
HAL Id: inria-00533721
https://inria.hal.science/inria-00533721

Submitted on 26 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open Platforms: New Challenges for Software
Engineering

Emilie Balland, Charles Consel

To cite this version:
Emilie Balland, Charles Consel. Open Platforms: New Challenges for Software Engineering. PSI-
EtA’10: Proceedings of the International Workshop on Programming Support Innovations for Emerg-
ing Distributed Applications, Oct 2010, Reno, United States. �inria-00533721�

https://inria.hal.science/inria-00533721
https://hal.archives-ouvertes.fr


banner above paper title

Open Platforms: New Challenges for Software Engineering

Emilie Balland Charles Consel

INRIA Bordeaux Sud-Ouest / University of Bordeaux, France

emilie.balland@inria.fr/charles.consel@inria.fr

Abstract

Recently, platforms running third-party applications have become
very popular, in particular due to the explosion of the smartphone
market. These open platforms propose a rich stream of applica-
tions, targeting general-purpose as well as customized user needs.
Developing applications for such target platforms introduces new
requirements and raises new challenges.

This paper identifies key requirements for designing open plat-
forms. After an overview of the existing approaches, we identify
the challenges for the next generation of open platforms.

Keywords Open platforms, Networked Entities, Programming
Frameworks, Middleware

1. Introduction

Open platforms can be characterized by three major features: (1)
they offer public programming interfaces that third-party develop-
ers use to program new applications; (2) they provide shared re-
sources to the applications that can either be hardware (camera,
GPS. . . ), software (email client, web browser. . . ), or data (user pro-
file, address book. . . ); and, (3) they offer a runtime environment for
applications hosted by a given device (e.g., a smartphone) where the
resources are local or networked.

In addition to these three characteristics, open platforms also
provide upload/download capabilities, allowing applications to be
disseminated: an application developer can upload his/her applica-
tions to make them visible and easily loadable by users.

From these characteristics, we identify three stakeholders: (1)
the open platform provider, (2) the developer of third-party appli-
cations and (3) the user of the platform. The stakeholders have dif-
ferent expectations relative to the platform. Typically, the platform
user is interested in controlling what resources are used by an appli-
cation, while the application developer is concerned with the pop-
ularity of the platform and its ease of development, considering the
low return on investment of application development, if any.

1.1 New Application Domains

Clearly, the concept of open platforms is not new. For example,
operating systems kernels have been presented as open platforms
where applications and resources can be viewed as system mod-
ules and hardware devices, respectively (e.g., [6, 11]). However,

[Copyright notice will appear here once ’preprint’ option is removed.]

system modules interact with the platform at a much lower level,
preventing the use of software engineering approaches.

Over the last years, open platforms have been deployed in appli-
cation domains where the end-user directly operates the platform
(by loading new applications for example) and the resources are
networked (e.g.,access to web resources). Let us examine promi-
nent examples of such platforms.

Smartphones. Apple has developed an open platform for the
iPhone. This open platform is based on a specific SDK [10], in-
cluding public programming interfaces to the iPhone resources.
The success of this platform is mainly due to the App Store that
offers a tightly-controlled upload/download environment targeting
a range of devices (i.e., iPhone, iPad and iTouch). The Android
SDK [22] developed by Google follows a similar approach. The
main difference is that applications do not need to be validated by
the provider to be accessible to users. Android has also proposed
App Inventor [1], inspired by Scratch [21]; this environment allows
non-programmers to develop their own Android applications.

Social networks. Websites such as Facebook or MySpace allow de-
velopers to create new applications for social networking. These
applications can access the resources of the platform through spe-
cific APIs [2, 13]. Then, the users can deploy any of these applica-
tions in their own profiles and share them with their friends. When
installing a new application, websites such as Facebook queries the
user whether to give the application access to his/her private re-
sources. Yet, as of now, the process is rather coarse-grained, raising
concerns about privacy.

Video game consoles. The latest consoles have been designed as
open platforms. They offer plenty of services such as game stores
(e.g., XBox live [5]) and toolkits for developing new games (e.g.,
XNA Game Studio Express [7]). In fact, an emerging trend is
games dedicated to the development of small games. For example,
the Nintendo DS game named “WarioWare: Do it Yourself” [4]
allows people to develop tiny games using a dedicated graphical
language and to share them via a common platform.

Plug-ins. A plug-in is a set of software components that adds
specific capabilities to a software system. Software systems with
plug-in capabilities can be considered as open platforms. The most
successful domain for software systems with plug-ins is certainly
web browsers. Most web browsers such as Firefox offer a plug-
in system through public APIs and a public download/upload web
platform.

In these new application domains, the user customizes the plat-
form by installing applications of interest in conformance with
his/her resource usage policies. Another novelty of these applica-
tion domains is that non-programmers are increasingly involved
in application development, making open platforms more user-
centric.

short description of paper 1 2010/10/15



1.2 Requirements

Let us now identify and examine the key requirements for designing
open platforms.

Safety. Most of the platform providers want third-party applications
to be analyzable with sufficient accuracy to avoid malicious actions
or to certify the conformance with their expected behaviors. For
example, phone applications should not send SMS or access to
paying services unless it is part of their nominal behaviour.

Security. Accesses to resources have to be controlled, to ensure the
privacy of the platform users. To achieve this goal, the available
resources have to be clearly identified and the user has to know
the resources used by each application, and more precisely, how
these resources are used. For example, the user is interested in the
confinement of sensitive data.

Resource extensibility. To adapt open platforms to unanticipated
users’ demands, it is critical for the platform providers to allow
resource extensibility. This requires support for the declaration and
the discovery of new resources.

Programmability. The public programming interfaces should fa-
cilitate the development of new applications, even allowing non-
programmers to develop their own applications. If the program-
ming interfaces are high level enough, programming boils down
to gluing operations.

Low-cost. In these new application domains, the majority of the
applications are distributed at a small scale. Consequently, the open
platform must enable application development to be low-cost.

Obviously, these requirements are not specific to open platforms
but the openness makes them even more critical for the stakehold-
ers. Section 2 makes an inventory of the existing development ap-
proaches and show their limits with regard to these requirements.
Then, Section 3 examines the main challenges for the next genera-
tion of open platforms.

2. Overview of Existing Approaches

An open platform is characterized by three main elements: the pro-
gramming interfaces, the shared resources and the runtime envi-
ronment. For each of these elements, there exist different design
strategies partially addressing the requirements discussed earlier.

2.1 APIs and Middlewares

Middlewares such as J2EE [20] or CORBA [14] have been used
to support and simplify the development of complex distributed
applications. They offer APIs to develop software components and
a runtime environment to easily connect them over a distributed
system.

Programming interfaces. Middlewares attempt to cover as much
of their target application domain as possible in a single library.
This strategy often leads to large APIs, providing little guidance to
the application developer [15] and requiring a steep learning curve.
This situation makes it difficult to achieve programmability and
low-cost development.

Resource descriptions. Most middlewares include an Interface De-
scription Language (IDL). IDLs are used to describe software com-
ponents, offering a bridge between heterogeneous systems. For
example, WSDL [9] is an IDL dedicated to Web Services and
AIDL [22] is an IDL dedicated to the Android platform. IDLs fa-
cilitate the analysis of resource usage but are not accurate enough
to lift the need for dynamic checks.

Runtime environment. Middlewares abstract over variations in
hardware, operating systems or distribution systems technologies.
Even though, as the components of an application might come

from heterogeneous middlewares, the multiplication of distribution
models still lead to interoperability issues; this situation is referred
to as the middleware paradox [18].

2.2 Programming Frameworks

A programming framework is a software layer that organizes and
supports applications. A framework may include APIs, a scripting
language, or any supporting mechanism that helps to develop and
glue together the different components of a software project. In
comparison with libraries, the main characteristic of a program-
ming framework is that it defines patterns of control flow. For ex-
ample, the iPhone’s SDK [10] allows the application developer to
program code snippets that are then called by the runtime core of
the framework. This approach is known as Inversion of Control [12]
or Hollywood Principle [23] (“Don’t call us, we’ll call you”).

Programming interfaces. The control-flow patterns underlying a
framework facilitate the programming by guiding developers. To
make open platforms accessible even to non-programmers, devel-
opment frameworks have sometimes been built on top of conven-
tional programming frameworks. For example, App Inventor [1] al-
lows non-programmers to develop applications. They can visually
design the way the application looks and specify the application’s
behavior using a visual-block programming language. Generally,
the APIs offered by programming frameworks are higher level than
the ones provided by middlewares, improving development sup-
port. The inversion of control facilitates code analysis by limiting
the locations where the application logic is plugged in, and restrict-
ing the control flow.

Resource descriptions. In most programming frameworks, resource
usage are solely characterized by API invocations [2, 10, 13].
Such an approach has a number of limitations. For example, it
does not address dynamic resources as in pervasive computing
environments. An exception is the Android platform that offers a
dedicated IDL [22], allowing dynamic binding of resources.

Runtime environment. Programming frameworks impose a control-
flow pattern on applications. As a consequence, the runtime en-
vironment can ensure strong security properties. For example, the
multitasking in the iPhone runtime environment is moderate (e.g.,
due to memory constraints, the runtime environment purges appli-
cations that have not been resumed recently) and each iPhone ap-
plication is launched in a sandbox, limiting access to files, network
resources or hardware subsystems [10].

3. Towards More Declarative and Customizable

Open Platforms

The last generation of open platforms has shown that well-designed
programming frameworks are an attractive development approach.
They offer a better programming and analysis support than generic
middlewares. However, they limit the kind of applications one can
develop and the resources that can be accessed. The challenges for
the next generation of open platforms is to lift these limitations.

3.1 Resource Declaration

In application domains such as pervasive computing, where re-
sources can be dynamically discovered, languages dedicated to
resource description are already used. For example, in service-
oriented architectures such as the OSGi framework [19], both ap-
plications and resources are viewed as services accessible across
a distributed computing environment. Networking protocols such
as UpNP [17] provide native support for the discovery of new en-
tities. When connected to a network, entities automatically broad-
cast their network address and supplied types of services. Another
example of resource-specification languages in the web domain is

short description of paper 2 2010/10/15



the W3C Resource Description Framework [3] (RDF) that allows
to specify web data models. In pervasive computing, the domain-
specific language Diaspec [8] offers a taxonomy layer dedicated
to describing classes of entities that are relevant to the target ap-
plication area. From this specification, the compiler generates cus-
tomized programming support dedicated to the required resources
of a class of applications. This declarative approach allows not only
dynamic resource discovery but also accurate resource access anal-
ysis.

The next generation of open platforms need to offer such dec-
larations for resources: they play a key role for dynamic resource
extensibility. Furthermore, these declarations facilitate both safety
and security analysis by providing information about the resource
accesses.

3.2 Customized Programming Frameworks

The main drawback of the existing approaches is their generic-
ity that results in large APIs. Additionally, generic approaches
are limited in development and analysis support. To overcome
this limitation without loosing extensibility, the future open plat-
forms should offer programming frameworks that are automati-
cally customized with respect to a given class of applications and
required resources. These customization parameters would be ex-
pressed declaratively with domain-specific concepts. For example,
the domain-specific language Diaspec [8] allows the specification
of Sense/Compute/Control (SCC) applications based on a dedi-
cated architectural pattern. From this specification, the compiler
generates customized programming support dedicated to the appli-
cation. Such approaches could be used for describing the resources
of an open platform and for guiding the development of third-party
applications.

To offer such customized programming frameworks, the plat-
form providers have to characterize a range of applications and as-
sociated resources. Then, generated programming frameworks will
guide application development via architectural patterns dedicated
to the supplied declaration, improving programmability and reduc-
ing the development costs.

3.3 Static Verification of Third-Party Applications

In middlewares, most of the security verification is done at the level
of the runtime environment by checking dynamically whether an
access to a resource respects a given security policy. For example,
Java midlets can be launched in a defensive manner, forcing the
user to validate each resource access. To avoid this interaction with
the users, platform providers can design security policies specific
to applications. However, the main drawback of such dynamic
verifications is the performance cost.

In programming frameworks such as that of Facebook, users can
choose which part of their personal resources are shared. When in-
stalling a new application, they are informed whenever a resource is
accessed by this application. Such security analysis can be carried
out because of the restrictive API. However, existing programming
frameworks are still too generic to allow fully static verification of
the applications. For example, Facebook users are not only inter-
ested in the list of the resources required by an application but also
how the application utilizes these resources. For example, it would
be interesting to check data confinement: is the information sent to
external systems or only used for statical purposes?

Using customized programming frameworks could allow a bet-
ter verification support by restricting the control and data flows for
a given application and thus enable the decidability of a larger set
of properties. Some of these properties depend on the application
(e.g., behavioral invariants of the application). The application de-
veloper could declare the expected behaviors of his/her application
by defining such properties in a manifest file associated to the appli-

cation. Then, this behavioral specification would be readable by the
platform user and the open platform could statically check whether
the code is conform to these specifications due to the code restric-
tion. This approach is illustrated by DiaSpec where architectural
descriptions are translated into Promela specifcations, allowing the
verification of LTL invariants [16]. Such invariants can be used by
the application developer as behavioral specifications.

By making the developer declare more information about the
application behavior, a better safety and security support can be of-
fered. This extra task does not penalize the application developer
as the generated programming framework also reduces his/her de-
velopment costs.

4. Conclusion

We have identified the main requirements in the design of open
platforms and shown how the current approaches and technologies
fail to fulfill them. We have introduced the challenges open plat-
forms raise to reconcile security and extensibility. Finally, we have
sketched directions to address key requirements of open platforms.

References

[1] App inventor. URL http://appinventor.googlelabs.com.

[2] Myspace platform. URL http://developerwiki.myspace.com.

[3] Rdf specification. URL http://www.w3.org/RDF.

[4] WarioWare: Do it Yourself. URL http://www.wariowarediy.com.

[5] Xbox-live website. URL http://www.xbox.com/live.

[6] B. N. Bershad, S. Savage, E. G. Sirer, M. Fiuczynski, D. Becker,
S. Eggers, and C. Chambers. Extensibility, safety and performance
in the spin operating system. pages 267–284, 1995.

[7] C. Carter. Microsoft XNA game studio 3.0 unleashed. Sams, 2009.

[8] D. Cassou, B. Bertran, N. Loriant, and C. Consel. A generative
programming approach to developing pervasive computing systems.
In GPCE’09: Proceedings of the 8th International Conference on

Generative Programming and Component Engineering, pages 137–
146, Denver, CO, USA, 2009. ACM.

[9] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
service definition language (wsdl). Technical report, March 2001.
URL http://www.w3.org/TR/wsdl.

[10] J. L. Dave Mark. Beginning iPhone Development: Exploring the

iPhone SDK. Apress, 2009.

[11] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: an operating
system architecture for application-level resource management. In
SOSP ’95: Proceedings of the fifteenth ACM symposium on Operating

systems principles, pages 251–266, New York, NY, USA, 1995. ACM.
ISBN 0-89791-715-4.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Abstraction and Reuse of Object-Oriented Design. Addison-Wesley,
Boston, MA, January 1995. ISBN 0201633612.

[13] J. Goldman. Facebook Cookbook: Building Applications to Grow Your

Facebook Empire. O’Reilly Media, Inc., 2008. ISBN 059651817X,
9780596518172.

[14] O. M. Group. Corba component model 4.0 specification. Specifi-
cation Version 4.0, Object Management Group, April 2006. URL
http://www.omg.org/docs/formal/06-04-01.pdf.

[15] M. Henning. The Rise and Fall of CORBA. ACM Queue, 4(5), 2006.

[16] G. J. Holzmann. The SPIN Model Checker: Primer and Reference

Manual. Addison-Wesley Professional, 2003.

[17] M. Jeronimo and J. Weast. UPnP Design by Example: A Software

Developer’s Guide to Universal Plug and Play. Intel Press, 2003.
ISBN 0971786119.

[18] F. Kordon and L. Pautet. Toward nex-generation middleware? IEEE

Distributed Systems Online, 6(3):2, 2005. ISSN 1541-4922.

[19] OSGi. OSGi alliance. URL http://www.osgi.org.

short description of paper 3 2010/10/15



[20] P. J. Perrone and K. Chaganti. J2EE: Developer’s Handbook. Pearson
Education, 2003. ISBN 0672323486.

[21] M. Resnick, J. Maloney, A. Monroy-Hernndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai. Scratch: Programming for all. Communications of the ACM,
52(11):60–67, 2009.

[22] R. Rogers, J. Lombardo, Z. Mednieks, and B. Meike. Android Appli-

cation Development: Programming with the Google SDK. O’Reilly,
Beijing, 2009. ISBN 978-0-596-52147-9.

[23] R. E. Sweet. The Mesa programming environment. In
Proceedings of the ACM SIGPLAN 85 symposium on Lan-

guage issues in programming environments, pages 216–229, New
York, NY, USA, 1985. ACM. ISBN 0-89791-165-2. doi:
http://doi.acm.org/10.1145/800225.806843.

short description of paper 4 2010/10/15


