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ABSTRACT

Unanticipated changes to complex software systems can introduce

anomalies such as duplicated code, suboptimal inheritance rela-

tionships and a proliferation of run-time downcasts. Refactoring to

eliminate these anomalies may not be an option, at least in certain

stages of software evolution. Classboxes are modules that restrict

the visibility of changes to selected clients only, thereby offering

more freedom in the way unanticipated changes may be imple-

mented, and thus reducing the need for convoluted design anoma-

lies. In this paper we demonstrate how classboxes can be imple-

mented in statically-typed languages like Java. We also present an

extended case study of Swing, a Java GUI package built on top of

AWT, and we document the ensuing anomalies that Swing intro-

duces. We show how Classbox/J, a prototype implementation of

classboxes for Java, is used to provide a cleaner implementation of

Swing using local refinement rather than subclassing.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and Fea-

tures; D.1.5 [Programming Languages]: Object-oriented Program-

ming

General Terms

Language, Design

Keywords

Module, Package, Open-classes, Class extension

1. INTRODUCTION
Programming languages traditionally assume that the world is

consistent. Although different parts of a complex system may only

have access to restricted views of the system, the system as a whole

is assumed to be globally consistent. Unfortunately this means that
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unanticipated changes may have far-reaching consequences that are

not good for the general health of the system. Consider, for exam-

ple, the development of Swing, a GUI package for Java that was

built on top of the older AWT package. In the absence of a large ex-

isting base of clients of AWT, Swing might have been designed dif-

ferently, with AWT being refactored and redesigned along the way.

Such a refactoring, however, was not an option, and we can witness

various anomalies in Swing, such as duplicated code, sub-optimal

inheritance relationships, and excessive use of run-time type dis-

crimination and downcasts.

In this paper we argue that unanticipated changes are better sup-

ported when we abandon the principle of the consistent world-view.

Classboxes offer us the ability to define a local scope within which

our world-view is refined without impacting existing clients. Class-

boxes can collaborate to control the scope of change in a way that

can significantly reduce the need for introducing anomalous design

practices to bridge inconsistencies between the old and the new

parts of a system.

In recent years, numerous researchers have proposed better ways

to modularize code in such a way as to allow a base system to be

easily extended, following the philosophy behind CLOS [17] or

Smalltalk [14]. For instance, Open Classes [25], AspectJ [1] and

Hyper/J [28] allow class members to be separately defined from

the class they are related to. They do not, however, permit multiple

versions of a class to be present at the same time. Other approaches,

like virtual types (as in Keris [38], Caesar [24], gbeta [11], and

Nested Inheritance [26]), allow multiple versions of a given class

to coexist at the same time: classes are looked up much the same

way that methods are. These mechanisms, however, only allow one

to refine inner classes inherited from a parent class. Refinement

divorced from inheritance is not supported.

We have previously proposed classboxes as a means to control

the scope of change in the context of Smalltalk [4,5]. A classbox is

essentially a kind of module which not only provides the classes it

defines, but may also import classes from other classes and refine1

them by adding or modifying their features. There are three key

characteristics to classboxes:

• A classbox is a unit of scoping within which classes and their

features (i.e., fields, methods, inner classes) are defined, im-

ported and refined. Each class is always defined in a unique

classbox, but it may be imported and refined by other class-

boxes. Refinements are either new features or redefinitions

1In the literature, such modifications are usually termed “exten-
sions”, but to avoid confusion with Java’s extends keyword, we re-
fer instead to “refinements”.

http://www.iam.unibe.ch/~scg/index.html
http://www.iam.unibe.ch/~scg/index.html


of features.

• A refinement is locally visible to the classbox in which it is

defined. This means that the change is only visible to (i) the

refining classbox, and (ii) other classboxes that directly or

indirectly import the refined class.

• A local refinement has precedence over any previous (i.e.,

imported) definition or refinement. This means that, although

refinements are locally visible, their effect impacts all their

collaborating classes. A classbox thereby determines a names-

pace within which local class refinements behave as though

they were global. From the perspective of a classbox, the

world appears to be consistent.

Classboxes were first introduced with an implementation in Small-

talk [5] and subsequently formally described [4]. In particular, we

were able to demonstrate that classboxes could be implemented ef-

ficiently in a dynamically-typed language with minimal run-time

overhead. In this paper we demonstrate how classboxes can be ap-

plied effectively to control unanticipated change in a large, industri-

ally-developed application framework written in a statically-typed

language, namely Java. The contributions of this paper are:

• A proof-of-concept implementation of classboxes for stati-

cally typed languages. Classbox/J consists of a minimal ex-

tension of Java: (i) package import clauses are made transi-

tive, and (ii) packages are able to refine imported classes and

export these classes to other packages.

• The original classbox model is extended with a mechanism

enabling refinements to access prior definitions. The Swing

refactoring towards classboxes motivates the need to invoke

original methods from their redefined bodies.

• Presentation of a large case study in which (i) the limits of

subclassing are clearly identified, and (ii) classboxes are used

to remove code duplication and incoherence in the class hi-

erarchy.

In Section 2 we use the Swing case study to point out anoma-

lies that can arise when subclassing is used to introduce significant

crosscutting changes. In Section 3 we present the model of class-

boxes for Java. In Section 4 we present an example illustrating how

classboxes support the implementation of cross-cutting changes. In

Section 5 we apply classboxes to refactor Swing. In Section 6 we

describe our Java implementation of classboxes. In Section 7 we

provide a brief overview of related work. In Section 8 we conclude

by summarizing the presented work.

2. SWING/AWT ANOMALIES
Using subclassing to incorporate crosscutting changes often in-

troduces serious drawbacks such as duplicated code and mismatches

between the original and the extended class hierarchy. We illus-

trate these problems by analyzing Swing [34], the Java standard

framework for building GUIs. We first describe the Abstract Win-

dow Toolkit (AWT [2]) and its relationships with the Swing frame-

work. Then we show how inheritance is used to share properties

between classes. Finally we identify some important drawbacks of

the Swing design.

2.1 AWT and Swing History
In its first release launched in 1995, Java included AWT 1.0, a

framework for building graphical user interfaces. AWT evolved

rapidly in version 1.1 to provide a better event handling mechanism.

javax.swing

Component

Window
Button

Frame

Container

JButton

java.awt

JFrame
accessibleContext
rootPane
update()
setLayout()
setRootPane()
setContentPane()
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setContentPane()

Figure 1: Swing is a GUI framework built on top of AWT.

Fields and methods shown in JFrame, JWindow and JCompo-

nent are duplicated code (gray portion). More than 43% of

JWindow is duplicated in JFrame.

AWT is close to the underlying operating system, therefore only a

small number of widgets are supported to make code easier to port.

In its latest version AWT consists of 345 classes and contains more

than 140,000 lines of code.

Release 1.2 of the Java Development Kit included a completely

new GUI framework named Swing. Swing contains 539 classes

and more than 260,000 lines of code. This GUI framework is built

on top of AWT. It provides a “pluggable look and feel”, double

buffering and more widgets. A small subset of the core of AWT

(Component, Container, Frame Window), and Swing is depicted in

Figure 1.

In AWT, the root of the graphical widget hierarchy is Compo-

nent. It provides the essential functionalities of the GUI frame-

work. JComponent is the base class for most of the Swing wid-

gets. The core of Swing is defined by subclassing the core classes

of AWT. Each Swing widget can be a container for other widgets,

so JComponent inherits from Container. All the widgets except

top-level containers (like windows and frames) inherit from JCom-

ponent. The classes JFrame and JWindow inherit from Frame and

Window, respectively.

The AWT and Swing class hierarchies guarantee certain proper-

ties and behavior. In the AWT framework (i) a widget is a com-

ponent – every widget inherits from Component, (ii) a frame is a

window – Frame is a subclass of Window. On the other hand, the

Swing framework has the following properties: (i) a Swing widget

is not necessary a Swing component because not all of the Swing

classes inherit from JComponent, (ii) a Swing frame is an AWT

frame and an AWT window: JFrame inherits from Frame which

has Window as its superclass, (iii) a Swing window is an AWT win-

dow: JWindow inherits from Window.

2.2 Problem Analysis
Subclassing and refinement relationships are fundamentally dif-

ferent: the former results in a new class containing the incremental

changes to its parent class, whereas the latter results in the creation

of scope within which the original class is changed. As pointed

out by Findler et al. [12] and Torgersen [35] under the extensibil-

ity problem, subclassing does not solve the problem of adding new
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Figure 2: Two strategies (gray portions) to introduce changes

without impacting existing clients

operations to a class without having to modify or recompile the

original program component and its existing clients.

In Java, if we wish to extend the class Component by subclass-

ing, without impacting existing clients, we can use either of two

strategies (see Figure 2): either we build a completely new hier-

archy derived from the root of the old hierarchy, duplicating old

features in the new hierarchy, or we derive new classes from the

leaves of the original hierarchy, duplicating the new features.

Swing illustrates an example of this problem. Swing is built on

top of AWT and uses subclassing to extend AWT core classes with

Swing functionalities. Since Java supports neither multiple inheri-

tance nor class extension, this design leads, however, to the follow-

ing severe consequences:

Duplicated Code. Due to the absence of an inheritance link bet-

ween JFrame and JWindow, features defined in JWindow have to be

duplicated in JFrame. In Swing, each widget can (i) describe itself

(the accessibleContext variable refers to a description of the com-

ponent) and (ii) support double buffering to provide smooth flicker-

free animation (methods update(), setLayout(), . . . ). The source

code of JWindow is 551 lines, and JFrame is 829 lines. As a result,

241 lines of code are duplicated between these two classes: 43% of

JWindow reappears as 29% of JFrame.

Breaking Subtyping Inheritance. Whereas all AWT widgets are

AWT components (because they inherit from Component), widgets

defined in Swing can either be AWT or Swing components. Fur-

thermore, the Swing design breaks the AWT inheritance relation:

while a Window is a Component in AWT, a JWindow is not a JCom-

ponent in Swing. While a Button is a Component and JButton is a

JComponent, a JButton is not a Button [19].

Explicit Type Checks and Casts. A Swing component is a con-

tainer for other components. This is a feature obtained from Con-

tainer by inheritance (JComponent is subclass of Container). There-

fore types of subcomponents are Component, and not JComponent

(the type of the collection of components is Component[]). The fol-

lowing code typifies what happens in Swing components:

public class Container extends Component {
int ncomponents;
Component components[] = new Component[0];
public Component add (Component comp) {

addImpl(comp, null, -1);
return comp;

}
protected void addImpl (Component comp,

Object constraints, int index) {
...
component[ncomponents++] = comp;

...
}
public Component getComponents(int index) {
return component[index];

}
}

public class JComponent extends Container {
public void paintChildren (Graphics g) {

...
for (; i > = 0 ; i--) {

Component comp = getComponent (i);
isJComponent = (comp instanceof JComponent);
...
((JComponent)comp).getBounds();
...

}
}

}

In the Swing framework numerous explicit type checks need to

be performed to determine if a subcomponent is issued from Swing

or from AWT. For instance, a JComponent needs to know if its

subcomponents use double buffering or not. 16 type checks (...

instanceof JComponent) and 25 casts to JComponent are performed

in JComponent. In the whole Swing library, these numbers rise to

82 and 151, respectively.

3. CLASSBOX/J
A package can define new classes and it may refer to classes

defined in other packages using an import clause. After import-

ing a class, a package can either subclass it or reference it in a

declaration. In pure Java, import statements are not transitive: a

package p2 cannot import a class C from a package p1 if C was

imported rather than defined in p1. In contrast to MultiJava [25],

Hyper/J [28], CLOS [10] and Smalltalk [14], a Java package can-

not add methods to a class defined in another package. Therefore a

package can be adapted only by subclassing its member classes.

Classbox/J addresses these shortcomings by offering a means to

refine classes within a well-defined scope.

3.1 Classbox/J in a Nutshell
Classbox/J is a module system for Java allowing classes to be

refined with new class members, such as fields, methods and inner

classes. A classbox in Classbox/J is essentially a Java package with

the following three important differences: (i) imported classes can

be refined by adding or redefining class members using the refine

keyword, (ii) a class defined or imported within a classbox p can be

imported by another classbox. This allows the import clause to be

transitive, and (iii) a refined method can access its original behavior

using the original keyword.

We illustrate Classbox/J with a small example based on the Swing

case study.

Refining classes. Figure 3 illustrates two classboxes WidgetsCB

and EnhWidgetsCB. WidgetsCB defines two classes Component and

Button. EnhWidgetsCB imports them, refining Component with a

new instance variable lookAndFeel and redefining the paint() method.

These classboxes are implemented as follows:

package WidgetsCB;
public class Component {

public void update () { this.paint(); }
public void paint () { /* Old Code */ }

}
public class Button extends Component {
public Button (String name) { ... }
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Figure 3: Two versions of classes Component and Button are

used by two different clients OldAppCB and NewAppCB.

}

package EnhWidgetsCB;
import WidgetsCB.Component;
import WidgetsCB.Button;
refine Component {

private ComponentUI lookAndFeel;
public void paint () { /* New code using lookAndFeel */ }

}

Refining a class conceptually defines a new version of it. In the

previous example, two versions of Component coexist at the same

time within the system in different scopes. The original version is

accessible through WidgetsCB and the new version through Enh-

WidgetsCB. Class members refining an imported class are local to

the refining classbox and to other classboxes that may import the

refined class.

Transitive import. A class imported by a classbox can be transi-

tively imported by other classboxes, whether this class is refined or

not. For instance, a client of the new version of the widgets can be

defined as:

package NewAppCB;
import EnhWidgetsCB.Button;
public class App {

public static void main(String[] argv) {
... new Button().paint(); ...

}
}

3.2 New Method Lookup Semantics
As shown in the previous section, class refinements have bounded

visibility. Moreover, redefinitions have precedence over imported

definitions. This behavior is obtained by a new semantics for method

lookup. We illustrate this operationally.

Import over inheritance. Import statements between packages

have to be taken into account when looking up a message. The

main point is that the import clause has precedence over inheri-

Button

EnhWidgetsCB

update()

Component Component

paint()

Button(String)

Button

paint()     

WidgetsCB

Button

NewAppCB

main()

NewGUIApp

12
3

4
56

Lookup of update when new Button().update() is performed in NewAppCB: 1, 2, 3, 4, 5, 6

The method update calls the method paint. The latter is looked up as: 1, 2, 3, 4, 5

(new Button()).
  update()

Figure 4: Locality of changes entails a new method lookup se-

mantics. The numbers within the black boxes indicate the steps

taken in looking up a message sent to a button.

tance: before looking a method up in the superclass, the chain of

imports has to be considered first.

Figure 4 illustrates the lookup of messages update() and paint().

When the message update() is sent to an instance of Button in the

classbox NewAppCB, the lookup algorithm first searches for the

implementation of update() in the classbox NewAppCB (1). This

method is not defined in this classbox, therefore the lookup follows

the chain of import (2). In EnhWidgetsCB, update() is not defined,

so the lookup continues in WidgetsCB (3). In this classbox, the

class Button is not imported anymore but defined in it. Therefore,

update() is looked up in the superclass Component but starting from

the source classbox (NewAppCB, in step 4). Because Component is

not visible within NewAppCB and Button is imported from Enh-

WidgetsCB, the lookup continues to EnhWidgetsCB (5). The class

Component is visible, but the method update() is not implemented.

Finally the method is found in WidgetsCB. The method update()

triggers the message paint(). In a similar way, the method paint() is

looked up as in steps 1 through 5.

Note that defining new semantics for the method lookup algo-

rithm does not necessarily mean that the virtual machine (VM)

must be modified. As described in Section 6, the desired behav-

ior can be obtained by inserting some code that performs dynamic

run-time stack introspection where a method redefinition occurs.

Multiple imports. As illustrated in Figure 5, a diamond graph of

imports may imply the use of different class refinements defined

by several classboxes. In the classbox AppCB, sending the paint()

message to an instance of LabelButton invokes the implementation

of paint() on Component defined by WidgetsCB. In a similar way,

sending this message to an instance of Button triggers the imple-

mentation brought by NewWidgetsCB on Component.

Accessing the original method. When a method is redefined, the

original method is accessible using the construct original().

For instance, in the classbox EnhWidgetsCB the extension of

Component could be:

refine Component {
private ComponentUI lookAndFeel;
public void paint () {

if (lookAndFeel == nil) { original();}
else { /* use lookAndFeel */ }

}
}

The original() construct invokes the first method (e.g.,WidgetsCB

.Button.paint() in Figure 6) in the import chain that was redefined by

the method containing the expression original() (e.g.,EnhWidgetsCB.Button.paint()
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Figure 6: The original() construct invokes the hidden method

but in the context of the classbox changes.

Note that in particular super invocation in the original methods

takes into account potential changes introduced by the classbox

containing the original() invocation, preserving that way the method

lookup semantics of classbox. In Figure 6, new Button().paint() dis-

plays a button having a MacOSX look since, first the method Wid-

getsCB.Button.paint() is executed and the super invocation invokes

EnhWidgetsCB.Component.paint().

It is precisely this kind of scenario, which arises frequently in

the Swing case study, that has motivated the addition of the original

mechanism into the classbox model.

3.3 Properties of the Model
The model of classboxes defined in the previous section exhibits

several properties related to the visibility of refinements.

Locality of Changes. MultiJava [25] with its open-classes and As-

pect/J [1] with its inter-types allow class members to be defined

separately from the class they are related to. Class members are

not, however, contained in a unit of scope, therefore redefinition

is not allowed and composition has to be explicitly stated. With

classboxes, refinements of an imported class are visible to the refin-

ing classbox and to other classboxes that import this refined class.

The refined class is a new version of the original class that coex-

ists in the same system. Figure 3 shows two clients OldAppCB and

NewAppCB using the old and new version of the widget frame-

work. Any refinement introduced to WidgetsCB by EnhWidgetsCB

does not impact OldAppCB. This is because changes are confined

to EnhWidgetsCB and to other classboxes that may imported the

classes it refines (e.g.,NewAppCB).

Precedence of redefinition. Redefined class members have prece-

dence over the imported definition. EnhWidgetsCB redefines the

method paint() for Component, thus hiding the previous definition.

From this classbox and other classboxes that may import Compo-

nent or its subclasses, the original definition of paint() is no longer

accessible. Within the classbox EnhWidgetsCB or NewAppCB, send-

ing the message update() or paint() to an instance of Button will

trigger the new definition of paint().

Refinements along a chain of import. With classboxes, imports

are transitive: a new version of an imported class can be re-imported.

Figure 3 shows the class Button defined in WidgetsCB that is im-

ported in EnhWidgetsCB and from this last, are imported in NewAp-

pCB. From the point of view of an importing classbox, there is

no distinction between a class that is defined or imported in the

provider classbox (i.e., classbox where the class is imported from).

An imported class can always be refined and then re-imported, even

multiple times over a chain of imports.

4. CROSS­CUTTING CHANGES
Refining a class is superficially similar to subclassing: a classbox

can add new interfaces, fields, methods, static field, inner classes

and constructors as well as redefine methods of an imported class.

The key difference is that the changes are applied to the original

class, not a subclass, but only within a well-defined scope. It is this

feature that supports the introduction of cross-cutting changes. The

following example shows how a look and feel feature is added to

the root of a class hierarchy without breaking former clients, while

propagating the refinements to collaborating classes. As shown

in Figure 7, two classboxes WidgetsCB and FactoryCB define a base

system which clients rely on. Since modifying these base classes

would break these clients, changes cannot be directly applied to the

classboxes WidgetsCB and FactoryCB, but are introduced in class-
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box LookAndFeelCB and used by a new client in AppCB. The rest

of this section shows how classboxes allow one to incorporate these

changes without having to modify WidgetsCB and FactoryCB.

The following example shows some refinements defined with

classboxes on a base system that (1) does not break clients that rely

on the original definitions of this system, and that (2) propagate

these refinements to collaborating classes defined in other class-

boxes.

Base system. The classbox WidgetsCB defines three classes: an

abstract class Component and two subclasses Button and Window.

The source code of this classbox is:

package WidgetsCB;
public abstract class Component {

public abstract void paint();
}
public class Button extends Component {

public Button () { }
public void paint() {

System.out.println(”Button”);
}

}
public class Window extends Component {

int x1, y1, x2, y2;
public Window () { x1 = 50; y1 = 50; x2= 200; y2=200;}
public void paint() {

System.out.println(”Window”);
}

}

New widgets are created using a factory. This factory is imple-

mented in a separate classbox FactoryCB. When it was designed,

the implementor of Factory relied on the version of the widgets

obtained from WidgetsCB without any look and feel. The widget

factory is defined as:

package FactoryCB;
import WidgetsCB.*;
public class Factory {

public Button newButton () { return new Button(); }
public Window newWindow () { return new Window(); }

}

Refinement of the base system. To introduce the changes that add

a “look and feel” to the widgets, two new classboxes are added:

LookAndFeelCB, which effectively defines the changes, and Ap-

pCB, which is a new client of the resulting system. In LookAnd-

FeelCB the root class Component is refined with a lookAndFeel

variable. In order for classes Button and Window to use this new

variable added to their superclass, their constructor and paint() are

redefined. These refinements are defined as:

package LookAndFeelCB;
import WidgetsCB.Component;
import WidgetsCB.Button;
import WidgetsCB.Window;
public class LookAndFeel {
...

}
refine Component {

LookAndFeel lookAndFeel; // Variable added to Component
}
refine Button {

public Button() { // Constructor redefined
lookAndFeel = new LookAndFeel(”ButtonMacOSX”);
original(); // Original constructor called

}
public void paint() { // Method paint redefined

System.out.println(lookAndFeel.getName());
}

}
refine Window {

public Window() { // Constructor redefined
lookAndFeel = new LookAndFeel(”WindowMacOSX”);
original(); // Original constructor called

}
public void paint() { // Method paint redefined

System.out.println(lookAndFeel.getName());
}

}

A small application is built in the classbox AppCB. This classbox

imports the class Factory from FactoryCB and the widgets having a

look and feel from LookAndFeelCB. Now when the new application

uses the factory to create widgets, it gets widgets with the look and

feel as defined in the LookAndFeelCB classbox, whereas the clients

of the original code defined in WidgetsCB are not impacted, i.e.,

get widgets without look and feel. As AppCB imports the version

of Window and Button with a look and feel, from the perspective of

AppCB, this version of the widgets takes precedence over the one

present in FactoryCB.

package AppCB;
import FactoryCB.*;
import LookAndFeelCB.*;
public class App {

public static void main (String[] argv) {
Factory f = new Factory();
Window w = f.newWindow();
Button b = f.newButton();
//Display ”WindowMacOSX” and ”ButtonMacOSX”
w.paint();
b.paint();

}
}

5. SWING AS A CLASSBOX
Because the mechanism provided by Java to specialize code is

inheritance, Swing is built on top of AWT using subclassing. As

already shown in Section 2 this extension of AWT is developed

at a high cost: (i) properties defined in AWT according to the in-

heritance property are not valid in Swing anymore (i.e., in AWT a
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Figure 8: An ideal refactoring based on classboxes

Frame is a Window, but in Swing a JFrame is not a JWindow. Not

all Swing widgets are JComponent), (ii) a serious amount of code is

duplicated to emulate missing inheritance links in Swing (i.e., 43%

of JWindow is duplicated in 29% of JFrame), and (iii) Swing code

is littered with explicit type checks.

Figure 8 shows an ideal situation where Swing would be extend-

ing AWT using classboxes. Obtaining such a situation would be

possible if Swing would have been implemented by following the

inheritance tree of AWT (i.e., introducing a JContainer class) or if

we could afford to perform a complete overhaul of Swing. Since

Swing, however, is a large framework with complex logic we can-

not rewrite it totally to obtain the situation depicted. In order to

illustrate how classboxes offer a working solution, we refactored

Swing as a classbox that refines AWT classes. In this section we

first describe the new architecture of Swing made out of classboxes,

then we present the results obtained, and finally we describe some

issues that we encountered while refactoring.

5.1 Swing Refined from AWT Class
We focus on the refactoring of the core class JComponent, and

then we describe how the classbox SwingCB is defined.

Component refactored in two steps. The goal of refactoring JCom-

ponent is to make the Swing version JComponent a refinement of

the AWT version Component. As depicted in Figure 1, the class

JComponent is a subclass of the AWT classes Container and Com-

ponent. As Container is an intermediate class between JComponent

and Component, the refactoring of the class JComponent is done in

two steps, as illustrated in Figure 9:

1. Incorporating the class Container in JComponent. A Swing

component has the ability to contain other components. Fea-

tures defined by Container have first to be included in JCom-

ponent. Container defines 108 methods and 21 fields, how-

ever only a few of them have to be duplicated (32 methods re-

lated to container management (e.g.,add, remove) and events

management, and 3 variables). We define this “enlarged”

JComponent in the classbox SwingCB. This new class is a

subclass of Component, which is imported in the new class-

box SwingCB. JComponent overrides 22 methods in Con-

tainer and most of the overriding methods do not perform

any super call. For the methods in JComponent that perform

a super call, the two implementations are simply merged.

2. Making this new JComponent a refinement of Component

The inheritance link between JComponent and the imported

Component is replaced by a refinement link.

javax.swing

Component

java.awt

update()
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add(Component)

Container

components

remove(Component)
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Figure 9: The refactoring of the AWT class Component is per-

formed in two steps: (i) the intermediate class is merged to

JComponent, then (ii) this merge becomes a refinement of the

AWT class Component.

Swing as AWT refined. Figure 10 depicts the new architecture of

Swing. Because the definition of a Java package is a valid definition

of a classbox, the package java.awt is immediately turned into the

AwtCB classbox: no modification is applied to AWT.

The classbox SwingCB imports the class Component, Window,

Frame, and Button from AwtCB. These classes are refined with the

Swing features.
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Figure 10: Swing refactored as a classbox.

5.2 Advantages with Classboxes
The Swing classes JComponent, JButton, JWindow and JFrame

have been refactored as refinement of their AWT counterpart classes.

The amount of code refactored is about 6,500 lines of code spread

over these 4 classes. Designing Swing with classboxes has several

advantages over the original implementation.

Inheritance coherence. The inheritance link defined in the AwtCB

is fully preserved in the SwingCB. Therefore every Swing widgets,

including frames and windows, are swing components. The rela-

tion “a frame is a window” stated by AWT is true in SwingCB.



Removed duplicated code. JWindow and JFrame are refactored

into refinements of Window and Frame. As a result: Frame re-

mains a subclass of Window in Swing and all the duplicated meth-

ods and variables related to the layout, root pane and content pane

in JFrame are removed. The size of refined Frame is 29% less than

the original JFrame.

Because JFrame and JWindow do not inherit from JComponent,

the update() method defined by the latter had to be duplicated in

JFrame and JWindow. With Swing as a classbox, this duplication

is eliminated.

Explicit type checks avoided. Within the SwingCB classbox, a

Swing component is a Component. Therefore, all the explicit type-

checks and casts used in the original Swing to check if a subcom-

ponent is a Component or a JComponent are useless.

Since the checks (... instanceof JComponent) are always true,

downcasts from Component to JComponent are simply removed.

The 16 type-checks (... instanceof JComponent) and 25 casts to

JComponent were removed while refactoring the class JComponent

(no such expressions are present in the other refactored classes).

5.3 Issues and Limits
Now we discuss the results obtained and the impacts on the pack-

ages in terms of their visibility.

Refactoring super calls. Several methods related to the content

management in JWindow like remove(Component) and setLayout(

LayoutManager) override methods defined in Window. These meth-

ods perform a check on a property of the root pane, then call the

original definition using a super call. For instance, the definition of

setLayout( LayoutManager manager) in JWindow is:

public void setLayout(LayoutManager manager) {
if (isRootPaneCheckingEnabled()) {

throw createRootPaneException(”setLayout”);
}
else {

super.setLayout(manager);
}

}

The expression super.setLayout( manager) triggers the implementa-

tion defined in the AWT class Window. Refactoring this overriding

method into a refinement of Window implies that the original key-

word must be used to invoke the original AWT definition. This

scenario convinced us of the need to introduce the original() con-

struct to the classbox model.

Need to enlarge visibility of some Swing classes. Replacing the

Swing class JComponent by a refinement of Component enlarges

the visibility of some classes that were in Swing. For instance,

JComponent references Swing classes like AncestorNotifier, which

are private to the javax.swing package. Swing classes that were pri-

vate to Swing need to be visible outside their defining package.

Limitations of our refactoring. Unfortunately, removing the class

JComponent would entail a major overhaul of Swing. The reason is

that each method of the class javax.swing.plaf.ComponentUI refers

to the name JComponent. Given our limited resources for this ex-

periment, we confined this overhaul to the classes JWindow, JFrame

and JButton. As a consequence, our version of Swing does not con-

tain the pluggable look and feel.

Execution cost. With our current implementation of classboxes,

the new method lookup semantics is about 22 times slower than the

normal one. This result is obtained from triggering 10000 times the

update() methods redefined in Component. This loop takes 1008

ms, whereas it is 45 ms for the same method directly implemented

in this class. As explained in the following section, our imple-

mentation is rather naive. In our previous work with classboxes in

Smalltalk [4], we were able to optimize the implementation so that

the cost of the redefined method lookup is only 1.1 times slower

(compared to 22 times slower with the Java version).

6. IMPLEMENTATION
We implemented a preprocessor that translates classbox defini-

tions into pure Java files, which are then compiled using a classical

compiler. While producing Java source files, classboxes are com-

piled away by producing a Java package for each classbox. Our

implementation is freely available at www.iam.unibe.ch/∼scg/Re-

search/Classboxes. It offers an executable cbj compiler similar

to the javac compiler, where argument files are classbox-aware.

Please note that this implementation is naive and serves only as a

proof-of-concept for Java.

Our implementation handles three different ways of refining an

imported class: (i) a new class member is added (i.e., not rede-

fined), (ii) a class member other than a method is redefined, and

(iii) a method is redefined. The following sections examine each of

these cases. We drew a distinction between redefined methods and

other redefined class members because the former are dynamically

looked up when messages are sent, but not the latter (which are

statically bound). We then describe how the new method lookup se-

mantics is implemented using dynamic introspection of the method

call stack (Section 6.4). And finally we show how the transitivity

of imports is handled (Section 6.5) and we present some limitations

and possible improvements (Section 6.6).

6.1 Pure Class Member Addition
Class members that are new additions (not redefinitions) are in-

serted into the Java class without being modified. For instance, a

classbox WidgetsCB defines an empty class Component, that is re-

fined in a classbox EnhWidgetsCB.

//Classbox WidgetsCB
package WidgetsCB;
public class Component {
}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {

private int color;
public int color () {

return color;
}

}
When passed to our cbj preprocessor, the resulting Java pack-

age used to generate pure java bytecodes is:

package WidgetsCB;
public class Component {
private int color;
public int color () {

return color;
}

}

6.2 Redefinition of Class Members Other Than
Methods

For class members that are not looked up (i.e., variables, static

fields, static initializations) a renaming is performed while compil-

ing a classbox away. Classbox WidgetsCB defines a class Compo-

nent that contains a variable color accessed by a method color1()

and an inner class Color. This class is refined in a classbox En-

hWidgetsCB with a new variable color, a method color2() and a new

inner class Color.

http://www.iam.unibe.ch/~scg/Research/Classboxes
http://www.iam.unibe.ch/~scg/Research/Classboxes


//Classbox WidgetsCB
package WidgetsCB;
public class Component {
Color color;
public Color color1() {

return color;
}
class Color {}

}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {

Color color;
public Color color2() {
return color;

}
class Color {}

}
The resulted Java code gathers all the class members:

package WidgetsCB;
public class Component {

WidgetsCBColor WidgetsCBcolor;
EnhWidgetsCBColor EnhWidgetsCBcolor;
public WidgetsCBColor foo() {

return WidgetsCBcolor;
}
public EnhWidgetsCBColor bar() {

return EnhWidgetsCBcolor;
}
class WidgetsCBColor { }
class EnhWidgetsCBColor { }

}

6.3 Method Redefinition
Looking up methods that are redefined requires a new method

lookup semantics (Section 3.2). When producing Java source code,

method redefinitions are compiled into one method where each re-

definition is contained in a if statement used to trigger the right

definition according to the current position in the execution flow of

the program (cf., following section). The method paint() contained

in the class Component is redefined in EnhWidgetsCB

//Classbox WidgetsCB
package WidgetsCB;
public class Component {
public void update() {

paint();
}
public void paint() {

//Original paint
}

}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {

public void paint() {
//Enhanced paint

}
}

The pure Java source code produced contains only one paint()

method that gathers the two implementations of the method.

package WidgetsCB;
public class Component {

public void update() {
paint();

}
public void paint() {

if ( ClassboxInfo.methodVisible (
”EnhWidgetsCB”, ”Component”, ”paint”)) {

//Enhanced paint
}
if ( ClassboxInfo.methodVisible (

”WidgetsCB”, ”Component”, ”paint”)) {
//Original paint

}
}

}

ClassboxInfo is a generated class that (i) gathers some informa-

tions about the composition of classboxes needed at runtime like

a description of the classboxes that were used to produce the Java

code, and (ii) offers some methods useful to introspect the method

calls stack. At runtime, when the update() method is invoked, one

of the two implementations is executed according to the structure

of classboxes inferred from the method calls stack.

6.4 Dynamic Introspection of the Method Call
Stack

Whenever a redefined method is invoked, the method call stack

is reified (by using the exception handling mechanism of Java) to

build the structure of the classboxes.

//Classbox OldAppCB
package OldAppCB;
import WidgetsCB.Component;
public class OldApp {
public static void main (String[] argv) {

// Original paint method invoked
new Component().update();

}
}

When the main(...) method of the OldApp is invoked, before en-

tering the paint() method the corresponding method call stack given

by Java is:

WidgetsCB.Component.update() //Top of the stack
OldAppCB.OldApp.main() //Bottom of the stack

Using this stack reification and the information about the struc-

ture of classboxes kept in ClassboxInfo, the static method Classbox-

Info.methodVisible (“EnhWidgetsCB”, “Component”, “paint”) yields

false, whereas ClassboxInfo.methodVisible (“WidgetsCB”, “Compo-

nent”, “paint”) return true.
NewAppCB is a client of the refined Component:

//Classbox NewAppCB
package NewAppCB;
import EnhWidgetsCB.Component;
public class NewApp {
public static void main (String[] argv) {

// Enhanced paint method invoked
new Component().update();

}
}

In a similar way, before entering the paint() method, the method

call stack is:

WidgetsCB.Component.update() //Top of the stack
NewAppCB.NewApp.main() //Bottom of the stack

Because the paint() method is redefined in the classbox NewAp-

pCB, the new implementation has to be used: the static method

ClassboxInfo.methodVisible (“EnhWidgetsCB”, “Component”, “paint”)

yields true, whereas ClassboxInfo.methodVisible (“WidgetsCB”, “Com-

ponent”, “paint”) return false.

6.5 Adapting Classbox Import to Package Im­
port

Since class imports are transitive in Classbox/J, but not in plain

Java, all transitive imports must be compiled away. In the resulting

Java source code, each import statement must refer to the original

package that defines this class.

For example, while producing the package corresponding to the

classbox NewAppCB the import statement import EnhWidgetsCB.

Component is translated into import WidgetsCB.Component because

the class Component is defined in WidgetsCB.

6.6 Limitations and Possible Improvements
Since the current implementation is only intended to serve as a

proof of concept, we feel it is important to raise a few points con-

cerning the limitations of this prototype.



Native methods. A native method is a function written in a lan-

guage other than Java. Only the signature of the method is declared

within the Java class. Because such methods do not contain any

Java code, they cannot be rewritten using the mechanism described

above. As a consequence, native methods cannot be redefined.

Super call in a constructor. Constructors can be redefined as well

as methods. Constructor redefinitions are compiled into one sin-

gle constructor following the mechanism described in Section 6.3.

This approach is, however, limited when a constructor performs a

super call. Java enforces the constructor of the superclass to be ex-

ecuted before the constructor of the subclass: the super call has to

be the first statement of the constructor. Therefore the body of a

constructor cannot be embedded in a if statement.

Debugging facilities. Even with our current approach where class-

boxes are compiled away, information about classboxes needed to

structure the system is available (class ClassboxInfo). This informa-

tion is accessible with a debugger, however it is tedious to manually

retrieve the defining classbox for a given class member. Develop-

ment with classboxes would be more comfortable with a classbox-

aware debugger.

Modifying the VM. Prior to this work, we implemented two ver-

sions of the classbox model in Smalltalk: (i) by implementing a

new method lookup algorithm within the VM [5], and (ii) by using

bytecode transformation and method context reification on a nor-

mal VM [4]. The cost of the former strategy is about 1.1 times

slower and the latter is about 1.25 times slower (these figures were

obtained by comparing the execution times of a normal Smalltalk

application in a classbox and a plain environment ).

The Java VM does not provide a bytecode that reifies the con-

text of a method call. Therefore, the latter strategy cannot be im-

plemented in Java. By modifying the Java VM to implement a

new method lookup algorithm [5], we expect to achieve a similar

speedup. Whereas with this approach we would need to modify the

VM (which can be tedious), the advantage is that classboxes would

be transparent in term of run-time cost.

7. RELATED WORK
Over the last decade considerable research has focused on new

ways to modularize or change a system. One main line of our work

has been to keep the notion of class and package distinct. This has

to be put in contrast with systems like virtual classes [21] or hier-

archy inheritance [8] where classes and modules are unified under

a common lookup algorithm operating on namespaces that serve as

classes and modules.

The related work presented in this section can be classified ac-

cording to five families: (i) class extensibility (class extensions,

Unit, Jiazzi, open classes), (ii) module (MixJuice, MJ), (iii) alter-

native inheritance (mixins, virtual classes, nested and hierarchy in-

heritance), (iv) other approaches (AOP, namespaces).

Class Extensibility

Class extension. CLOS [17], Smalltalk [14] and Objective-C [27,

29] allow an already existing class to be extended with new me-

thods or method redefinitions (not in Objective-C). These class ex-

tensions, however, are global, which leads to conflicts when two

packages extend the same class with the same methods. The reso-

lution policy usually adopted is that the last version of a redefined

method is the one that will be globally used. As a consequence,

only a single version of a class can be present in a running system.

Classboxes make it possible for multiple versions of the same class

to be present in the system at the same time.

Unit. MZScheme [13] offers an advanced module system in which

a unit is the basic building block. A unit is a packaging entity

composed of requirements, definitions and exports. Mixins are de-

fined by creating within a unit a subclass of a class that will be pro-

vided by other units at linking time. Units have to be instantiated

and composed with each other to form a program. Reusability and

extensibility are expressed by recombining units. An application,

made of units, can be recomposed and by aliasing new units can

inserted. Units differ from classboxes since a unit acts as a black

box: a class within a unit cannot be refined. Instead a new unit has

to be provided and included in a recomposition. New mixins can be

defined to extend a base system, but we fall again in all the problem

related to using inheritance. Therefore not much would have been

gained if Swing had been refactored with units.

Open classes. MultiJava [25] is an extension of Java that supports

open classes and multiple method dispatch. An open class is a class

to which new methods can be added. Method redefinitions are not,

however, allowed: an open class cannot have one of its existing

methods refined.

Jiazzi. The unit system of MZScheme has been ported to Java. Ji-

azzi [22] is an enhancement of Java that adds support for encapsu-

lated code modules as unit. The main difference with MZScheme is

that Jiazzi enables the creation of open classes that can be enhanced

with new methods and fields without invasively modifying the orig-

inal definitions or breaking their existing subclasses. This enables

a modularization of cross-cutting concerns [23]. Refinements oc-

cur with links between units. The difference with classboxes are

twofold: (i) classes defined in the same unit are tied together. Let’s

assume a class PointFactory and a class Point are contained into the

same unit, and Point is imported and refined with a color feature in

another unit. Because PointFactory is defined in the same unit that

the colorless version of Point, even if PointFactory is also imported

in the unit containing the color addition, there is no way for the

factory to produce colored points. (ii) Refinement applications are

implemented with subclassing, therefore an instance of Point pro-

duced in a unit is not an instance of the refined class Point.

Modules

Mixjuice. Mixjuice [16] defines difference-based modules, in which

a module can refine a class defined in another module by adding

new class members. A refined class constitutes a new version. Con-

trary to classboxes, with MixJuice multiple versions of the same

class cannot, be present in the system at the same time.

MJ. MJ [9] is a module system for Java that provides a high-level

interface to abstract low-level Java technical issues related to class

loading. The focus of MJ is to support the deployment of different

versions of the same package. As such with MJ changes cannot

be added to existing classes. In MJ, a module contains the follow-

ing information: (i) class definition, (ii) dependencies with classes

offered by other modules, (iii) access control for this module’s pro-

vided classes like class privacy and restriction for the clients in sub-

classing provided classes, and (iv) some initialization code.

By removing some technical limitations of the dynamic class

loading mechanism related to the use of CLASSPATH, MJ allows

multiple versions of a class to coexist at the same time within a

system. These versions are referenced by different namespaces



(i.e., classloaders), therefore, they are considered to be two dif-

ferent classes. New versions of a class cannot be propagated to

formerly collaborating classes without modifying the original de-

pendancies: modules are considered to be black boxes in which

contained classes cannot be modified. This mechanism differs from

classboxes because, for a given class, formerly collaborating classes

can be reused with new versions of the original class. MJ cannot be

used to refactor Swing to our new architecture since classes cannot

be extended with new changes.

Alternative Inheritance

Virtual classes. Virtual classes were originally developed for the

language BETA [18], primarily as a mechanism for generic pro-

gramming rather than for extensibility [21]. Keris [37], Caesar [24],

and gbeta [11] offer such a mechanism, where method and class

lookup are unified under a common lookup algorithm. Virtual clas-

ses are not statically safe because they permit types of method pa-

rameter to change covariantly with subtyping. In a similar way that

a method is looked up according to an instance, a class is looked up

according to an instance (i.e., an encapsulating class). With such a

unification of method and class lookup, the role of a class is over-

loaded with semantics of packages and objects constructor. With

classboxes, we keep the original meanings of class and package

separate.

Hierarchy Inheritance. Cook [8] presents a use of inheritance as a

derivation of modified hierarchies or other graph structures. Links

between nodes in a graph are interpreted as self-references from

within the graph to itself. By inheriting the graph and modifying

individual nodes, any access to the original nodes is redirected to

the modified versions. For example, a complete class hierarchy

may be inherited, while new definitions are derived for some in-

ternal classes. The result of this inheritance is a modified class hi-

erarchy with the same basic structure as the original, but in which

the behavior of all classes modified that depend upon the classes

explicitly changed is modified. Hierarchy inheritance is based on

having a lookup of classes and on relationship between group of

classes, whereas with classboxes, no class-lookup is involved and

import is done at the class-level.

Nested inheritance. The Jx programming language [26] is an ex-

tension of Java where members of an encapsulating class or pack-

age may be enhanced in a subclass or subpackage. Packages may

have a declared inheritance relationship. Nested classes in Jx are

similar to virtual classes. Unlike virtual classes, nested classes in

Jx are attributes to their enclosing class, not attributes of instances

of their enclosing class. The difference with classboxes is that in

Jx (i) inheritance is overloaded with import semantics, and (ii) a

class is defined in only one classbox and can be extended by others,

whereas with Jx classes are looked up according to the inheritance

defined between packages and between classes.

Scala. Scala [32] is a statically-typed object-oriented and func-

tional programming language developed at EPFL, the École Poly-

technique Fédérale de Lausanne. Scala introduces a new concept

to solve the extensibility problem (Section 2.2): views allow one

to augment a class with new members. Views follow some of the

intuitions of Haskell’s type classes, translating them into an object-

oriented approach. The scope of a view can be controlled, and com-

peting views can coexist in different parts of one program. A view

is statically applied by the compiler to satisfy type constraints. For

instance, if a variable anA is of type A, the compiler would translate

an expression var aB: B = a, which declares a variable aB of type B

and initializes it with a reference to anA, as var aB: B = view(anA),

where view is a method (or a function) provided by the programmer,

taking an argument of type A and returning an object of type B. In

Scala a conversion is done by using type information provided by

the programmer whereas with classboxes the scope of change de-

pends on the graph of classboxes involved in the computation.

Mixin Layers. A collaboration-based design [15, 36] aims at sup-

porting large-scale refinements. A collaboration is a set of roles

applied to a set of participant objects. Collaborations are layered

linearly to form an application. In mixin layers [33], Smaragdakis

and Batory represent a collaboration as a C++ template, a role as a

mixin [6], and a participating object as a class. A layered applica-

tion that uses mixin layers is open to changes by adding new col-

laborations. However, for an application that is not layered, mixin

layers do not offer a satisfying solution to support unanticipated

changes.

Feature-oriented programming. Feature-Oriented Programming

is the study of feature modularity in product-lines [30]. AHEAD [3,

20] is an approach to Feature-Oriented Programming (FOP) where

a base system is regarded as a constant and refinements intended

to be added are functions adding features to this base system. A

refinement is a function that takes a program as input and produces

a refined program as output. FOP advocates program construction

as a set of functions applied to a base system. New changes are

modeled as new functions. Contrary to classboxes, AHEAD does

not support multiple versions of the same class living in the same

system.

Generic type. Torgersen [35] uses generic type extensions of C#

and Java to solve the extensibility problem in a secure and type safe

manner. His solutions rely on the use of F-bounds [7] and wildcards

in the declaration of type variable to make them type-safe when a

system is extended with new data-types and operators. However,

use of generic type has to be foreseen prior to apply an extension,

as a consequence, this approach does not fit to support unantici-

pated changes.

Other Approaches

Aspect-oriented programming. Hyper/J [28] is based on the no-

tion of hyperspaces, and promotes composition of independent con-

cerns at different times. Hyperslices are building blocks containing

fragments of class definitions. They are intended to be composed

to form larger building blocks (or complete systems) called hyper-

modules. A hyperslice defines methods for classes that are not nec-

essarily defined in that hyperslice: class members are spread over

several hyperslices. With its notion of inter-type, AspectJ [1] al-

lows class members to be separated from the class definition by

being defined in an aspect. Whereas with classboxes a class can be

refined in two classboxes with two method having the same name,

with Aspect/J conflicts are not allowed: two aspects cannot define

two methods having the same name on the same class. This kind

of extension does not allow redefinition and consequently does not

help in supporting unanticipated evolution.

Sister namespaces. In Java, a class type is uniquely identified at

runtime by the combination of a class loader and a fully qualified

class name. The same class loaded into two different class loaders

(i.e., namespaces) has two distinct types [31]. Let’s assume that

two classloaders N1 and N2 load the same class C. One instance

of the class C in the classloader N1 cannot be regarded as an in-



stance of C in a second classloader N2 because they have different

types. This is identified as the problem of the version barrier. Sis-

ter namespaces [31] relax the version barrier between application

components by defining the notion of binary compatibility and ex-

tending the type checker. Sister namespaces make the exchange of

instance of different class versions possible across classloaders by

relaxing the type checker. To be compatible, two class versions has

to be “close enough”, whereas with classboxes a class can be re-

fined with any kind of class members.

8. CONCLUSION
Classboxes address the problem of delimiting visibility of a change

to a restricted scope in order to avoid conflicts with other changes

and to avoid impacting clients that should not be affected. In a

classbox, classes can be defined, classes can be imported from other

classes, and class members can be defined for any classes visible

(i.e., defined or imported) in this classbox. Classboxes offer an el-

egant way of bringing some unanticipated changes over a system

while delimitating the impact of these changes.

In this paper, we present the Java implementation of this model

by adding a small number of constructs to Java. A classbox is

a Java package where imported classes can be refined with new

class members and imported classes that are refined or not to be re-

imported in other classboxes. Having a Java version of the model

shows that classboxes can be applied to a statically-type language

like Java.

By refactoring Swing, we stress-tested the classbox model by

applying it to a large case study. Our new version of Swing removes

(i) the incoherence in the original Swing hierarchy and (ii) the code

duplication that was introduced due to the limitations of the Swing

inheritance hierarchy. Moreover, while refactoring, we found the

need to extend the classbox model with a new construct that allows

a previous definition of a redefined method to be accessed.

As a future work we plan to enhance the notion of refinement in

order to enable the use of classboxes as a way to express general

changes that can be applied to a system (and not just additions or

redefinitions of class members).
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