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ABSTRACT
Enforcing SLAs (Service Level Agreements) for services de-
ployed on large-scale distributed infrastructures, such as grids
and clouds, is complex owing to fluctuating customer de-
mand and unpredictable resource availability. Current sys-
tems either address specific application domains or fail to
provide a complete QoS assurance solution. This work pro-
poses a generic framework to assist service providers in en-
forcing quality properties in distributed environments. The
framework provides a rich set of QoS management functions,
including negotiation, translation, and resource provision-
ing. Importantly, the framework supports dynamic adap-
tation; that is, it automatically modifies service behavior
and resource usage in order to maintain agreed service lev-
els while satisfying service provider-specific constraints. We
have implemented an initial prototype in a grid environment
and demonstrated its effectiveness in minimizing SLA viola-
tions.
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1. INTRODUCTION
Service-Oriented Architectures (SOAs) promote building

software systems by integrating loosely-coupled services dis-
covered over the network [18]. The interaction between ser-
vice consumers and providers is governed by service level
agreements (SLAs), which constrain not only functional as-
pects, but also non-functional requirements such as QoS
properties of the provided service. Maintaining the promised
QoS properties is a major concern for service providers in
order to avoid losses and penalties.
Most research on QoS assurance in SOAs targets compos-

ite services, where managing QoS typically involves chang-
ing the service composition (e.g., replacing services by more
suitable ones) [21]. Such work does not address how in-
dividual, atomic services guarantee QoS properties, which
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unavoidably requires controlling the underlying infrastruc-
ture. On the other hand, work that targets atomic services
in the SOA context, such as [4, 19, 11], fails to address all
the phases of the SLA life-cycle. This paper considers QoS
assurance for atomic services, taking into account the com-
plete SLA life-cycle. In particular, the paper concentrates
on atomic services that build on large-scale distributed in-
frastructures, such as clusters, grids or clouds. Examples in-
clude services that expose scientific HPC (high-performance
computing) applications deployed on grids and services that
expose multi-tier applications deployed on clusters.

Guaranteeing QoS compliance for such services is com-
plex and involves multiple, interrelated management activ-
ities, such as negotiating QoS properties with customers,
translating SLA terms to resource requirements, allocating
resources and deploying service implementations on the re-
sources. The problem is further complicated by fluctuating
service workloads and unpredictable faults, very common in
large-scale environments. Accommodating this dynamism
requires continuous monitoring of the operating conditions
and performing corrective actions, such as re-allocating re-
sources, migrating computational elements or re-negotiating
agreements. The objective of these actions is to avoid viola-
tions of SLA terms while satisfying service provider-specific
constraints, such as maximizing resource utilization. In or-
der to address these challenges, reusable mechanisms and
tools for providing and enforcing quality properties are es-
sential. Such tools must be configurable to service-provider
needs while remaining applicable to a large variety of dis-
tributed infrastructures.

This work proposes a generic framework to assist service
providers in enforcing quality properties in distributed envi-
ronments. The framework integrates a rich set of QoS man-
agement mechanisms, including negotiation, translation and
resource provisioning. Importantly, the framework supports
dynamic adaptation; that is, support for monitoring and au-
tomatically modifying service behavior and resource usage.
Dynamic adaptation is not well-supported by existing ap-
proaches [19, 4, 12, 19, 25, 11] and is a major focus of this
paper. To increase its applicability, the framework builds
on the standard SAGA API that provides a uniform and
consistent interface to the most commonly used distributed
functionality. A prototype of the framework has been devel-
oped; this prototype builds on the XtreemOS [7] grid and
leverages the Dynaco [6] adaptation model which is based
on the MAPE Autonomic Computing control loop [13].

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the gap in the QoS life-cycle. Following



that, the Section 3 explains the foundations of our proposal.
In Section 4, we introduce the QU4DS framework, use cases
and details about its current implementation. The flac2ogg
service provider is exposed as a case study which is followed
by an evaluation in Section 5. Related work is summarized in
a table and further discussed in Section 6. Finally, Section 7
concludes the work and discusses future research directions.

2. THE GAP IN THE Q OS LIFE-CYCLE
The Service-Oriented Architecture [18] relies on the ser-

vice abstraction to support building loosely-coupled, dis-
tributed applications. Relationships between service cus-
tomers and providers are defined through electronic con-
tracts, called Service-Level Agreements (SLAs). SLAs define
the expected quality of service as well as rules that apply if
these expectations are violated [5]. Ensuring the quality as-
pects of SLAs and thus avoiding SLA violations is important
to service providers in order to avoid penalties, reduce costs,
and improve their reputation.
QoS assurance is addressed by the SLA life-cycle which

comprises three phases [20]:

1. Description. Defines the qualities, how they will be
measured, and the penalties that should be employed
in case of violations.

2. Negotiation. Covers the interaction between the par-
ties in order to agree on the contract terms.

3. Assurance. Deals with enforcing the contract, that is,
guaranteeing that the agreed terms will not be vio-
lated.

Describing, negotiating and assuring QoS have generally
been examined from two distinct points of views. On the one
hand, QoS description and negotiation have been widely in-
vestigated by means of which are the service qualities that
service providers should expose in order to enrich their busi-
ness model. The WSLA [16] and WS-Agreements [2] specifi-
cations are widely used to describe how to describe and ne-
gotiate QoS. On the other hand, QoS ensuring mechanisms
at runtime have often been investigated on clusters, grids
and clouds environments by means of which are the qualities
that the resource infrastructures are able to provide. Basi-
cally, such approaches guarantee that resource provision will
be delivered according to predefined QoS as, for instance,
exposed by [10]. Interestingly, both points of view have in-
vestigated QoS by only considering their own needs, visions
and scopes and not thinking of the problem of describing,
negotiating and assuring QoS as the same problem. While
the QoS description and negotiation phases delegate QoS as-
surance to infrastructure layers, the latter limit themselves
to understanding resource-level QoS, which is not straight-
forwardly translated to higher-level QoS. Even though both
points of view have adopted common standards such as Web
Services (WS) [24], they still limit themselves to their spe-
cific problems. Therefore, there is a gap between describing
and negotiating QoS and the actual underlying mechanisms
which ensure them.

3. BASIC QOS ASSURANCE CAPABILITIES
We deal with the QoS life-cycle gap (see Section 2) based

on the following three core capabilities: a uniform infrastruc-
ture interface, QoS translation, and self-adaptation. The
following paragraphs describe these three capabilities, which
are then put together in Section 4.

3.1 A Uniform Infrastructure Usage
Developing QoS assurance mechanisms relies heavily on

the interfaces and constraints exposed by the underlying dis-
tributed infrastructure. Cloud infrastructures offer a sim-
ple interface [3, 14], composed basically of the create(),
terminate() and status() operations for managing virtual
machines. On the contrary, infrastructures such as grids
and clusters offer complex interfaces based, for instance, on
batch jobs and MPI (Message Passing Interface). Despite
the benefits of relying on simple interfaces, the simpler the
infrastructure usage is, the more limited the capability of
providing QoS assurance mechanisms is. Moreover, simpler
interfaces make it harder to take full advantage of exist-
ing infrastructures. There is clearly a trade-off between the
simplicity and abstraction provided by infrastructure inter-
faces and their level of support for developing QoS assurance
mechanisms.

An interesting solution to the aforementioned trade-off
is the Simple Grid API (SAGA) [9, 8], an open standard
maintained by the Open Grid Forum. SAGA proposes a
high-level API that simplifies grid usage and promotes grid
interoperability. The API is designed to be extensible, thus
increasing its applicability to different contexts. To take
advantage of existing distributed infrastructures while eas-
ing their usage, we propose a uniform and simple view of
the distributed infrastructure based on extending a SAGA
subset. Specifically, our interface is based on the SAGA
job abstraction and associated life-cycle1 and includes the
most important job-related operations enhanced with price
accounting. The details of each operation are as follows:

create(jobDescription) Creates a job based on a descrip-
tion, whose only mandatory attribute is the binary file.
The description might optionally include job resource
requirements.

run() Launches the job. The resource on which the job
will run depends on the infrastructure scheduling poli-
cies and on the resource requirements, if the latter are
provided.

cancel() Cancels the job execution.

checkpoint() Saves the current job execution state with-
out suspending it.

suspend() Suspends the job execution.

resume() Continues the execution of a suspended job.

migrate() Migrates the execution of a previously check-
pointed and resumed job to another resource. The
resource to which the job will be migrated will be cho-
sen by the infrastructure according to its scheduling
policy.

1The SAGA job life-cycle has the following states:
NEW, RUNNING, SUSPENDED, DONE, CANCELED,
FAILED [8].



registerCallback(metric, callback) Subscribes to events
about the current value of a job metric.

Finally, the use of the underlying infrastructure should be
accounted for and linked to prices based on an appropriate
pricing model, such as subscriptions, pay-per-use, or auc-
tions. Linking prices to infrastructure-provided services is
useful for using clouds as the underlying infrastructure, but
this aspect is outside the scope of this paper.

3.2 QoS Translation
Executing services on top of the earlier-defined infrastruc-

ture requires mapping service requirements (e.g., response
time constraints) to abstractions understood by the infras-
tructure (e.g., number of resources). This is not trivial,
even if considering high-level infrastructure interfaces [11].
Indeed, the QoS requirements must be interpreted, under-
stood and finally translated to lower-level resource require-
ments which are oriented to infrastructure usage. QoS trans-
lation can rely on analytical models, application profiling
techniques or service implementation details. Moreover, it
should be possible to interpret resource configurations in or-
der to determine which QoS the infrastructure is able to
provide. The efficiency and accuracy of the QoS transla-
tion depends on the available knowledge of service behavior
and implementation. For instance, consider a throughput
QoS, defined as the capability of treating 50 requests per
second. This requirement could be simply translated to a
‘high-throughput’ resource requirement or to the more ac-
curate requirement of ‘64 resources, 3GHz CPU, 16GB mem-
ory, interconnected by a high-speed network’, depending on
the knowledge of service implementation details.

3.3 Self-Adaptation
Although translating QoS to resource configurations is

necessary for conceiving QoS assurance mechanisms, it is
insufficient for providing QoS guarantees. The mechanisms
should take into account the dynamism inherent in the un-
derlying infrastructure, the unpredictability of service de-
mand, as well as possible SLA re-negotiations. To deal with
this dynamism and unpredictability, the mechanisms should
support self-adaptation [17, 1], that is, they should support
adapting the service implementation dynamically and au-
tonomously in response to changes in underlying resources
and measured QoS.
To facilitate implementing self-adaptation, this work uses

the Dynaco adaptation framework [6], which separates the
adaptation behavior from functional interests and decom-
poses it into distinct adaptation concerns. Dynaco is based
on the MAPE (Monitor, Analysis, Planning, Execution) au-
tonomic model [13], as explained in the following.

Monitor Sensors gather information about specific metrics
(e.g., completion time) and send it to a monitoring
system, which informs subscribed entities using events.

Analysis Based on received events, the analysis decides
whether any action should be taken. If so, it creates
a strategy containing the adaptation goal to be per-
formed. In Dynaco, the analysis phase is implemented
by a generic decision-making engine which is driven
by domain-specific policies. Policies can be defined
as ECA (event-condition-action) rules of the form ‘if
a more powerful resource is available, migrate service

task to it’ or ‘if service task is late, replicate it and get
the result from the first finished replica’. Importantly,
these policies can be dynamically replaced, thus allow-
ing Dynaco to handle unforeseen scenarios, not only
predicted changes.

Planning The planning phase relies on a generic planning
engine, which is driven by guides. Based on those
guides, the engine generates a plan with the necessary
commands to implement the chosen strategy. For ex-
ample, a plan for the service migration strategy would
be ‘suspend(), checkpoint(), migrate(), resume()’.

Executor The Executor is in charge of executing the plan,
effecting the actual changes on application execution.
If there is a problem during plan execution, the mon-
itor informs the analysis entity, which decides how to
react.

4. QU4DS: QUALITY ASSURANCE FOR DIS-
TRIBUTED SERVICES

Our goal is to address the gap in the QoS life-cycle by pro-
viding mechanisms that ensure the agreed contract terms. In
order to tackle this problem, we put together the aforemen-
tioned uniform way of using distributed infrastructures, the
QoS translation and the support for self-adaptation (cf. Sec-
tions 3.1, 3.2, 3.3) into a flexible framework, called QU4DS
(Quality Assurance for Distributed Services). Thus, we pro-
vide a solution which is able to: (i) negotiate QoS objec-
tives with the customer; (ii) translate QoS parameters and
resource configurations in a bi-directional way; (iii) auto-
matically deploy the service on appropriate resources; and
(iv) ensure the agreed QoS by reacting to underlying in-
frastructures changes while keeping compliant to the QoS
objectives. The following sections detail the framework ar-
chitecture as well as its uses cases and implementation.

4.1 Architecture
The QU4DS architecture is depicted by Figure 1. QU4DS

aims to assist service providers in providing QoS assurance
for services deployed on distributed infrastructures. In a
nutshell, the service provider and customer agree on an
SLA that includes QoS objectives through a negotiation pro-
cess. This negotiation involves QoS translation and resource
checking to verify that it is possible to satisfy the required
QoS. After an agreement is established, a service instance is
finally deployed. During service execution, the QoS Assur-
ance Controller verifies periodically if the execution keeps
compliant to the QoS. If the QoS Assurance Controller be-
comes aware of any event that may impact QoS provision
(e.g., resource failure, establishments of a new agreement),
it reasons about a strategy for reacting to such an event.
The strategy is translated to a plan and finally executed on
the infrastructure that will employ the changes.

The framework builds on a monitoring and actuation API
that abstracts over heterogeneous infrastructures. QU4DS
relies on a uniform infrastructure API based on SAGA as
described in Section 3.1. The structure of the framework
and its elements as shown in Figure 1 are explained next.

QU4DS It serves as the interface with service customers
while coordinating the SLA management activities.



Figure 1: The QU4DS (Quality Assurance for Dis-
tributed Services) framework is able to negotiate
and ensure QoS by automatically managing the ser-
vice execution on the infrastructure.

SLA Negotiator Responsible for describing and negotiat-
ing SLAs with customers. It takes into account QoS
objectives and their translation to resource configura-
tions.

QoS Translator It converts QoS objectives to resource con-
figurations and vice-versa. It may rely on analytical
performance models or on profiling data from previ-
ous service runs.

Service Instantiator It discovers and allocates appropri-
ate resources for hosting the service, and instantiates
and configures the necessary service elements.

QoS Assurance Controller Analyses events, plans and
executes appropriate actions based on both service-
specific QoS objective and service-provider objectives.

4.2 Use Cases
Two use cases are exposed on the sequence diagram il-

lustrated by Figure 2 and the QU4DS architecture (cf. the
numbered flows on Figure 1). The first use case represents
SLA negotiation and contract establishment. In this use
case, the service costumer proposes an initial contract to
the SLA Negotiator by describing its desired QoS (1,2). The
QoS Translator translates such QoS (3) to a resource config-
uration, whose availability and price are checked using the
infrastructure API (4). As the required resources were not
available, the SLA Negotiator contacts the QoS Translator
(5) that interprets the current resource configuration and

its price to the possible QoS that is able to be provided.
The service costumer accepts the contract and establishes
an SLA with the provider (6). Following that, the SLA
Negotiator asks the Service Instantiator (7) to instantiate
the service on the required resources taking into account
the SLA (8,9) and configures the QoS Assurance Controller
(10) to monitor the service execution.

The second use case represents QUADS-supported adap-
tation to avoid SLA violations. The service customer re-
quires a service through the interface (11,12). While the
service is being executed on a number of resources, an event
is sent to the QoS Assurance Controller (13) warning about a
resource availability limitation (e.g., resource overload, non-
responding resource). Aiming at preventing an SLA viola-
tion, the QoS Assurance Controller searches for an alterna-
tive resource and verifies with the help of the QoS Translator
that this resource can maintain the required QoS (14). The
QoS Assurance Controller then creates a strategy that mi-
grates the service tasks running on the previous resource to
the alternative one (15,16,17). Finally, the service provider
responds the request with no SLA violations (18,19).

Figure 2: Sequence diagram of an SLA negotia-
tion and service instantiation followed by a self-
adaptation for ensuring the agreed QoS.

4.3 Implementation
The current QU4DS implementation is written in Java

and builds on SAGA, in particular, on its extension for
the XtreemOS grid called XOSAGA. QU4DS relies on the
Apache CXF framework for Web Service (WS) support and



targets services implemented according to a Master/Worker
pattern. The Service Instance treats service requests by
splitting the work in n tasks and asking the QoS Assurance
Controller to execute them. The QoS Assurance Controller
wraps these tasks as grid jobs, manages their parallel exe-
cutions as n workers on XtreemOS and informs the Service
Instance when they have finished. The Service Instance then
merges the task outputs and responds to the service request.

4.3.1 QoS Translation and SLA Negotiation
The QoS Translator is based on log analysis profiling.

The QoS parameter considered is the time to answer a re-
quest, which depends on the number of workers. Thus,
QoS translation and interpretation involve determining how
many workers (n) are needed to satisfy a given response
time (rt), and, inversely, which response time n workers are
able to provide. QU4DS is designed to support the WS-
Agreements [2] specification which addresses both negotia-
tion and provision interface modules by means of a language
and protocol. However, the current QU4DS version only
supports fix contracts represented by a WSDL binding. Fur-
thermore, all QU4DS configuration parameters including the
QoS Translator and QoS Assurance Controller parameters
are set in a general configuration file called quads.properties.

4.3.2 The QoS Assurance Controller
With respect to the QoS Assurance Controller, QU4DS

implements a simplified version of Dynaco. The details of
the QoS Assurance Controller elements are explained next:

Monitor Implements a publish-subscribe communication
pattern. Any QU4DS entity can subscribe to events
about a metric or a subject (i.e., a set of pre-defined
metrics). Metrics can be related to jobs, resources or
QoS. For example, it is possible to subscribe to events
about job elapsed execution time, consumed CPU and
memory as well as QoS request elapsed time. Moni-
toring relies on grid and QoS sensors. Grid sensors are
designed to be XOSAGA customized metrics callbacks.
However, due to current XOSAGA limitations, sensors
are also based on UNIX scripts that monitor job met-
rics (CPU and memory usage, execution elapsed time,
number of threads). QoS sensors are currently imple-
mented as Java classes that feed the monitoring system
with the elapsed request response time.

Analysis It is implemented as an ECA (event-condition-
action) decision-making engine whose policies are spec-
ified as parameters loaded from the QU4DS config-
uration file. QU4DS currently supports an adapta-
tion strategy called Single Replacement for Late Jobs
(SRLJ) as summarized in Table 1. It checks if a job
execution elapsed time is greater than a threshold (jo-
bETime > j), and if so, it cancels the job and launches
a single replacement for it. The SRLJ strategy assumes
that jobs can only be replaced once (i.e., replacement
jobs cannot be replaced by others), and it only decides
to adapt if there is enough time for that (requestETime
< rt).

Planning The plan is generated based on the SRLJ strat-
egy actions. In the planning phase, each action is
translated to GridInterfacemethods that use an XOSAGA
backend as guides.

Policies Conditions Actions
j: jobE-
TimeThreshold
rt: respTi-
meThreshold

if (jobETime > j)
AND
(requestETime <
rt)

1) create a job to re-
place the late job
2) cancel the late
job
3) submit the job
replacement

Table 1: The SRLJ strategy implemented by
QU4DS: it launches a replacement for a late job if
there is enough time to adapt.

Executor Ultimately, the XOSAGA backend executes the
plan by calling the specified methods with the right pa-
rameters. Specifically, XOSAGA communicates with
the XtreemOS broker which will finally perform the
actual actions.

5. CASE STUDY AND EVALUATION

5.1 The flac2ogg Service Provider
As case study, we implemented the flac2ogg service provider

which encodes FLAC (Free Lossless Audio Codec) [22] au-
dio files to the lossy Ogg [23] audio format as depicted by
Figure 3. Customer requests contain the audio file(s) to
be encoded and then the service applies the oggenc encoder
and returns the resulting Ogg file to the customer. This
service implementation relies on a Master/Worker model.
The master is responsible for receiving and treating service
requests. When a request arrives, the master splits the con-
tained FLAC file into segments, which are encoded in par-
allel by workers. QU4DS launches the workers, wrapped as
jobs, on distinct resources and manages their execution by
trying to minimize violations of the response time objective.
Finally, the master merges the Ogg worker files and returns
the audio encoded to the customer.

Figure 3: The flac2ogg service provider encodes
FLAC audio files to Ogg based on the Mas-
ter/Worker pattern.

The flac2ogg case study focuses on the request response
time (rt) as the QoS parameter to be assured. Therefore,
the QoS Translator maps required QoS values to actual ser-
vice instance configurations. The configuration parameter is
the degree of parallelization, i.e., number of resources. The
less the required response time is, the higher the required
parallelization degree is. The QoS translator currently uses
a simple mapping from QoS values to number of resources
based on experimental data from previous executions.



5.2 Preliminary Evaluation
To evaluate the effectiveness of QU4DS in QoS assur-

ance, we used the flac2ogg case study. The flac2ogg service
provider was executed within a virtual machine configured
with 2.4 GHz CPU clock and 1.5GB memory; the machine
was acting as both an XtreemOS core and resource roles.
The evaluation was based on 30 sequential customer requests
to encode a 22MB flac song. The agreed SLA specified 500
seconds as a fixed response time. Its translation resulted in
splitting the file in 12 parts which were encoded in parallel.
Two experiments were performed in an environment char-

acterized by faults as exposed by Figure 4. The first exper-
iment analyzed the system behavior in the presence of in-
frastructure faults without active QoS ensuring mechanisms.
The faults were represented as non-responding jobs, a com-
mon situation in grid infrastructures. In particular, seven
jobs were randomly stopped2 which made XtreemOS and
our monitoring mechanisms assume that they were still run-
ning. We expected to have seven SLA violations, but there
were twelve instead, owing to an overhead side-effect. Specif-
ically, the stopped jobs were not fully killed by XtreemOS
at the end of their requests as programmed in QU4DS due
to an XtreemOS issue. This caused an extra overhead in
both XtreemOS and our monitoring scripts which period-
ically gather information about job executions. As a con-
sequence, there were more SLA violations than expected,
mainly concentrated at the end of the request executions
(Requests 20 to 30).
The second experiment analyzed the system behavior in

the presence of faults but configuring QU4DS to self-adapt
using the Single Replacement for Late Jobs adaptation strat-
egy. As one can see in Figure 4 and in Table 2, QU4DS was
able to decrease to half the SLA violations in comparison
to the earlier experiment. When employing the SRLJ QoS
assurance mechanism, there were only six SLA violations
thanks to three QU4DS adaptation actions which were suc-
cessfully employed to prevent further violations. While the
Requests 4, 10 and 24 were successfully adapted, QU4DS
could not avoid the violation of Request 19 which had a re-
placement job that got late and could not be replaced again.
Finally, QU4DS also failed to react to Requests 8, 16, 27,
29 and 30. The cause is the amount of XtreemOS I/O op-
erations combined with the overhead side-effect explained
earlier. During these requests, an event was sent to QU4DS
to inform it of the misbehaving.

Experiment Violated
requests

# adapta-
tions

# successful
adaptations

NA-F 12 (40%) – –
A-F 6 (20%) 4 3

Table 2: QU4DS prevented further SLA violations
by successfully reacting three times to environment
changes.

6. RELATED WORK
We have summarized some related work in Table 3 by

analyzing them according to the following criteria:

2By using the UNIX command kill -STOP PID to suspend
the execution of the oggenc process.

Figure 4: Response time for 30 requests for two
experiments scenarios: no Adaptation with Faults
(NA-F) and Adaptation employment with Faults
(A-F).

Application Scope Whether the targeted applications are
generic or domain-specific.

SLA/QoS Negotiation If SLA or QoS negotiation is sup-
ported.

Type of QoS Which specific QoS are addressed.

QoS Translation If QoS requirements are translated to re-
source requirements.

QoS Ensuring Mechanisms If actual QoS ensuring mech-
anisms are proposed and their descriptions.

Level of Autonomy and Adaptation Nature If it uses
self-adaptation for ensuring QoS and how much au-
tonomous the QoS ensuring mechanisms are. Adapta-
tion nature means whether dynamic or static adapta-
tion strategies are employed. While static strategies
can only handle predicted scenarios, dynamic strate-
gies also address unforeseen changes.

All reviewed approaches address QoS management by deal-
ing directly with the service infrastructure. While some of
them propose effective but domain-specific approaches [26,
4, 12], others propose generic approaches with no definition
of actual QoS ensuring mechanisms [19, 25, 11]. Few ap-
proaches address the whole QoS life-cycle by defining which
qualities they provide and then negotiating and ensuring
them. QU4DS stands out since it covers QoS description, ne-
gotiation, and automatic QoS assurance through self-adaptation
in an integrated fashion.

The SLAWs [19] approach basically separates the non-
functional service concern from the functional concern by
wrapping it as another service. QoS aspects are thus ad-
dressed in the non-functional service, which can be cus-
tomized in a decoupled way. However, SLAWs does not
provide SLA enforcement mechanisms; it only proposes how
they can be addressed by splitting a service in two others.
In addition, it does not explicitly tackle SLA negotiation.

Hasselmeyer Et Al. [11] investigate how SLA business-
level objectives are translated to low-level infrastructure con-
figurations on top of HPC providers in order to satisfy QoS.



Approach Scope Negotia-

tion

Type of QoS QoS

Trans-

lation

QoS Ensuring Mechanisms Autonomy and

Nature

SLAWs [19] Generic. Allowed. – No. Job priority management. –
Hasselmeyer Et Al. [11] Generic. Yes. – Yes. – –
Benkner and Engel-
brecht [4]

Domain-
specific

Yes. Response time. Yes. – –

H. Zhang and Kea-
hey [26]

Domain-
specific.

Allowed. Response time. No. Bandwidth limiting to prioritize high-
priority clients connections

Full autonomous.
Static.

C. Zhang Et Al. [25] Generic. Allowed. Response time
and through-
put.

No. Not specified. Assumes that clusters pro-
vided it.

Not specified.
Static.

GridWay [12] Domain-
specific

No. Performance. No. Re-schedule jobs if performance slow-
downs and suitable resources are avail-
able.

Full autonomous.
Dynamic.

QU4DS Generic Yes Response time. Yes. The SRLJ strategy as exposed in Table 1. Full autonomous.
Dynamic.

Table 3: Comparison of QU4DS and related works based on main aspects related to QoS assurance.

They propose an architecture that considers different ac-
tors and service provider information when translating QoS
to resource requirements. However, actual QoS assurance
mechanisms are not provided; they assume that the infras-
tructure supports them by means of self-adaptation tech-
niques. Moreover, the authors refer to autonomy as a means
of translating from SLA to resource requirements, not of en-
suring QoS.
The GridWay [12] project proposes a framework that self-

adapts job execution on Globus. They provide a set of tools
for monitoring the job and for analyzing if their performance
degrades. If this happens, they re-schedule the job on more
suitable resource. Unlike QU4DS, this work supports neither
negotiation nor QoS translation, thus exposing low-level re-
source details to applications. Secondly, the way of how
they employ job self-adaptation differs from QU4DS archi-
tecture proposal since QU4DS relies on existing monitoring
mechanisms not being intrusive to the grid infrastructure.

7. CONCLUSION AND FUTURE WORK
This paper has presented a framework, QU4DS, that fa-

cilitates QoS management for services built on distributed
infrastructures, such as grids and clouds. The framework has
three main features. First, the framework provides flexible
support for dynamic adaptation, necessary for maintaining
agreed SLAs in the face of fluctuating environmental con-
ditions. Second, the framework supports in an integrated
way the complete SLA life-cycle, from contract negotiation
to service termination. Finally, the framework has a modu-
lar, extensible structure, cleanly separating the different QoS
management functions and service implementations. Impor-
tantly, service implementations and underlying resources are
managed through a general, consistent and uniform infras-
tructure API, which minimizes the framework’s dependence
on specific platforms and increases its applicability. The
paper has also presented initial experimental results that
provide evidence that QU4DS can effectively reduce SLA
violations in dynamic environments.
There are two main directions for future work. First,

we intend to expand the set of supported QoS properties,
QoS objectives, and adaptation strategies in order to eval-
uate more thoroughly the extensibility and usability of the
framework. The next version will include support for for
WS-based SLA negotiation, allowing the framework to be
validated in a real-world WS environment. Second, we in-
tend to investigate the required mechanisms to allow service

providers to integrate resources on-demand, thus allowing
them to take advantage of the elasticity of cloud infrastruc-
tures and pay-per-use pricing models. In this context, work
such as [15] may be used to smoothly couple SAGA and
clouds.
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