France

{Radu.Mateescu,Wendelin.Serwe}@inria.fr

Abstract. Mutual exclusion protocols are an essential building block
of concurrent systems: indeed, such a protocol is required whenever a
shared resource has to be protected against concurrent non-atomic ac-
cesses. Hence, many variants of mutual exclusion protocols exist in the
shared-memory setting, such as Peterson’s or Dekker’s well-known pro-
tocols. Although the functional correctness of these protocols has been
studied extensively, relatively little attention has been paid to their non-
functional aspects, such as their performance in the long run. In this
paper, we report on experiments with the performance evaluation of mu-
tual exclusion protocols using Interactive Markov Chains. Steady-state
analysis provides an additional criterion for comparing protocols, which
complements the verification of their functional properties. We also care-
fully re-examined the functional properties, whose accurate formulation
as temporal logic formulas in the action-based setting turns out to be
quite involved.

1 Introduction

Mutual exclusion is a long-standing problem in concurrent programming, formu-
lated initially by Dijkstra almost half a century ago [10]. It consists in controlling
the access of concurrent processes to a shared resource such that at most one
process can use the resource at a time and that the execution of the system
is guaranteed to progress. In the shared-memory setting, in which processes
communicate by atomic read and write operations on shared variables, a large
number of protocols implementing mutual exclusion were proposed and studied
in the literature (see, e.g., the surveys in [37, 2, 42]). Most of the effort has been
concentrated on analyzing the functional correctness of these protocols, either
by hand-written proofs [10, 26, 5, 35, 27, 40, 2, 41] or by applying automated rea-
soning and model checking techniques [29, 24, 9, 4]. However, much less attention
has been given to the model-based performance evaluation of these protocols,
most of the existing works dealing with performance measurements of protocol
implementations on specific architectures [43, 45].

In this paper, we show how Interactive Markov Chains (Imc) [19] and their
implementation in the Cadp verification toolbox [17] can be applied to the
performance analysis of shared-memory mutual exclusion protocols. We assume



2 R. Mateescu and W. Serwe

that only the mean values of actual durations are known, which can be modeled
conveniently using exponentially distributed durations in the Imc setting. If
more concrete duration information is available, this can be encoded using Imcs
by means of phase-type distributions [21], which can be employed as precise
approximations of arbitrary (discrete or continuous) probability distributions.

As high-level specification language for Imcs, we use Lotos NT [6, 18], a
process-algebraic language with imperative flavor accepted as input by Cadp.
We study the stochastic behavior of these protocols in the long run by further
transforming the Imcs generated from Lotos NT specifications into continuous-
time Markov chains (in which nondeterminism is solved by a uniform scheduler)
and analyzing them using the Bcg Steady [20] tool of Cadp, which computes
the throughputs of various actions at steady-state. This allows to compare the
performance of various protocols and to study the impact of certain parameters
(e.g., relative speed of processes, fraction of time taken by critical sections, etc.)
on the performance of the system and/or of individual processes. Another useful
measure that can be obtained from steady-state analysis is the mean number of
accesses to shared variables performed by each process [7]. For cache-coherent,
distributed shared memory architectures, this enables to enhance the locality of
a mutual exclusion protocol by making each shared variable local to the process
that accesses it most often.

One advantage of Imcs is that the same specification of a protocol can be
used for both performance evaluation and functional verification [15]. Although
mutual exclusion protocols serve traditionally as basic examples to illustrate the
use of model checkers, it is not obvious to find an accurate description of their
correctness properties in the action-based setting. We revisit these properties and
specify them concisely using Mcl [32], an extension of alternation-free modal
µ-calculus with data-handling constructs and fairness operators accepted as in-
put by the Evaluator 4.0 on-the-fly model checker. We observe that certain
important properties are of linear-time nature, requiring formulas of Lµ2 (the
µ-calculus of alternation depth two) [12] or Actl∗ [34]. Using Mcl formulas
parameterized by data values, we apply model checking also to determine some
non-functional parameters of the protocols, such as the degree of overtaking be-
tween processes. The results of model checking (e.g., about the starvation of
certain processes) are corroborated by the results of performance evaluation.

The paper is organized as follows. Section 2 defines the terminology, shows the
encoding of mutual exclusion protocols using Lotos NT and how the stochastic
aspects are incorporated to yield Imc models. Section 3 presents the analysis of
the protocols by means of model checking and performance evaluation. Finally,
Section 4 gives some concluding remarks and directions for future work.

2 Background

After recalling the mutual exclusion problem in the shared-memory setting, we
present in this section the modeling of the behavioral and stochastic aspects of
mutual exclusion protocols using Lotos NT.



A Study of Mutual Exclusion Protocols using CADP 3

2.1 Shared-Memory Mutual Exclusion Protocols

We briefly present here the mutual exclusion problem in the shared-memory
setting as formulated in [2]. Concurrent processes communicate and synchro-
nize only by means of atomic read/write operations on shared variables. Each
process consists of four parts of code, executed cyclically in the following order:
non-critical section, entry section, critical section, and exit section. The shared
resource can be accessed only in the critical section, and the shared variables can
be accessed only in the entry and exit sections. Processes are allowed to stop in
their non-critical section but must leave their critical section in a finite amount
of time. The entry and exit sections must manipulate the shared variables in
such a way that at most one process at a time is in its critical section and the
execution of processes is guaranteed to progress (see Sec. 3.1 for a more precise
formulation of these properties). For simplicity, we consider in this study shared-
memory protocols involving only two processes; as pointed out in [3], any mutual
exclusion protocol for two processes can be generalized to n ≥ 2 processes.

2.2 Modeling Mutual Exclusion Protocols using LOTOS NT

We specified the mutual exclusion protocols formally using Lotos NT [6, 18],
a variant of the E-Lotos [23] standard implemented within Cadp. Lotos NT
tries to combine the best of process-algebraic languages and imperative pro-
gramming languages: a user-friendly syntax, common to data types and pro-
cesses; constructed type definitions and pattern-matching; and imperative state-
ments (assignments, conditionals, loops, etc.). Lotos NT is supported by the
Lnt.Open tool, which translates Lotos NT specifications into labeled transi-
tion systems (Ltss) suitable for on-the-fly verification using Cadp.

Figure 1 shows the Lotos NT specification of the protocol proposed by
Burns & Lynch [5], instantiated for two processes. This protocol uses two shared
bits, which we represent as the cells A[0] and A[1] of a two-bit array, in the
same way as [3]. The original pseudo-code of the protocol (see Fig. 1(a)) contains
conditional jump statements, which are translated in Lotos NT using “break”
statements (see Fig. 1(b)). The non-critical and critical sections are modeled
using the (non-synchronized) actions NCS and CS. The read/write operations
on a shared variables are modeled as rendezvous synchronizations on gate A
with a process Var, which models a cell of the two-bit array (see Fig. 1(d)).
Note that process Var is parameterized by a natural number instead of merely a
boolean value; this will allow Var to be reused also for other protocols involving
shared natural numbers.

As in Lotos, emission and reception of values on a gate can take place simul-
taneously, as in the action “A (Read, 0, ?a0, j)” (where the values Read, 0, and
j are emitted and a value is received in variable a0), except that the variables
holding the received values must be previously declared using a “var” statement.
Unlike Lotos, gates are typed in Lotos NT: in process P, the types Pid, Ac-
cess, and Operation denote the communication profiles (i.e., number and types
of the exchanged values) of gates NCS, CS, and A, respectively. To facilitate the



4 R. Mateescu and W. Serwe

loop
non-critical section;

L0: A[j] := 0;
if j = 1 and A[0] = 1 then
goto L0

end if;
A[j] := 1;
if j = 1 and A[0] = 1 then
goto L0

end if;
L1: if j = 0 and A[1] = 1 then

goto L1

end if;
critical section;
A[j] := 0

end loop (a)

par A, CS, NCS in

par A in

par

P [NCS, CS, A] (0)
||

P [NCS, CS, A] (1)
end par

||

par

Var [A] (0,0) || Var [A] (1,0)
end par

end par

||

L [A, CS, NCS, MU]
end par (c)

process P [NCS:Pid, CS:Access,
A:Operation] (j:Nat) is

loop var a0, a1:Nat in

NCS (j);
loop L in

A (Write, j, 0, j);
A (Read, 0, ?a0, j);
if j == 0 or a0 == 0 then

A (Write, j, 1, j);
A (Read, 0, ?a0, j);
if j == 0 or a0 == 0 then

break L
end if

end if

end loop;
A (Read, 1, ?a1, j);
while j == 0 and a1 == 1 loop

A (Read, 1, ?a1, j)
end loop;
CS (Enter, j); CS (Leave, j);
A (Write, j, 0, j)

end var end loop

end process (b)

process Var [A:Operation] (ind, val:Nat) is

loop

select

A (Read, ind, val, ?any Nat)
[]

A (Write, ind, ?val, ?any Nat)
end select

end loop

end process (d)

process L [A:Operation, CS:Access, NCS:Pid, MU:Latency] is

loop var ind, pid:Nat in select

A (Read, ?ind, ?any Nat, ?pid); MU (Read, ind, pid)
[]

A (Write, ?ind, ?any Nat, ?pid); MU (Write, ind, pid)
[] ...
CS (Enter, ?pid); MU (Enter, pid)
[]

NCS (?pid); MU (Work, pid)
end select end var end loop

end process (e)

Fig. 1. Burns & Lynch protocol [5] for two processes: (a) Unstructured pseudo-code of
process Pj (j ∈ {0, 1}); (b) Lotos NT code of process Pj ; (c) Lotos NT code of the
systems’ architecture; (d) Lotos NT code of the cell A[ind ] of the shared array; (e)
Lotos NT code of the auxiliary process L for inserting Markov delays.



A Study of Mutual Exclusion Protocols using CADP 5

specification of temporal properties (see Sec. 3.1), the critical section is split in
two actions and each read/write operation carries the identifier of the underly-
ing process. The Lotos NT specification of process Pj follows very closely the
pseudo-code of the protocol, but makes explicit all read operations on shared
variables before each evaluation of an expression containing these variables. The
architecture of the system (see Fig. 1(c)) shows the interconnection of processes
and shared variables. For all protocols considered, all shared variables are ini-
tialized to 0. The additional process L (see Fig. 1(d)) serves to insert Markov
delays at appropriate places in the model (see Sec. 2.3).

We specified 23 mutual exclusion protocols in Lotos NT following the
scheme shown in Figure 1: Burns & Lynch [5], Craig and Landin & Hagersten
(Clh) [8, 28], Dekker [11], Dijkstra [10], Peterson [35], Knuth [26], Lamport [27],
Kessels [25], Mellor-Crummey & Scott (Mcs) [33], Szymanski [40], the black-
white bakery protocol of [41], and twelve protocols generated automatically in [3].
Additionally, we also specified a trivial (incorrect) one-bit protocol for bench-
marking purposes. The total size of the specifications (including comments, and
after factoring common datatypes and processes in separate modules as much
as possible) is about 2850 lines of Lotos NT.

2.3 Transformation to Interactive Markov Chains

The Lotos NT specification of each protocol is transformed into an Interactive
Markov Chain (Imc) by adding Markov delays in a constraint-oriented style [15].
Precisely, we add a concurrent process L to the system consisting of the two pro-
cesses and the shared variables. A skeleton of process L is shown in Figure 1(e).

Because process L is synchronized on all actions A, CS, and NCS, L enforces
that each of these actions is followed by a MU action, which can be renamed into a
stochastic transition once the Lts corresponding to the Lotos NT specification
has been generated. The parameters of action MU allow to distinguish, for each
process, between a read access, a write access, a stay in the critical section, and
a stay in the non-critical section. We exploit these parameters to experiment
with different rates for all of these actions.

Unfortunately, although each process taken separately is deterministic and
never blocks (but rather enters a busy-wait loop), the obtained Imcs contain
nondeterministic choices whenever two concurrent read/write accesses to shared
variables are possible in the same state. To resolve this nondeterminism, we
assume the presence of a uniform scheduler, which chooses equiprobably one of
the two actions (see Sec. 3.2 for details). This assumption is based on the fact
that an uniform scheduler provides the best choice (in the sense of maximising
entropy [38]) when no additional information is available about the choice of
actions performed by the physical system. A more general solution, inspired
by a technique used in the context of Markov decision processes [36], would
be to consider all possible schedulers to identify the interval (minimum and
maximum) of possible throughput values at steady state (an effective procedure
for this analysis in the Imc setting was proposed very recently [44], but is not
yet available as an implementation).



6 R. Mateescu and W. Serwe

3 Analysis of Mutual Exclusion Protocols using CADP

This section is devoted to the automated analysis of the mutual exclusion proto-
cols using the Cadp toolbox [17]. The protocols were analyzed by model check-
ing and performance evaluation, both kinds of analysis being automated using
Svl [16] scripts.

3.1 Model Checking

We expressed the correctness properties of the mutual exclusion protocols
as formulas in the Mcl language [32], which extends the alternation-free µ-
calculus [12] with regular expressions over transition sequences similar to those
of Pdl [13], data-handling constructs inspired from functional programming
languages, and a (generalization of) the infinite looping operator of Pdl-∆ [39].
Mcl allows a concise formulation of temporal properties, especially when these
properties are parameterized by data values, such as the index of processes in
mutual exclusion protocols. The Evaluator 4.0 model checker [32], built us-
ing the Open/Cæsar [14] graph exploration environment of Cadp, implements
an efficient on-the-fly model checking procedure for Mcl, by translating Mcl
formulas into boolean equation systems and solving them on-the-fly using the al-
gorithms of the Cæsar Solve library [31]. The model checker also exhibits full
diagnostics (examples and counterexamples) as subgraphs of the Lts illustrating
the truth value of Mcl formulas.

Mcl is roughly built from three kinds of formulas. First, action formulas A

characterize actions (transition labels) of the Lts, which contain a gate name G

followed by a list of values v1, ..., vn exchanged during the rendezvous on G. An
action formula is built from action patterns and the usual boolean connectors.
An action pattern of the form “{G ?x:T !e where b(x)}” matches every action
of the form “G v1 v2” where v1 is a value of type T that is assigned to vari-
able x, v2 is the value obtained by evaluating the expression e, and the boolean
expression b(v1) evaluates to true. Arbitrary combinations of value matchings
(“!e”) and value extractions (“?x:T ”) are allowed, all variables assigned by value
extraction being exported to the enclosing formula. Second, regular formulas

R characterize sequences of transitions in the Lts. A regular formula is built
from action formulas and (extended) regular expression operators: concatena-
tion (“R1.R2”), choice (“R1|R2”), unbounded iterations (“R∗” and “R+”), and
iterations bounded by counters (“R{n}”). Third, state formulas F characterize
states of the Lts by specifying (finite or infinite) tree-like patterns going out
from these states. A state formula is built from boolean connectors, possibility
(“<R>F”) and necessity (“[R]F”) modalities containing regular formulas, mini-
mal (“mu X.F”) and maximal (“nu X.F”) fixed point operators, quantifiers over
finite domains (“exists x:T.F” and “forall x:T.F”), and the infinite looping oper-
ator (“<R>@”). An informal explanation of the semantics of Mcl state formulas
will be given by means of the examples below.
Mutual exclusion. This essential safety property of mutual exclusion protocols
states that two processes can never execute simultaneously their critical section



A Study of Mutual Exclusion Protocols using CADP 7

code. It can be expressed in Mcl by a single box modality containing a regular
formula that characterizes the undesirable sequences:

[ true* . { CS !”ENTER” ?j:Nat } . (not { CS !”LEAVE” !j })* .
{ CS !”ENTER” ?k:Nat where k <> j }

] false

This modality forbids the existence of sequences containing the entry of a process
j in the critical section followed by the entry of another process k 6= j in the
critical section before process j has left its critical section. Note how the process
index j is extracted from a transition label by the first action predicate “{ CS
!”ENTER” ?j:Nat }” and is used subsequently in the formula.
Livelock freedom. This liveness property1 states that each time a process is in
its entry section, then some process will eventually execute its critical section.
A direct formulation of this property in Mcl yields the formula below:

[ true* . { NCS ?j:Nat } . (not { ?any ?”READ”|”WRITE” ... !j })* .
{ ?any ?”READ”|”WRITE” ... !j }

] mu X . (< true > true and [ not { CS !”ENTER” ?any } ] X)

The minimal fixed point formula binding the X variable expresses the inevitable
execution of some critical section after process Pj executed the first read or write
operation of its entry section. However, this formula is violated by all the pro-
tocols considered, because each time some process decides to stop its execution
(an unrealistic hypothesis if we assume a fair scheduling of processes by the un-
derlying operating system) the other process can spin forever on reading shared
variables. Figure 2(b) illustrates the counterexample of this formula exhibited
by Evaluator 4.0 for Peterson’s protocol. This protocol uses three shared vari-
ables, two of which being encoded as array cells A[0], A[1] and the third one by
a separate variable B. The lasso-shaped diagnostic in Figure 2(b) shows that
after process P1 has executed its entry section and is ready to enter the critical
section (because variable B has value 0) but does not do so, process P0 may spin
forever in the while loop of its entry section.

In fact, a livelock situation occurs when both processes are executing cycli-
cally at least one operation but none of them is able to progress towards its
critical section. Therefore, an accurate formulation of livelock freedom in Mcl
must forbid the existence of such cycles:

[ true* . { NCS ?j:Nat } . (not { ?any ?”READ”|”WRITE” ... !j })* .
{ ?any ?”READ”|”WRITE” ... !j }

] not < (not { CS ... })* . { ?G:String ... ?k:Nat where G <> ”CS” } .
(not { CS ... })* . { ?G:String ... !1 - k where G <> ”CS” }

> @

1 Although some authors [3] use the term deadlock for this property, we prefer the term
livelock used in [2]. Indeed, in the shared-memory setting involving only atomic read
and write operations, the behavior of the system cannot contain deadlocks (i.e., sink
states in the Lts), since each process can at any time execute some instruction.



8 R. Mateescu and W. Serwe

loop
non-critical section;
A[j] := 1;
B := k;
while A[k] = 1

and B = k do
end while;
critical section;
A[j]:= 0

end loop (a)

8 4 0

9 5 1

6 2

7 3

A !READ !1 !1 !0 B !READ !0 !1
NCS !1

B !READ !1 !0 NCS !0 A !WRITE !1 !1 !1
A !WRITE !0 !1 !0 B !WRITE !0 !1

B !WRITE !1 !0 A !READ !0 !0 !1

(b)

01 2

3 4

5 6

7 8

9 10

11 1213 14

15 16

B !READ !1 !0

NCS !0 NCS !1
A !WRITE !0 !1 !0 A !WRITE !1 !1 !1

NCS !1 NCS !0

A !WRITE !1 !1 !1 A !WRITE !0 !1 !0

B !WRITE !0 !1 B !WRITE !1 !0

A !READ !0 !1 !1 A !READ !1 !1 !0          

B !READ !0 !1 B !READ !1 !0A !READ !0 !1 !1 A !READ !1 !1 !0

B !READ !0 !1

(c)

Fig. 2. (a) Peterson’s protocol for process Pj (k = 1 − j); (b) Livelock produced by
spinning of process P0 when process P1 “has decided to stop”; (c) Livelocks produced
after P0 or P1 crashed while executing their entry sections.

The < ... > @ operator, which is the Mcl counterpart of the infinite looping
operator of Pdl-∆, expresses the existence of an infinite sequence consisting
of the concatenation of subsequences satisfying a regular formula. Note that
the formula above, when translated to plain modal µ-calculus, belongs to the
fragment Lµ2 of alternation depth two [12], because the regular formula inside
the infinite looping operator (which denotes a maximal fixed point) contains
star operators (which denote minimal fixed points). Nevertheless, this formula
is evaluated in linear-time by the algorithm proposed in [32], which generalizes
the detection of accepting cycles in Büchi automata.

We can also observe that (a state-based version of) this formula cannot be
specified in Ltl [30], because it expresses the existence of sequences (denoted by
the < ... > @ operator) starting from various states of the Lts (the states at the
end of the subsequences captured by the [...] modality) and not only from the
initial state of the Lts. However, as it was pointed out in [3], livelock freedom
can be expressed just by forbidding the existence of unfair cycles (assuming that
the initial state of the Lts can be reached from any other state, which holds for
all protocols considered here). Therefore, the box modality can be dropped and
the resulting formula can be expressed in Ltl.

Starvation freedom. The absence of livelocks guarantees the global progress
of the system, but does not ensure the access of individual processes to their
critical sections. Starvation freedom is a stronger property (it implies livelock
freedom), which states that each time a process is in its entry section, then that

process will eventually execute its critical section. It can be expressed in Mcl
as follows:

[ true* . { NCS ?j:Nat } . (not { ?any ?”READ”|”WRITE” ... !j })* .
{ ?any ?”READ”|”WRITE” ... !j }

] not < (not { CS ... !j })* . { ?G:String ... ?k:Nat where G <> ”CS” or k <> j } .
(not { CS ... !j })* . { ?G:String ... !1-k where G <> ”CS” or 1-k <> j }

> @



A Study of Mutual Exclusion Protocols using CADP 9

The < ... > @ operator describes a cycle containing at least one action performed
by each process, but no entry of process Pj in its critical section. The formula
belongs to Lµ2, but (a state-based version of) it can also be expressed in Ltl in
the same way as livelock freedom.
Bounded overtaking. Even if a mutual exclusion protocol is starvation-free,
it is interesting to know, when a process Pj begins its entry section, how many
times the other process Pk can access its critical section before Pj enters its own
critical section. This information can be determined using Evaluator 4.0 by
checking the following Mcl formula for increasing values of max :

< true* . { NCS !0 } . (not { ?any ?”READ”|”WRITE” ... !0 })* .
{ ?any ?”READ”|”WRITE” ... !0 } .
( (not { CS ?any !0 })* . { ?G:String ... !0 where G <> ”CS” } .

(not { CS ?any !0 })* . { CS !”ENTER” !1 }
) { max }

> true

This formula expresses the existence of a sequence in which process P0 executes
its non-critical section, then the first instruction of its entry section, followed by
max repetitions of a subsequence in which P0 executes some instruction but only
P1 enters its critical section (a symmetric formula must be checked to determine
the overtaking of process P1 by P0). For each starvation-free protocol, there
exists a value of max such that the formula above holds for max and fails for
max + 1. To minimize the number of model checking invocations, one can start
with max = 1 and (if the formula holds for this value) keep doubling it until
finding the first value max ′ for which the formula fails, then use a dichotomic
search to reduce the size of the interval [1,max ′] to 1.
Independent progress. A requirement formulated explicitly by Dijkstra [10]
was that if a process stops (i.e., loops forever) in its non critical section, this
must not affect the access of the other processes to their critical sections. In
subsequent works, this requirement is not mentioned as a property of mutual
exclusion protocols, but is often stated aside in the definition of the framework [5,
2]. However, we believe that this requirement is fundamental (at least from a
model checking point of view), and should be verified separately. In Mcl, it can
be expressed using the following formula:

forall j:Nat among { 0 ... 1 } .
[ true* ] (< { NCS !1-j } > true implies < { ... !j }* . { CS ... !j } > @)

which states that whenever the process Pk (where k = 1−j) is about to enter its
non-critical section, then the other process Pj can freely execute its code. Note
that this formula belongs to Lµ2 and can be also expressed in Actl∗ but not
in Ltl, because it states the existence of infinite sequences starting from several
(unknown) states of the Lts. As regards expressiveness, Mcl lies between the
Lµ1 and Lµ2 fragments of the modal µ-calculus, and is strictly more expressive
than Ltl, whose model checking problem can be translated into the evaluation
of a single < ... > @ operator that encodes the underlying Büchi automaton.



10 R. Mateescu and W. Serwe

loop
non-critical section;
while B != j do
end while;
critical section;
B:= k

end loop (a)

4

051

62 7

3

B !WRITE !1 !0

NCS !1CS !LEAVE !0
NCS !0CS !ENTER !0B !READ !1 !0

B !READ !0 !0NCS !0

(b)

Fig. 3. (a) Trivial one-bit protocol for process Pj (k = 1− j); (b) Counterexample for
the independent progress of P0 when P1 has stopped in its non-critical section.

To see that the property of independent progress is not implied by the three
other properties of mutual exclusion protocols, consider the trivial one-bit pro-
tocol shown in Figure 3(a). This simple protocol satisfies mutual exclusion and
starvation freedom, but does not satisfy independent progress because it forces
a strict alternation between the accesses of the two processes to their critical
sections. The evaluation of the formula above on the Lts of the trivial protocol
using Evaluator 4.0 yields the counterexample shown in Figure 3(b), in which
process P0 executes its main loop once but then spins forever in its entry section
because P1 has stopped in its non-critical section. The trivial protocol should
be considered an unacceptable solution to the mutual exclusion problem, since
it was proven in [5] (where independent progress is part of the framework def-
inition) that any livelock-free mutual exclusion protocol must use at least two

shared bits.
Finally, we can remark that the independent progress property cannot be

made stronger without destroying the livelock or starvation freedom of the pro-
tocols: if a process is allowed to stop (e.g., by crashing) outside its non-critical
section, then the other process may spin forever without entering its critical
section. For all protocols considered here, we checked that this indeed holds;
Figure 2(c) shows the diagnostic produced by Evaluator 4.0 illustrating, for
Peterson’s protocol, the livelock of each process when the other one has crashed
after executing the first instruction of its entry section.
Model checking results. Table 1 summarizes the model checking results for
the protocols considered. The generation of the Imcs for all protocols takes about
1 minute and a half on a standard desktop computer. Because the Imcs are small,
the execution of the Svl script (48 lines) implementing the model checking of
all properties on all protocols takes about 10 minutes. All properties have been
checked on-the-fly using Lnt.Open and Evaluator 4.0.

All the protocols considered satisfy the mutual exclusion, livelock freedom,
and (except the trivial) the independent progress properties stated above. As
regards the overtaking of processes, all starvation-free protocols (except Szy-
manski’s) are symmetric, the minimal (1) and maximal (4) amount of over-
taking being reached by Knuth’s and by Dekker’s protocol, respectively. The
unbounded overtaking of one process by the other one has been checked by
replacing, in the bounded overtaking formula given above, the bounded itera-



A Study of Mutual Exclusion Protocols using CADP 11

Protocol Number of Imc size L/S- Overtaking
(2 processes) variables states transitions free P0/P1 P1/P0

trivial 1 89 130 S 1 1

Burns & Lynch 259 368 L ∞ 3
Szymanski 547 803 S 2 1
2b p1 2 259 369 L ∞ 1
2b p2 271 386 L ∞ 1
2b p3 277 392 L 1 ∞

Dekker 599 856 S 4 4
Knuth 917 1312 S 1 1
3b p1 486 690 S 3 3
3b p2 3 627 879 L ∞ 1
Peterson 407 580 S 2 2
3b c p1 627 884 S 2 2
3b c p2 407 580 S 2 2
3b c p3 363 516 S 2 2

Lamport 1599 2274 L ∞ ∞
Kessels 1073 1502 S 2 2
Clh 690 936 S 2 2
4b p1 4 432 610 L ∞ 1
4b p2 871 1229 S 3 3
4b c p1 1106 1542 L ∞ 1
4b c p2 1106 1542 L 1 ∞

Dijkstra 5 899 1260 L ∞ ∞
Mcs 424 612 S 2 2

B&W Bakery 7 31222 43196 S 2 2

Table 1. Model checking results: the first column gives the name of the protocol; the
second column gives the number of shared variables; the third and fourth columns give
the size of the Imc; the fifth column indicates whether the protocol is only livelock-
(L) or livelock- and starvation-free (S); the last two columns give the maximal number
of times process Pj can overtake process Pk in accessing the critical section (Pj/Pk).

tion operator R{max} by an infinite looping operator <...>@. All livelock-free,
but not starvation-free protocols (except Dijkstra’s and Lamport’s) are asym-
metric w.r.t. overtaking, only one process being able to overtake the other one
unboundedly.

3.2 Performance Evaluation

To measure the performance of a mutual exclusion protocol, we compute the
throughput of the critical section, i.e., the steady state probability of being in
the critical section. All delays being equal, the higher the throughput, the more
efficient the protocol, because the longer a process is in the critical section, the
less time it spends executing the protocol or waiting to enter the critical section.



12 R. Mateescu and W. Serwe

Performance evaluation of an Imc is based on the transformation of the
Imc into a Continuous-Time Markov Chain (Ctmc) extended with probabilistic
choices. A first step is to transform the Imc into a stochastic Lts by renaming
all actions: (1) each action not representing a delay is hidden, i.e., renamed into
the invisible action (written i in Lotos NT and Cadp), and (2) each MU action
is transformed into an exponential delay by associating a rate λ to it, i.e., renam-
ing it into“rate λ”. Using exponential delays reflects that we make hypotheses
only about the relations between the mean values of the actual durations, be-
cause our model-based performance evaluation does assume neither a particular
application nor a particular hardware architecture.

In all our experiments, we kept the rates for accesses to the shared variables
constant: each read access has rate 3000 and each write access has rate 2000,
reflecting that, on average, a write access is generally slower than a read access.
For complex operations, namely fetch-and-store (used by the protocols Clh and
Mcs) and compare-and-swap (used by Mcs), we used the same rate as for a
write access. We also kept the rate for the critical section constant at 100, i.e.,
making the assumption that the critical section contains (on average) several
read and write accesses. Hence, we varied only the delay for the non-critical
section of both processes to compare the protocols in different usage scenarios.

In a second step, the stochastic Lts is minimized for stochastic branching
bisimulation [22]. Unfortunately, this does not yield a Ctmc, because due to
the nondeterminism only some, but not all, of the i actions are eliminated. As
discussed in Section 2.3, this nondeterminism is resolved by assuming an uniform
scheduler. Practically, each nondeterministic choice is replaced by a uniform
probabilistic choice, by renaming all i transitions into “prob 0.5”.

Finally, we compute the throughput of the entries into the critical sections
by both processes in the steady state using the Bcg Steady tool [20], which
is able to handle Ctmcs extended with probabilistic choices. The results of our
experiments are shown in Figures 4 to 6. Because these figures depend on the
arbitraily chosen rates, the concrete values are, although exact up to floating
point errors, less interesting than the relations and tendencies.

The performance evaluation experiments are automated by an Svl script
(160 lines); computing all shown performance measures requires less than ten
minutes on a standard computer.

Figure 4 shows the effect of varying the ratio “critical-section-rate / non-
critical-section-rate”. Concerning the global throughput, the results should not
be surprising. A first observation is that the longer the non-critical section with
respect to the critical section (and the accesses to the shared variables), the less
the performance of the protocols differs. Conversely, the largest performance
differences of the protocols are observed if the critical section is longer than the
non-critical section. A second observation is that the complexity of the protocol
(number of shared variables and length of entry and exit sections) impacts its
performance: the most complex protocol (B&W Bakery) is the least efficient,
whereas the trivial one-bit protocol is the most efficient, the second most efficient
being Clh, followed by Peterson’s protocol.



A Study of Mutual Exclusion Protocols using CADP 13

(a) Global throughput

(b) Throughput of process 0

Fig. 4. Performance when varying the ratio critial-section-rate/non-critical-section-rate

Fig. 5. Relative throughputs (ratio rate critical section/rate non-critical section = 2)



14 R. Mateescu and W. Serwe

Concerning the throughput of process 0, the values are wider spread than
for the global throughput. This difference is related to the symmetry concern-
ing bounded overtaking of the protocols. For symmetric protocols, where the
processes can overtake each other the same number of times, the throughput of
process 0 is half the global throughput. For asymmetric protocols, the through-
put of process 0 is either higher (if process 0 can overtake process 1 more often)
or lower (if process 1 can overtake process 0 more often) than half the global
throughput. Thus, the highest throughput for process 0 is obtained by some
automatically generated asymmetric protocols (3b p2 and 4b c p1).

Figure 5 shows the throughputs of all protocols, using 50 for the rate of the
non-critical section (thus, the non-critical section is, on average, two times as long
as the critical section). One observes significant differences in the throughputs of
the two processes if and only if the protocol is asymmetric; for these protocols,
the qualitative and quantitative properties are related in the sense that the
process that can overtake the other has a significantly higher throughput.

We also observed that making a protocol symmetric might (slightly) improve
its performance. For instance, the original version of the automatically generated
protocol 3b c p1 as described in [3] is asymmetric: with the same rates as in
Figure 5, the throughput of process 0 (14.7499) is lower than the throughput of
process 1 (15.0387). However, the symmetric version (that was used throughout
this paper) has a higher global throughput of 29.8854 (instead of 29.7886, i.e.,
an increase of 0.3%, to be compared with the 20% performance improvement
between the least and most efficient protocol).

The three plots of Figure 6 show the effect of varying the ratio between the
non-critical section rates of the two processes. In all three plots, for ratio 1,
the rate of the non-critical section is 50 for both processes; towards the left,
process 0 is slowed down (by decreasing the rate of the non-critical section of
process 0); towards the right, process 1 is slowed down (by decreasing the rate
of the non-critical section of process 1).

Figure 6(a) graphically justifies the name “symmetric” protocols: they are
symmetric in the sense that slowing down process 0 has exactly the same effect
on the global throughput as slowing down process 1: in both cases the general
throughput decreases in the same way. Figure 6(b) shows that the situation is
different for asymmetric protocols: slowing down the advantaged process that
can overtake the other one reduces the general throughput more than slowing
down the disadvantaged process that can be overtaken. This seems intuitive, be-
cause slowing down the advantaged process, slows down both processes, whereas
slowing down the disadvantaged process should not impact too much the advan-
taged process. Figure 6(c) confirms this intuition. On the one hand, for all those
asymmetric protocols where process 0 can overtake process 1 infinitely, slowing
down process 1 has less impact on the throughput of process 0 than slowing
down process 0. On the other hand, for the two protocols 2b p3 and 4b c p2,
where process 0 can be overtaken infinitely by process 1, slowing down process 1
has more impact on the throughput of process 0 than slowing down process 0.



A Study of Mutual Exclusion Protocols using CADP 15

(a) Global throughput for symmetric protocols

(b) Global throughput for asymmetric protocols

(c) Throughput of process 0 for asymmetric protocols

Fig. 6. Performance when varying the ratio ncs-rate-p0/ncs-rate-p1



16 R. Mateescu and W. Serwe

4 Conclusion and Future Work

This study aimed at assessing the applicability of model-based approaches for
analyzing the functional behavior and the performance of shared-memory mu-
tual exclusion protocols. As underlying semantic model, we used Imcs [19], which
provide a uniform framework suitable both for model checking and performance
evaluation. We carried out the analysis of 23 protocols using the state-of-the-
art functionalities provided by the Cadp toolbox [17]: formal specification us-
ing the Lotos NT imperative-style process-algebraic language; description of
functional properties using the Mcl data-based temporal language; manipula-
tion of Imcs by minimization and steady-state analysis using the Bcg Min and
Bcg Steady tools; automation of the analysis procedures using Svl scripts.

We attempted to formulate the correctness properties of mutual exclusion
protocols accurately and observed that several of them (livelock and starvation
freedom, independent progress, unbounded overtaking) belong to Lµ2, the µ-
calculus fragment of alternation depth two; however, they can still be expressed
using the infinite looping operator of Pdl-∆ [39], which can be checked in linear-
time [32]. Performance evaluation made it possible to compare the protocols ac-
cording to their efficiency (global and individual throughput of processes) and to
study the effect of varying several parameters (relative speeds of processes, ratio
between the time spent in critical and non-critical sections, etc.). We observed
that symmetric protocols are more robust concerning the difference in execution
speed between processes, which confirms the importance of the symmetry re-
quirement originally formulated by Dijkstra [10]. The quantitative results were
corroborated by those of functional verification, in particular the presence of
(asymmetric) starvation of processes, detected using temporal formulas, was
clearly reflected in the steady-state behavior of the corresponding protocols.

An interesting future work direction is to continue the performance evaluation
study for adaptive mutual exclusion protocols involving n > 2 processes, which
so far were subject only to analytical studies [1]. Another direction would be a
more detailed modeling of the underlying hardware architecture, in particular
non-uniform memory access times. For instance, knowing which process accesses
a variable most frequently might guide the placement of that variable to the
local memory of the appropriate processor in the architecture.

References

1. J. H. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning.
Proc. of ISDC’00, LNCS 1914, pp. 29–43, 2000.

2. J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion:
major research trends since 1986. Distributed Computing, 16:75–110, 2003.

3. Y. Bar-David and G. Taubenfeld. Automatic discovery of mutual exclusion algo-
rithms. Proc. of DISC’03, LNCS 2848, pp. 136–150, 2003.

4. M. Botincan. AsmL specification and verification of Lamport’s bakery algorithm.
J. of Computing and Information Technology, 13(4):313–319, 2005.



A Study of Mutual Exclusion Protocols using CADP 17

5. J. E. Burns and N. A. Lynch. Mutual exclusion using indivisible reads and writes.
Proc. of ACCCC’80, pp. 833–842, 1980.

6. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, W. Serwe, and
G. Smeding. Reference manual of the LOTOS NT to LOTOS translator (Ver-
sion 5.0). INRIA/VASY, 107 pages, Mar. 2010.

7. G. Chehaibar, M. Zidouni, and R. Mateescu. Modeling multiprocessor cache pro-
tocol impact on MPI performance. Proc. of QuEST’09, IEEE Press, 2009.

8. T. S. Craig. Building FIFO and priority-queuing spin locks from atomic swap.
Technical Report 93-02-02, University of Washington, Seattle, Feb. 1993.

9. G. Delzanno and A. Podelski. Model checking in CLP. Proc. of TACAS’99,
LNCS 1579, pp. 223–239, 1999.

10. E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-

mun. ACM, 8(9):569–570, Sept. 1965.
11. E. W. Dijkstra. Co-operating sequential processes, pages 43–112. Academic Press,

New York, 1968.
12. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-

sitional mu-calculus. Proc. of LICS’86, pp. 267–278, 1986.
13. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.

J. Comput. Syst. Sci., 18(2):194–211, Sept. 1979.
14. H. Garavel. Open/Cæsar: an open software architecture for verification, simulation,

and testing. Proc. of TACAS’98, LNCS 1384, pp. 68–84, 1998.
15. H. Garavel and H. Hermanns. On combining functional verification and perfor-

mance evaluation using CADP. Proc. of FME’02, LNCS 2391, pp. 410–429, 2002.
16. H. Garavel and F. Lang. SVL: a scripting language for compositional verification.

Proc. of FORTE’01, pp. 377–392, 2001.
17. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2006: a toolbox for the

construction and analysis of distributed processes. Proc. of CAV’07, LNCS 4590,
pp. 158–163, 2007.

18. H. Garavel and M. Sighireanu. Towards a second generation of FDTs – rationale
for the design of E-LOTOS. Proc. of FMICS’98, pp. 187–230, 1998.

19. H. Hermanns. Interactive Markov chains and the quest for quantified quality.
LNCS 2428, 2002.

20. H. Hermanns and C. Joubert. A set of performance and dependability analysis
components for CADP. Proc. of TACAS’03, LNCS 2619, pp. 425–430, 2003.

21. H. Hermanns and J.-P. Katoen. Performance evaluation:=(process algebra+model
checking) Markov chains. Proc. of CONCUR’01, LNCS 2154, pp. 59–81, 2001.

22. H. Hermanns and M. Siegle. Bisimulation algorithms for stochastic process algebras
and their BDD-based implementation. Proc. of ARTS’99, LNCS 1601, pp. 244–265,
1999.

23. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization, Genève, Sept. 2001.

24. H. E. Jensen and N. A. Lynch. A proof of Burns N-process mutual exclusion
algorithm using abstraction. Proc. of TACAS’98, LNCS 1384, pp. 409–423, 1998.

25. J. L. W. Kessels. Arbitration without common modifiable variables. Acta Infor-

matica, 17:135–141, 1982.
26. D. E. Knuth. Additional comments on a problem in concurrent programming

control. Commun. ACM, 9(5):321–322, May 1966.
27. L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer

Systems, 5(1):1–11, Feb. 1987.
28. P. S. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent

multiprocessors. Proc. of IPPS’94, pp. 165–171, 1994.



18 R. Mateescu and W. Serwe

29. Z. Manna and A. Pnueli. Tools and rules for the practicing verifier, pages 125–159.
ACM Press and Addison-Wesley, 1991.

30. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems,
volume I (specification). Springer Verlag, 1992.

31. R. Mateescu. CAESAR SOLVE: a generic library for on-the-fly resolution of
alternation-free boolean equation systems. STTT, 8(1):37–56, 2006.

32. R. Mateescu and D. Thivolle. A model checking language for concurrent value-
passing systems. Proc. of FM’08, LNCS 5014, pp. 148–164, 2008.

33. J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Transactions on Computer Systems,
9(1):21–65, Feb. 1991.

34. R. D. Nicola and F. W. Vaandrager. Action versus state based logics for transition

systems, LNCS 469, pp. 407–419, 1990.
35. G. L. Peterson. Myths about the mutual exclusion problem. IPL, 12(3):115–116,

1981.
36. M. L. Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. Wiley, 1994.
37. M. Raynal. Algorithmique du parallélisme : le problème de l’exclusion mutuelle.

Dunod-Informatique, Paris, 1984.
38. A. Shiryaev. Probability. Springer, 1996.
39. R. Streett. Propositional dynamic logic of looping and converse. Information and

Control, (54):121–141, 1982.
40. B. K. Szymanski. A simple solution to Lamport’s concurrent programming problem

with linear wait. Proc. of ICSS’88, pp. 621–626, 1988.
41. G. Taubenfeld. The black-white bakery algorithm and related bounded-space,

adaptive, local-spinning and FIFO algorithms. Proc. of DISC’04, LNCS 3274, pp.
56–70, 2004.

42. G. Taubenfeld. Synchronization algorithms and concurrent programming. Pearson,
Prentice Hall, 2006.

43. J.-H. Yang and J. H. Anderson. A fast, scalable mutual exclusion algorithm.
Distributed Computing, 9(1):51–60, Aug. 1995.

44. L. Zhang and M. R. Neuhäußer. Model checking interactive Markov chains. Proc.

of TACAS’10, LNCS 6015, pp. 53–68, 2010.
45. X. Zhang, Y. Yan, and R. Castaneda. Evaluating and designing software mutual

exclusion algorithms on shared-memory multiprocessors. IEEE Parallel Distributed

Technology, 4(1):25–42, 1996.


