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Abstract

This paper considers a general class of nonlinear systems, “nonlinear Hamiltonian systems of wave equations”. The first
part of our work focuses on the mathematical study of these systems, showing central properties (energy preservation,
stability, hyperbolicity, finite propagation velocity . . . ). Space discretization is made in a classical way (variational
formulation) and time discretization aims at numerical stability using an energy technique. A definition of “preserving
schemes” is introduced, and we show that explicit schemes or partially implicit schemes which are preserving according
to this definition cannot be built unless the model is trivial. A general energy preserving second order accurate fully
implicit scheme is built for any continuous system that fits the nonlinear Hamiltonian systems of wave equations class.
The problem of the vibration of a piano string is taken as an example. Nonlinear coupling between longitudinal and
transversal modes is modeled in the “geometrically exact model”, or approximations of this model. Numerical results are
presented.

Key words: Energy preservation, nonlinear Hamiltonian systems of wave equations, finite elements numerical schemes,
piano string.

Introduction

We consider in this paper a general class of nonlinear
systems, namely nonlinear Hamiltonian systems of wave
equations. Our main objective is the construction of en-
ergy preserving discretization schemes for such systems.
The concrete problem that has motivated this work was to
compute the vibrations of a piano string, with the objec-
tive to achieve the numerical simulation of a whole concert
piano. The full piano model is quite complex and couples
the vibrations of the string (a 1D model) with the vibra-
tions of the soundboard (a 2D phenomenon) and with the
sound radiation (a 3D phenomenon). Guaranteeing and
proving the stability of a numerical method for the coupled
problem is not an easy task. Having an energy approach is
a very powerful approach to achieve this goal. The Hamil-
tonian nature of the equations governing the vibrations of
the string makes it possible a priori : there is conservation
of an energy for the continuous problem. Preserving such
a property at the discrete level has two nice consequences :
keeping after discretization an important (from both the-
oretical and physical points of view) property of the exact

∗Corresponding author

solution and getting stability results provided that the dis-
crete property has pleasant positivity properties.

The problematic of energy preserving schemes is far from
new and has already generated an intensive literature. It
appears that results can easily be found in the case of
scalar equations (the unknown function takes scalar val-
ues), of course in the context of ordinary differential equa-
tions ODEs (see for instance [16, 26]) but also of some
partial differential equations, particularly semi-linear wave
equations (see for instance [6, 11, 12, 23, 25, 31]). The case
of systems has been much less investigated and it seems
that most results are restricted to very particular systems
: see for instance in [27], [15] or [8] in the context of sys-
tems of ODE’s and [14] (for nonlinear elasticity) or [5]
(for nonlinear strings) in the context of systems of PDE’s.
Finally, the references [3, 4, 17] investigate time FE meth-
ods for the N-body problem, nonlinear elastodynamics and
are extended to more general problems and higher orders.
These very interesting methods rely on the difficult seek
of a good quadrature rule and reduce to the previously
mentioned methods in particular cases. Our aim in this
context was to find a systematic and easily computed en-
ergy preserving scheme for any system of PDE’s, while
keeping a great degree of generality.

Preprint submitted to Elsevier April 27, 2010



As said above, we tackle in this paper a rather general
class of 1D nonlinear Hamiltonian systems of wave equa-
tions, where the unknown function takes values in R

N for
arbitrary N ≥ 1. The restriction to the 1D case con-
tributes essentially to simplifying the presentation. How-
ever, most of our developments can be extended to higher
space dimensions. Our article is divided into two parts.
The first part (sections 1 and 2) concerns general systems.
The second part (section 3) presents the application to the
particular system which governs the vibrations of a piano
string.

In section 1, we recall the main properties of 1D nonlinear
Hamiltonian systems of wave equations. We insist partic-
ularly on the most relevant (for our purpose) properties
of (sufficiently) smooth solutions of such systems: energy
preservation (leading to H1 stability), hyperbolicity and
finite propagation velocity. Section 2, the main section of
the article, is devoted to the discretization schemes. For
the space discretization, we use a variational formulation
and a Galerkin approximation procedure (Section 2.1).
The main difficulties are encountered when looking at the
time discretization using finite differences, which is the
object of section 2.2. Our desire to preserve a certain en-
ergy leads us to introduce a particular class of numerical
schemes. We show that this class excludes the explicit
scheme (except in the linear case, see Lemma 2.2 of sec-
tion 2.2.2) as well as partially decoupled implicit schemes
(except in some very particular systems, see section 2.2.3).
Finally in section 2.2.4, we exhibit inside our class of nu-
merical schemes a fully implicit, second order accurate, en-
ergy preserving and unconditionally stable scheme for any
nonlinear Hamiltonian system of wave equations, with any
number of unknown variables. Note that the implicitness
of the scheme is the price to be paid for robustness (ob-
tained via energy conservation).

In the context of the simulation of the piano (section 3),
the implicitness of the scheme is by no means a real con-
straint since the time devoted to the string itself should be
a small percentage of the total computational cost while
the unconditional stability provides more flexibility and ro-
bustness for the coupled model. In Section 3.1 we present
the nonlinear vibrating string model introduced in [28], as
well as some of its approximations including the one used
in [2] and [5]. These models are all nonlinear Hamiltonian
systems of wave equations. We give their main mathe-
matical properties in section 3.2. We apply the numerical
scheme of section 2.2.4 to this system (section 3.3) and
related numerical results are given in section 3.4.

1. Nonlinear Hamiltonian systems of wave equa-
tions : general theoretical frame

1.1. General formulation

This paragraph is devoted to 1D nonlinear Hamiltonian
systems of wave equations. A function H : R

N → R, a

potential energy, totally determines the system (N is the
size of the system). We shall consider the following Cauchy
problem (Ω is a segment of R or R itself):
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Find u = (u1, · · · , uN ) : Ω × R
+ → R

N ,

∂2
ttu − ∂x

ˆ

∇H
`

∂xu
´˜

= 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),

u(x, t) = 0, ∀x ∈ ∂Ω.

(1)

Remark 1.1. The function H is only used through its
gradient, hence any H +L gives the same system of equa-
tions as H, with L a linear function on R

N . Thus, it is
not restrictive to assume that H(0) = 0 and ∇H(0) = 0.

The mathematical properties of the system will depend on
the properties of H. Here are the main assumptions that
we will consider in the following sections:

(H1) smoothness : H is of class C2,

(H2) coercivity : ∃ K > 0 s.t. H(v) ≥ K |v|2,

(H3) convexity : H is strictly convex,

(H4) There exists c+ > 0 s.t. |∇H(v)|2 ≤ 2 c2+H(v),

(H5) There exists M > 0 s.t. |∇H(v)| ≤M (1 + |v|).

Sometimes, these properties will be needed only locally.

1.2. Energy preservation and H1 stability

Theorem 1.1. Any smooth enough solution u of (1) sat-
isfies the energy identity:

d

dt
E(t) = 0, with E(t) =

Z

Ω



1

2

˛

˛

˛
∂tu

˛

˛

˛

2

+H(∂xu)

ff

dx. (2)

Proof. For completeness, we include the following
well known proof. We take the inner product in R

N of the
equation with ∂tu and integrate over x to obtain :

Z

Ω

h

∂2
ttu − ∂x [∇H(∂xu)]

i

· ∂tu = 0.

After integration by parts we obtain:
Z

Ω

h

∂2
ttu · ∂tu + ∇H(∂xu) · ∂2

txu

i

= 0,

where we recognize
Z

Ω

1

2
∂t

`

|∂tu|2
´

+

Z

Ω

∂t [H(∂xu)] = 0.

Hence,

d

dt

Z

Ω



1

2

˛

˛

˛
∂tu

˛

˛

˛

2

+H(∂xu)

ff

dx = 0.

�

Obviously, (2) yields an upper bound on the H1-norm of
the solution, under the hypothesis (H2).
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Corollary 1.1. Let us assume (H2). Then, there exists
C > 0 such that

||u(·, t)||H1 ≤ C E(0), ∀t ≥ 0.

1.3. Hyperbolicity of the system

We begin by recalling here some basic definitions for
first order hyperbolic systems (see [13] for more details
and mathematical results).

Definition 1.1. Hyperbolic system

We consider the system of equations

∂tu + ∂xF(u) = 0 (3)

where F : D ⊂ R
n → R

n is of class C1 and we look for
u = (u1, · · · , un) : Ω × R

+ → D. We define

A(u) =

„

∂Fi

∂uj
(u)

«

1≤i,j≤n

(4)

the Jacobian matrix of F. The system (3) is said to be
hyperbolic if, for any u ∈ D, the matrix A(u) has n real
eigenvalues µ1(u) ≤ . . . ≤ µk(u) ≤ . . . ≤ µn(u) and p
linearly independent corresponding eigenvectors r1(u), . . . ,
rk(u), . . . , rn(u), i.e.

A(u) rk(u) = µk(u) rk(u).

If, in addition, the eigenvalues µk(u) are all distinct, the
system (3) is called strictly hyperbolic.

The system is said locally (strictly) hyperbolic near u0 if
the appropriate properties are true not for u ∈ D but for
u in a neighborhood of u0.

With the notations

U ≡ (Ut,Ux) := (∂tu, ∂xu) and U0(x) = (u1, ∂xu0),

the system (1) can be written
8

>

>

>

>

<

>

>

>

>

:

Find U : Ω × R
+ → R

2N ,

∂tU + ∂xF (U) = 0, x ∈ Ω, t > 0,

U(x, 0) = U0(x), x ∈ Ω.

(5)

where the nonlinear function F is given by

∀ U = (Ut,Ux) ∈ R
N × R

N , F (U) =

„

−∇H(Ux)
−Ut

«

. (6)

Theorem 1.2. Local hyperbolicity of the system (1) is equiv-
alent to local convexity of H.

Proof. The Jacobian of F is given by

∀ U = (Ut,Ux) ∈ R
N × R

N ,

A(U) = DF (U) =

 

0 −D2H(Ux)

−I 0

!

. (7)

where D2H(Ux) refers to the Hessian matrix of H. The
eigenvalue problem for A(U):

Find
`

Z(U) = (Zt(U),Zx(U)
´

6= 0 ∈ C
2N and µ(U) ∈ C,

DF (U) Z(U) = µ(U) Z(U).

is equivalent to






D2H(Ux) Zx(U) = µ2(U) Zx(U),

Zt(U) = −µ(U)Zx(U).

Thus it is clear that the local hyperbolicity of (1) relies
on the positivity of the eigenvalues of D2H(Ux), i.e. on
the local convexity of H.

�

1.4. Finite propagation velocity

Theorem 1.3. We assume (H4). Then, any smooth enough
solution u of (1) propagates with a velocity lower than C.

Proof. Let us assume hypothesis (H4). We can notice
that this property induces that H is positive. We will use
an energy technique. Let V > 0, to be specified later,
and a ∈ R such that the initial data have their support in
] −∞, a[. We have for all t > 0:

Z +∞

a+V t

“

∂2
ttu − ∂x [∇H(∂xu)]

”

· ∂tu dx = 0,

that is to say, after integration by parts,
∣

∣

∣

∣

∣

∣

Z +∞

a+V t

∂t

“1

2
|∂tu|2

”

dx+

Z +∞

a+V t

[∇H(∂xu)] · ∂2
xtu dx

− [ ∇H(∂xu) · ∂tu ] (a+ V t, t) = 0,

which, with the energy density

e =
1

2
|∂tu|2 +H(∂xu)

can be written
Z +∞

a+V t

∂e

∂t
dx− [ ∇H(∂xu) · ∂tu ] (a+ V t, t) = 0

or, after derivation under the integral,

d

dt

Z +∞

a+V t

e dx+ Φ(a+ V t, t) = 0,

where
Φ := V e − [ ∇H(∂xu) · ∂tu ] .

Using the hypothesis on the initial data, we have

∀t > 0,

Z +∞

a+V t

e(x, t) dx = −
Z t

0

Φ(a+ V s, s) ds.

Now we choose V large enough such that Φ is positive.
This is possible since

˛

˛∇H(∂xu) · ∂tu
˛

˛ ≤ V

2

˛

˛∂tu
˛

˛

2
+

1

2V

˛

˛

˛
∇H(∂xu)

˛

˛

˛

2

3



Consequently, using (H4)

Φ ≥ V H(∂xu) − 1

2V

˛

˛

˛
∇H(∂xu)

˛

˛

˛

2

≥
`

V − c2+
V

) H(∂xu)

because of the hypothesis (H4). If we choose V = c+, the
function Φ is positive, and we have

e(x, t) = 0 for x > a+ c+t, t > 0.

Since H is positive, we have

u(x, t) = 0 for x > a+ c+t, t > 0.

This result shows that the propagation velocity of the so-
lution of the Cauchy problem (1) is bounded above by:

c+ =

 

1

2
sup
(ux)

R(ux)

! 1
2

, R(ux) :=

˛

˛

˛
∇H(ux)

˛

˛

˛

2

H(ux)
· (8)

�

2. Finite element energy preserving numerical sche-
mes for nonlinear Hamiltonian systems of wave
equations

Each time one wishes to discretize in space and time
an evolution problem whose solution satisfies the conser-
vation of an energy, as in the case of the systems (1) but
more generally of many mechanical models, it is a natural
idea to try to construct numerical schemes that preserve
rigorously a discrete energy that is equivalent of the con-
tinuous energy. As we shall see immediately in the next
paragraph, in the case of (1), the use of variational tech-
niques (such as the finite element method) for the space
semi-discretization ensures “by construction” the conserva-
tion of a positive semi-discrete energy. The difficulties re-
ally occur when the time discretization is concerned. This
essential issue will be the object of section 2.2.

2.1. Spatial semi discretization

2.1.1. Variational formulation

Let us consider the following system of partial differ-
ential equations:

8

<

:

∂2
t u − ∂x [∇H(∂xu)] = 0,

u(x, t) = 0, ∀ t > 0, ∀ x ∈ ∂Ω.
(9)

Even though all of the following could probably be gener-
alized to a more general context, we shall assume that the
function H satisfies the coercivity property (H2) and the
additional assumption (H5):

∃M > 0 such that |∇H(v)| ≤M (1 + |v|), ∀v ∈ R
N . (10)

In this case, according to the continuous energy identity,
we expect that the solution u satisfies

u ∈ C0(R+;H1
0 (Ω)N ) (11)

which implies, because of (H5)

H(∂xu) ∈ L∞(R+;L2(Ω)N ). (12)

In this framework, we can write a variational formulation
in space of (1) in the space:

V =
`

H1
0 (Ω)

´N
. (13)

Let us take the inner product (in R
N ) of (1) by v ∈ V and

integrate over space the resulting equality. We get after
integration by parts, since the boundary terms vanish,

d2

dt2

“

Z

Ω

u · v
”

+

Z

Ω

∇H(∂xu) · ∂xv = 0, ∀ v ∈ V (14)

which is the variational formulation of the problem.

2.1.2. Semi-discretization in space

We consider as usual { Vh, h > 0 } a family of finite
dimensional subspaces of V, where h is an approximation
parameter destined to tend to 0. We assume the standard
approximation property:

∀ v ∈ V, lim
h→0

inf
vh∈Vh

‖v − vh‖ = 0 (15)

The most classical example is the approximation with con-
forming Lagrange finite elements of degree k ≥ 1, the so-
called Pk finite elements, on a family of meshes of Ω (in
which case the approximation parameter is nothing but
the stepsize of the mesh).

We consider the following semi-discrete problem: find uh :
R

+ 7→ Vh such that

d2

dt2

»Z

Ω

uh.vh

–

+

Z

Ω

∇H(∂xuh).∂xvh = 0, ∀ vh ∈ Vh . (16)

We can write an algebraic formulation of (16) after having
introduced the vector Uh ∈ R

Nh (resp. Vh ∈ R
Nh) of the

components of uh (resp. vh) in an appropriate basis of Vh.
We first introduce the linear operator in R

Nh , Mh defined
by:

“

MhUh,Vh

”

h
=

Z

Ω

uh.vh, ∀ vh ∈ Vh . (17)

By analogy with the formula
Z

Ω

−∂x∇H(∂xu) · v =

Z

Ω

∇H(∂xu) · ∂xv

we introduce the nonlinear function in R
Nh (the compli-

cated notation is chosen for convenience to emphasize the
analogy with the continuous case - note that −∂x is the
formal adjoint of ∂x)

D
∗
h

`

∇H(Dh)
´

: Uh 7→ D
∗
h

`

∇H(DhUh)
´

, (18)

defined by

“

D
∗
h

`

∇H(DhUh)
´

,Vh

”

h
=

Z

Ω

∇H(∂xuh) · ∂xvh, (19)

∀ vh ∈ Vh .

4



Then, (16) is clearly equivalent to the following nonlinear
differential system in R

Nh (where Uh(t) is the vector of
the degrees of freedom of uh(t))

Mh
d2

Uh

dt2
+ D

∗
h

`

∇H(DhUh)
´

= 0. (20)

The effective implementation (after time discretization -
see the next paragraph) inevitably requires the computa-
tion of the integrals in the right hand sides of (17), (19).
For the nonlinear part (19), it is not possible to com-
pute exactly these integrals - except for very particular
H. This is the case for instance with the string model
of section 3. That is why these integrals will be evalu-
ated approximately, which will lead to the following new
definitions for Mh and D

∗
h

(

∇H(Dh)
)

, ∀ vh ∈ Vh:

8

>

>

>

<

>

>

>

:

“

MhUh,Vh

”

h
=

I h

Ω

uh.vh,

“

D
∗
h

`

∇H(DhUh)
´

,Vh

”

h
=

I h

Ω

∇H(∂xuh) · ∂xvh,

(21)

where the linear form f 7→
∮ h

Ω

f is an approximate integral

I h

Ω

f ≃
Z

Ω

f for small h. (22)

In practice, this approximate integral will be constructed,
in the context of finite elements, by decomposing the global
integral as the sum of integrals along the segments of the
finite element mesh and using inside each segment a given
quadrature rule. As a result, the integral becomes exact
as soon as f is piecewise (according to the mesh) polyno-
mial of a certain degree. In particular the calculation of
the mass matrix Mh may be exact in this degree is large
enough since, contrary to ∇H(∂xuh) · ∂xvh, the product
uh.vh is piecewise polynomial.

An important property is required, namely that

f ≥ 0 =⇒
I h

Ω

f ≥ 0. (23)

This will be the case in the finite element context as long
as quadrature formulas with positive quadrature weights
are chosen.

Remark 2.1. In practice, for appropriate quadrature for-
mulas adapted to the finite element space Vh, the positiv-
ity of the quadrature weights induces a stronger property,
namely the existence of γ > 0 such that

∀vh ∈ Vh,

∮ h

Ω

|vh|2 ≥ γ

∫

Ω

|vh|2.

On the other hand, one can choose a quadrature rule that
makes the mass matrix become diagonal. This is called
mass lumping and can lead to explicit schemes (see section
10.4 pages 305 to 313 of [22] for a mathematical approach).

For a smooth enough function H, typically H ∈ C2(R),
the existence and uniqueness of a local (in a maximum
time interval [0, Th[) solution uh of (16) is a direct and
easy consequence of standard theorems from the theory of
ordinary differential equations [20], with the regularity

uh ∈ C2(0, Th;Vh).

Our next result allows us to show that the solution is for
each h global in time (Th = +∞) and providesH1 stability
estimates.

Theorem 2.1. The scheme (16) preserves a semi discrete
energy, i.e. the solution uh of the scheme satisfies:

d

dt
Eh(t) = 0, with Eh(t) =

1

2

I h

Ω

˛

˛∂tuh

˛

˛

2
+

I h

Ω

H
`

∂xuh

´

.

Proof. This property comes directly from the varia-
tional formulation, with vh = ∂tuh which belongs to Vh.
Then we have:

I h

Ω

“

∂2
t uh

”

.
“

∂tuh

”

+

I h

Ω

∇H(∂xuh).∂x

“

∂tuh

”

= 0

that can be rewritten
I h

Ω

∂t

“1

2

˛

˛

˛
∂tuh

˛

˛

˛

2”

+

I h

Ω

∂t

“

H(∂xuh)
”

= 0,

which leads to the result.
�

We easily deduce from theorem 2.1 the following discrete
H1 stability result:

Corollary 2.1. Let us assume hypothesis (H2). Then,
there exists C > 0 such that

I h

Ω

|∂xuh(t)|2 ≤ C Eh(0), ∀t ≥ 0. (24)

Proof. Theorem 2.1 implies

I h

Ω

H(∂xuh) dx = Eh(0) − 1

2

I h

Ω

˛

˛

˛
∂tuh

˛

˛

˛

2

dx.

Using the hypotheses (23) and (H2), we get

K

I h

Ω

˛

˛

˛
∂xuh

˛

˛

˛

2

≤
I h

Ω

H(∂xuh) dx ≤ Eh(0).

�

Remark 2.2. As in Remark 2.1, with appropriate quadra-
ture formulas adapted to the finite element space Vh, (24)
yields uniform H1-upper bounds for (16) (one uses in par-
ticular a discrete form of Poincaré’s inequality.)
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2.2. Time discretization : construction of energy preserv-
ing schemes

2.2.1. A class of energy preserving schemes

As announced previously, we investigate the question of
finding finite difference schemes that preserve rigorously a
discrete energy. Such schemes are well known in the linear
case, which corresponds to

H(v) =
1

2
Av · v, (=⇒ ∇H(v) = Av) (25)

that is to say to the linear hyperbolic system

∂2
t u − A ∂2

xxu = 0 (26)

and its corresponding semi-discrete version, using the no-
tation of the previous paragraph

d2

dt2

»I h

Ω

uh · vh

–

+

I h

Ω

A ∂xuh · ∂xvh = 0, ∀ vh ∈ Vh , (27)

which preserves the quadratic discrete energy

Eh(t) =
1

2

I h

Ω

|∂tuh

˛

˛

2
+

1

2

I h

Ω

A ∂xuh · ∂xuh. (28)

In this case, there is a natural class of energy preserving
schemes, called the θ-schemes, where θ ∈ [0, 1/2] is an
averaging parameter. Those schemes belong to the more
general class of Newmark schemes (see chapter XX of [9])
that also contains dissipative schemes. Using a constant
time step ∆t and denoting by u

n
h the approximation of

uh(tn), this scheme is, in its variational form:

∀ vh ∈ Vh,

I h

Ω

u
n+1
h − 2un

h + u
n−1
h

∆t2
· vh+

I h

Ω

A ∂x

`

θun+1
h + (1 − 2θ)un

h + θun−1
h

´

· ∂xvh = 0. (29)

The solution of this scheme satisfies the conservation of a
discrete energy

E
n+ 1

2

h = E
n− 1

2

h
(30)

where the discrete energy E
n+ 1

2

h corresponding to time

tn+ 1
2 = (n+ 1

2 )∆t is given by

E
n+ 1

2

h =
1

2

I h

Ω

˛

˛

˛

u
n+1
h − u

n
h

∆t

˛

˛

˛

2

+
1

2

I h

Ω

A ∂x

`

u
n+1/2
h

´

· ∂x

`

u
n+1/2
h

´

+
1

2

`

θ − 1

4

´

∆t2
I h

Ω

A ∂x

“

u
n+1
h − u

n
h

∆t

”

· ∂x

“

u
n+1
h − u

n
h

∆t

”

where we have set u
n+1/2
h :=

u
n+1
h + u

n
h

2
.

The identity (30) is easily derived by taking vh =
(

u
n+1
h −

u
n−1
h

)

/2∆t as a test function in (29).

The conservation of the energy E
n+ 1

2

h automatically pro-

vides the stability of the scheme when θ ≥ 1/4 since E
n+ 1

2

h

is always positive.

When θ < 1/4, the scheme is stable under the stability
condition

(1 − 4θ)
∆t2

4
sup

vh∈Vh

2

6

6

4

I h

Ω

A ∂xvh · ∂xvh

I h

Ω

|vh|2

3

7

7

5

≤ 1 (31)

which is nothing but the condition that ensures the posi-

tivity of E
n+ 1

2

h .

When θ = 0, one gets the well-known leap-frog scheme -
or explicit scheme - which is explicit in practice when one
achieves mass lumping (see remark 2.1).

Our objective is in some sense to generalize the θ-scheme
to the nonlinear case, with as main objective the preserva-
tion of a discrete energy guaranteeing the stability of the
scheme.

Of course the problematic of energy preserving schemes is
close to the problematic of symplectic schemes [30] for the
discretization of Hamiltonian differential equations, whose
purpose is to preserve other invariants of the continuous
problems. These invariants are of more geometrical nature
and linked to the preservation of symmetries of the system.
In general, such schemes cannot preserve a discrete energy
(see [34]) but can succeed in “almost preserving” such an
energy over large times [18, 19, 29]. Some authors have
carried out a comparison between symplectic and energy
preserving schemes, and found the latter “more accurate”
(see [10, 14, 15]).

In what follows, we are going to investigate a class of three
point schemes for the time discretization of (16). These
schemes have the same type of structure as the θ-schemes
and include all the linear schemes. They will be based on
a function that we shall call the “approximate gradient”:

˛

˛

˛

˛

˛

˛

�H : R
N × R

N × R
N −→ R

N

(u,v,w) −→ �H(u,v,w)
(32)

that should satisfy the consistency condition

∀v ∈ R
N , �H(v,v,v) = ∇H(v). (33)

Using such an approximate gradient, the fully discrete ver-
sion of (16) is

∀ vh ∈ Vh,

I h

Ω

u
n+1
h − 2un

h + u
n−1
h

∆t2
· vh+

I h

Ω

�H(∂xu
n+1
h , ∂xu

n
h, ∂xu

n−1
h ) · ∂xvh = 0. (34)

For the sequel, we shall assume that �H is a “smooth
enough” function. Note that

• One obtains an explicit scheme (provided mass lump-
ing) as soon as

�H(u,v,w) is independent of u. (35)
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• One obtains a scheme which is reversible in time and
second order accurate (see remark 2.3) if and only if

�H(u,v,w) = �H(w,v,u), ∀ (u,v,w) ∈ (RN )3. (36)

Remark 2.3. To check the second order accuracy of the
time approximation, we introduce the truncation error de-
fined as the linear form

E(vh) =

I h

Ω

u
n+1
h − 2un

h + u
n−1
h

∆t2
· vh

+

I h

Ω

�H(∂xu
n+1
h , ∂xu

n
h, ∂xu

n−1
h ) · ∂xvh (37)

with u
n
h := uh(tn) and uh(·) is the solution of (16), which

is a smooth function of time. Using a Taylor expansion
we obtain

u
n+1
h − 2un

h + u
n−1
h

∆t2
=
d2

uh

dt2
(tn) +O(∆t2). (38)

On the other hand, denoting D1�H(u,v,w)
(resp. D3�H(u,v,w)) the differential of the application
u 7→ �H(u,v,w) (resp.w 7→ �H(u,v,w)), we have

�H(∂xu
n+1
h , ∂xu

n
h, ∂xu

n−1
h ) = �H(∂xu

n
h, ∂xu

n
h, ∂xu

n
h)

+D1�H(∂xu
n
h, ∂xu

n
h, ∂xu

n
h) ∂x

`

u
n+1
h − u

n
h

´

+D3�H(∂xu
n
h, ∂xu

n
h, ∂xu

n
h) ∂x

`

u
n−1
h − u

n
h

´

+O(∆t2)

that is to say, using the consistency condition (33)

�H(∂xu
n+1
h , ∂xu

n
h, ∂xu

n−1
h ) = ∇H(∂xu

n
h, ∂xu

n
h, ∂xu

n
h)

+D1�H(∂xu
n
h, ∂xu

n
h, ∂xu

n
h) ∂x

`

u
n+1
h − u

n
h

´

+D3�H(∂xu
n
h, ∂xu

n
h, ∂xu

n
h) ∂x

`

u
n−1
h − u

n
h

´

+O(∆t2)

Differentiating with respect to u the symmetry condition
(36), we get

D1�H(u,v,w) = D3�H(w,v,u), ∀ (u,v,w) ∈ (RN )3

so that we can write

�H(∂xU
n+1
h , ∂xu

n
h, ∂xu

n−1
h ) = ∇H(∂xu

n
h) +O(∆t2)

+D1�H(∂xu
n
h, ∂xu

n
h, ∂xu

n
h)
`

∂xu
n+1
h − 2∂xU

n
h + ∂xu

n−1
h

´

,

that is to say , since
`

∂xu
n+1
h − 2∂xu

n
h + ∂xu

n−1
h

´

= O(∆t2) ,

�H(∂xu
n+1
h , ∂xu

n
h, ∂xu

n−1
h ) = ∇H(∂xu

n
h) +O(∆t2). (39)

It suffices to substitute (38) and (39) into (37) and to use
the fact that uh(·) is a solution of (16) to conclude that

E(vh) = O(∆t2).

To investigate the preservation of a discrete energy, we
choose vh =

(

u
n+1
h −u

n−1
h

)

/2∆t as a test function in (34)
(as in the linear case) and obtain

0 =
1

∆t

n 1

2

I h

Ω

˛

˛

˛

u
n+1
h − u

n
h

∆t

˛

˛

˛

2

− 1

2

I h

Ω

˛

˛

˛

u
n
h − u

n−1
h

∆t

˛

˛

˛

2 o

+

I h

Ω

�H(∂xu
n+1
h , ∂xu

n
h, ∂xu

n−1
h ) · ∂x

`u
n+1
h − u

n−1
h

2∆t

´

.

(40)

This identity leads us to make the following definition

Definition 2.1. The function �H is called “conservative”
(we shall also say that the corresponding scheme is “con-
servative” or “energy preserving”- cf lemma 2.1 ) if and
only if there exists a scalar function (a discrete potential
energy)

˛

˛

˛

˛

˛

˛

H : R
N × R

N −→ R

(u,v) −→ H(u,v)
(41)

such that ∀ (u,v,w) ∈ (RN )3,

�H(u,v,w) · (u − w)

2
= H(u,v) − H(v,w). (42)

Remark 2.4. Note that (42) implies in particular the sym-
metry of H:

∀ (u,v) ∈ R
N × R

N , H(u,v) = H(v,u). (43)

Of course, for consistency reasons, the discrete potential
energy H should also satisfy (in agreement with (33))

∀v ∈ R
N , H(v,v) = H(v). (44)

Assuming that �H is conservative, we deduce from (42)
that
˛

˛

˛

˛

˛

˛

˛

˛

�H(∂xu
n+1
h , ∂xu

n
h, ∂xu

n−1
h ) · ∂x

`u
n+1
h − u

n−1
h

2∆t

´

=

=
1

∆t

n

H(∂xu
n+1
h , ∂xu

n
h) − H(un

h, ∂xu
n−1
h )

o

(45)

which is a discrete equivalent of the derivation rule for
composed functions:

∂

∂t
H(∂xu) = ∇H(∂xu) · ∂2

xtu. (46)

Joining (45) to (40) leads to the following lemma:

Lemma 2.1. If u
n
h is a solution of (34), with �H conser-

vative in the sense of definition 2.1, it satisfies the energy
conservation property:

E
n+ 1

2

h = E
n− 1

2

h , (47)

where the discrete energy E
n+ 1

2

h corresponding to time tn+ 1
2 =

(n+ 1
2 )∆t is given by

E
n+ 1

2

h =
1

2

I h

Ω

˛

˛

˛

u
n+1
h − u

n
h

∆t

˛

˛

˛

2

+

I h

Ω

H
`

∂xu
n+1
h , ∂xu

n
h

´

(48)

where H is the discrete potential energy associated to �H
(see (42)).
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An immediate consequence (we omit the details of the
proof) of this lemma is the following corollary:

Corollary 2.2. If the discrete potential energy H is posi-
tive

∀(u,v) ∈ R
N , H(u,v) ≥ 0, (49)

then the scheme is unconditionally L2-stable in the sense
that the L2 norm in space of any solution u

n
h is uniformly

(with respect to h and ∆t) bounded.

Remark 2.5. In the linear case, i.e. H(v) = 1
2 Av · v,

the θ-scheme corresponds to
∣

∣

∣

∣

∣

∣

�H(u,v,w) = A
`

θu + (1 − 2θ)v + θw
´

H(u,v) =
1

2
A

u + v

2
· u + v

2
+

1

2

`

θ − 1

4

´

A (u − v) · (u − v)

and the positivity property (49) is unconditionally satistied
if and only if θ ≥ 1

4 .

Before investigating more elaborate discretizations, let us
consider the case of the most naïve scheme to discretize
(16), which is the most natural extension to the non linear
case of the explicit leap frog scheme (θ = 0) for the linear
case : ∀ vh ∈ Vh,

I h

Ω

u
n+1
h − 2un

h + u
n−1
h

∆t2
· vh +

I h

Ω

∇H(∂xu
n
h) · ∂xvh = 0. (50)

which corresponds to

�H(u,v,w) = ∇H(v). (51)

Lemma 2.2. The explicit scheme (50) is conservative in
the sense of the definition 2.1 if and only if the original
equation is linear.

Proof. According to definition 2.1, we look for a discrete
potential energy H(u.v) such that ∀ (u,v,w) ∈ (RN )3

H(u,v) − H(v,w) = F (v) · (u − w)

2
,

with F (v) := ∇H(v). (52)

Our objective is to show that if H(u,v) exists, F (v) =
∇H(v) is necessarily linear in v. In what follows we shall
denote ∇1H(u,v) (resp ∇2H(u,v)) the gradient of the
function u 7→ H(u,v) (respectively v 7→ H(u,v)).

First, differentiating (52) with respect to u leads to the
identity

∇1H(v,w) =
1

2
F (v), ∀ (v,w) ∈ R

N × R
N . (53)

Next, differentiating (52) with respect to v leads to

∇2H(u,v) −∇1H(v,w) =
1

2
DF (v)∗(u − w), (54)

∀ (u,v,w) ∈ R
N × R

N × R
N ,

where (DF (u) ∈ L(RN ) denotes the differential of F (u)
and DF (u)∗ its adjoint with respect the usual inner prod-
uct in R

N ). Using (53) one can write

∇2H(u,v) =
1

2
F (w) +

1

2
DF (v)∗(u − w), (55)

∀ (u,v,w) ∈ R
N × R

N × R
N .

Finally, we differentiate (55) with respect to w to obtain

0 =
1

2
DF (w)∗ − 1

2
DF (v)∗, ∀ (v,w) ∈ R

N × R
N . (56)

This means that DF (v) is constant in v, i.e. that F is
linear, which completes the proof.

�

We have in fact a more general result.

Lemma 2.3. Let us consider a scheme of the form (34)
that is explicit, i.e. �H is independent of u, and consis-
tent. It is conservative in the sense of the definition 2.1 if
and only if ∇H is linear and �H(u,v,w) = ∇H(v).

Proof. Assume that there exists a discrete potential
energy H(u.v) such that ∀ (u,v,w) ∈ (RN )3

H(u,v) − H(v,w) = F (v,w) · (u − w)

2
, (57)

with F (v) := �H(v,w).
Differentiating twice (57) once with respect to u the other
with respect to w, we get

D2F (v,w) = 0,

where D2F (v,w) is the differential of the function w 7→
F (v,w). This means that F (v,w) does not depend on w,
i.e.

F (v,w) ≡ F (v).

The consistency condition then implies F (v) = ∇H(v)
and we can then use lemma 2.2 to conclude.

�

This last lemma shows that, except in the linear case, con-
servativity in the sense of definition 2.1 implies that the
scheme is implicit.

2.2.2. The case of the scalar nonlinear wave equation

We consider the scalar wave equation (N=1), in which
case we can write without any ambiguity (we omit the
index h for simplicity)

u ≡ u1, (58)

and (9) simply becomes

∂2
t u1 − ∂x

ˆ

F (∂xu1)
˜

= 0, F := H ′ (≡ ∇H), (59)

and the scheme (34) may be written ∀ v1 ∈ Vh,

∮ h

Ω

un+1
1 − 2un

1 + un−1
h

∆t2
· v1+

I h

Ω

�H(∂xu
n+1
1 , ∂xu

n
1 , ∂xu

n−1
1 ) · ∂xv1 = 0. (60)
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The conservativity condition (42) is simply

�H(u1, v1, w1) ·
(u1 − w1)

2
= H(u1, v1) − H(v1, w1), (61)

∀ (u1, v1, w1) ∈ (R)3.

We notice that, given a discrete energy function H(u1, v1) :
R

2 7→ R, satisfying the symmetry condition (that we know
to be necessary - cf remark 2.4):

∀ (u1, v1) ∈ R × R, H(u1, v1) = H(v1, u1). (62)

Condition (61) determines completely�H(u1, v1, w1) (this
is due to the fact that �H(u1, v1, w1) is real valued, which
holds only whenN = 1) as (note that we use the symmetry
of H and that H is smooth):

�H(u1, v1, w1) =

8

>

>

<

>

>

:

H(u1, v1) − H(w1, v1)

u1 − w1

, if u1 6= w1,

∂H

∂u1
(u1, v1) ≡

∂H

∂v1
(u1, v1), if u1 = w1.

(63)

In fact, given any positive symmetric function H(u1, v1)
satisfying the consistency condition

∀v1 ∈ R, H(v1, v1) = H(v1), (64)

the choice of �H(u1, v1, w1) given by (63) provides a con-
sistent, energy preserving numerical scheme.

The rest is simply a question of the choice of a positive
function H satisfying both symmetry (62) and consistency
(64). The two simplest choices (in our opinion) are

H(u1, v1) =
1

2

n

H(u1) +H(v1)
o

, (65)

H(u1, v1) = H
“u1 + v1

2

”

. (66)

The choice (65) leads to the scheme

∀ v1 ∈ Vh,

I h

Ω

un+1
1 − 2un

1 + un−1
h

∆t2
· v1+

I h

Ω

H(∂xu
n+1
1 ) −H(∂xu

n−1
1 )

∂xu
n+1
1 − ∂xu

n−1
1

· ∂xv1 = 0, (67)

while the choice (66) leads to the scheme

∀ v1 ∈ Vh,

I h

Ω

un+1
1 − 2un

1 + un−1
h

∆t2
· v1+

I h

Ω

H(∂xu
n+1/2
1 ) −H(∂xu

n−1/2
1 )

∂xu
n+1/2
1 − ∂xu

n−1/2
1

· ∂xv1 = 0. (68)

where by convention u
n+1/2
1 =

un+1
1 + un

1

2
.

Remark 2.6. The schemes are not rigorously defined be-
cause of the presence of the denominators. To be more
rigorous, we should introduce, for any function of one vari-
able Φ : R 7→ R, the function of 2 variables:

δΦ(u1, w1) =

8

>

<

>

:

Φ(u1) − Φ(w1)

u1 − w1

, if u1 6= w1,

Φ′(w1), if u1 = w1.

(69)

and rewrite (67) and (68) as respectively

∀ v1 ∈ Vh,

I h

Ω

un+1
1 − 2un

1 + un−1
h

∆t2
· v1+

I h

Ω

δH(∂xu
n+1
1 , ∂xu

n−1
1 ) · ∂xv1 = 0, (70)

∀ v1 ∈ Vh,

I h

Ω

un+1
1 − 2un

1 + un−1
h

∆t2
· v1+

I h

Ω

δH(∂xu
n+1/2
1 , ∂xu

n−1/2
1 ) · ∂xv1 = 0. (71)

Remark 2.7. The scheme (67) is found in several publi-
cations in the scalar case ([12, 16, 23, 25, 31]).

The reader will easily check that in the linear case, the
scheme (67) gives the θ-scheme with θ = 1/2 while the
scheme (68) gives the θ-scheme with θ = 1/4. Other θ-
schemes can be recovered in the linear case by choosing for
the discrete energy H an appropriate linear combination
of the two functions (67) and (68).

2.2.3. A class of partially decoupled implicit schemes

We come back to the general case of systems, i.e. N ≥ 1
and set uh = (u1, u2, · · · , uN ). If we look at the equation
number ℓ of the system (9), it may be written:

∂2
t uℓ − ∂x [∂ℓH(∂xuℓ, ∂xuj 6=ℓ)] = 0, (72)

where ∂ℓH denotes the derivative of H with respect to its
ℓth variable and by convention, for any v = (vj) ∈ R

N ,

vj 6=ℓ := (v1, · · · , vℓ−1, vℓ−1, · · · , vN ) (73)

so that
v = (vj) ≡ (vℓ, vj 6=ℓ).

Assuming that uj 6=ℓ is known, this is for uℓ a 1D equation
very similar to (59). Thus, the most natural generalization
of the scheme (70) is (with Vh =

∏

Vℓ)

I h

Ω

un+1
ℓ − 2un

ℓ + un−1
ℓ

∆t2
· vℓ+

I h

Ω

δℓH(∂xu
n+1
ℓ , ∂xu

n−1
ℓ ; ∂xu

n
j 6=ℓ) · ∂xvℓ = 0, (74)

∀ vℓ ∈ Vℓ, ℓ = 1, · · · , N,

where we have introduced a new notation for the multidi-
mensional generalization of (69) : to any scalar function
of N variables Φ(v1, · · · , vN ), we associate the function of
N+1 variables (with notations similar to the previous ones
- we omit the details):

δℓΦ(uℓ, wℓ; vj 6=ℓ) =







Φ(uℓ, vj 6=ℓ) − Φ(wℓ, vj 6=ℓ)

uℓ − wℓ

, if uℓ 6= wℓ,

∂ℓΦ(wℓ, vj 6=ℓ), if uℓ = wℓ.

which satisfies in particular

δℓΦ(uℓ, wℓ; vj 6=ℓ) (uℓ − wℓ) = Φ(uℓ, vj 6=ℓ) − Φ(wℓ, vj 6=ℓ). (75)
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The scheme (74) is clearly of the form (34) with

�H(u,v,w) :=
`

δℓH(uℓ, wℓ; vj 6=ℓ)
´

1≤ℓ≤N
. (76)

The question is : is this scheme energy preserving in the
sense of definition 2.1 ?

In other words, we wish to know if it is always possible to
find a function H : (RN )2 → R such that for any (u, v,w),

H(u,v) − H(v,w) =
1

2

N
X

k=1

[H(uk; vl6=k) −H(wk; vl6=k)] (77)

We will answer this question gradually in N .

Lemma 2.4. Assume N = 1. The approximate gradi-
ent defined by (76) is conservative in the sense of defi-
nition 2.1, and the only discrete potential energy H that
satisfies the consistency property (44) is written

H(u1, v1) =
1

2
[H(u1) +H(v1)] . (78)

Proof. When N = 1, the problem (77) becomes : find
a function H : R

2 → R such that for any (u1, v1, w1) ∈ R
3:

H(u1, v1) − H(v1, w1) =
H(u1) −H(w1)

2
. (79)

Let us assume that such a function exists and differenti-
ate (79) with respect to u1. We get:

∂1H(u1, v1) =
1

2
H ′(u1),

which implies the existence of φ : R → R such that

H(u1, v1) =
1

2
H(u1) + φ(v1) . (80)

Substituting (2.2.3) into (79), we get : ∀ (u1, v1, w1) ∈ R
3,

»

1

2
H(u1) + φ(v1)

–

−
»

1

2
H(v1) + φ(w1)

–

=
H(u1) −H(w1)

2
.

After differentiation in v1, we get

φ′(v1) =
1

2
H ′(v1) ⇒ φ(y) =

1

2
H(y) + c, c ∈ R,

which yields

H(u1, v1) =
1

2
[H(u1) +H(v1)] + c .

It is easy to verify that (79) is satisfied, and (44) is satisfied
if and only if c = 0.

�

Lemma 2.5. Assume N = 2. The approximate gradi-
ent defined by (76) is conservative in the sense of defi-
nition 2.1, and the only discrete potential energy H that
satisfies the consistency property (44) is written

H(u1, u2; v1, v2) =
1

2
[H(u1, v2) +H(v1, u2)] . (81)

Proof. The problem (77) becomes : find a function
H : R

4 → R such that, for any (u1, u2, v1, v2, w1, w2) ∈ R
6,

H(u1, u2; v1, v2) − H(v1, v2;w1, w2) =

1

2

n

H(u1, v2) −H(w1, v2) +H(v1, u2) −H(v1, w2)
o

.

It is clear that H given by (81) is a solution. Let us show
that H is necessarily of this form.

We first take u2 = v2 = w2 = λ:

H(u1, λ; v1, λ) − H(v1, λ;w1, λ) =
H(u1, λ) −H(w1, λ)

2
.

The problem is reduced to a problem similar to (79) where
λ plays the role of a parameter. By Lemma 2.4, we know
that there exists a scalar 1D function c1(λ) such that

H(u1, λ; v1, λ) =
H(u1, λ) +H(v1, λ)

2
+ c1(λ). (82)

In the same way, taking u1 = v1 = w1 = µ in (82), we
deduce that

H(µ, u2;µ, v2) =
H(µ, u2) +H(µ, v2)

2
+ c2(µ). (83)

Thus taking u1 = v1 = µ in (82) and u2 = v2 = λ in (83),
we find that c1(λ) = c2(µ), ∀ (λ, µ) ∈ R

2, that is to say

c1(λ) = c2(µ) = c ∈ R, (84)

The identity (82), combined with (84), implies that, (u1, v1)
being fixed, we know (up to an additive constant) the
function (u2, v2) 7→ H(u1, u2; v1, v2) along the diagonal
u2 = v2. To determine completely this function, it suf-
fices a priori to establish a first order ODE satisfied by
H(u1, u2; v1, v2). This can be done by differentiating (82)
with respect to u2:

∂H

∂u2
(u1, u2; v1, v2) =

1

2
∂2H(v1, u2). (85)

Reintegrating (85) between u2 and v2 leads to

H(u1, u2; v1, v2) = H(u1, v2; v1, v2) +
1

2
[H(v1, u2) −H(v1, v2)] .

Using (82) and (84), we get

H(u1, u2; v1, v2) =
1

2
[H(u1, v2) +H(v1, u2)] + c. (86)

The consistency condition (44) yields c = 0, i.e. (81).
�

Unfortunately, the extension of these results to dimen-
sions greater than 2 is not possible, except for very special
potential energies H (the sums of functions of two vari-
ables). Let us state a precise result:
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Lemma 2.6. Assume N ≥ 2. The approximate gradient
defined by (76) is conservative in the sense of definition
2.1, i.e. there exists a discrete potential energy H such
that (77) is satisfied, if and only if

∃
n

Hij : R
2 7→ R, i < j

o

/ H(v) =
X

i<j

Hij(vi, vj) (87)

or equivalently

∀ p < q < r, ∂3
pqr H(v) = 0. (88)

In this case the only discrete potential energy H that sat-
isfies the consistency property (44) is given by

H(u,v) =
1

2

X

i<j

{Hij(ui, vj) +Hij(vi, uj)} (89)

Proof. The easy part of the proof is to check that if H
is given by (87), (77) is satisfied with the discrete potential
energy (89). The reader can refer to [7] for this point of the
proof as well as a more detailed version of what follows.

It is less immediate that the existence of H satisfying (77)
implies (87) and (89). We shall show this in three steps.

Step 1 : we prove that for any N we have

(

PN

)











The existence of H satisfying (77) implies that

H
`

u;v
´

=
1

2

h

N
X

k=1

H(uk, (vl)l6=k) − (N − 2)H
`

v
´

i

+ c.

The proof is by induction on N. First note that for N = 1
(resp. N = 2),

(

PN

)

is nothing but Lemma 2.4 (resp.
Lemma 2.5).

Let us assume that
(

PN

)

is true and let us prove
(

PN+1

)

.

We start from (77) written with N + 1 variables, i.e.

H(u,v) − H(v,w) =
1

2

N+1
X

k=1

[H(uk; vl6=k) −H(wk; vl6=k)] . (90)

We follow the proof of lemma 2.5. Let us choose in (90)
(u,v,w) such that uN+1 = vN+1 = wN+1 = λ. In this
case, the last term in the sum of the right hand side van-
ishes and we have, (setting u

N = (u1, · · · , uN ) ∈ R
N and

v
N = (v1, · · · , vN ) ∈ R

N )

Hλ

`

u
N ,vN´− Hλ

`

u
N ,vN´ =

=
N
X

k=1

h

Hλ(uk, (vl)l6=k) −Hλ(wk, (vl)l6=k)
i

,
(91)

where we have set for any (uN ,vN ) ∈ R
N and λ ∈ R

Hλ

`

u
N ,vN´ := H

`

(uN , λ), (vN , λ)
´

, Hλ

`

u
N´ = Hλ

`

u
N , λ).

In (91) we recognize (77) for (Hλ, Hλ). Thus applying
(

PN

)

we deduce that, for some cN+1 : R → R,

H
`

(uk)1≤k≤N , λ; (vk)1≤k≤N , λ
´

= cN+1(λ)+

1

2

h

N
X

k=1

H(uk, (vl)l6=k, λ) − (N − 2)H
`

(vk)1≤k≤N , λ
´

i

.
(92)

Using the same argument after having chosen xi = yi =
zi = λi for i = 1, . . . , N , we deduce the existence of ci :
R → R such that, with obvious notations

H
`

(uk)k 6=i, λ ; (vk)k 6=i, λi

´

= ci(λ)+

1

2

h

N
X

k=1

H(uk, (vl)l/∈{i,k}, λi) − (N − 2)H
`

(vk)k 6=i, λ
´

i

.
(93)

Taking xk = yk = zk = λk and λ = λi in (93), we obtain

∀λ = (λℓ)ℓ ∈ R
N+1, ci(λi) = cj(λj), for i 6= j,

which implies the existence of a constant c such that

ci(λi) = c, for any 1 ≤ i ≤ N + 1.

Thus, going back to (92) with λ = vN+1, we can write

H
`

u
N , vN+1;v

´

= c +

1

2

h

N
X

k=1

H(uk, (vl)l6=k) − (N − 2)H
`

v
´

i

.
(94)

We now differentiate (90) with respect to uN+1 to get

∂H

∂uN+1

`

u,v
´

=
1

2
∂N+1H

`

v
N , uN+1

´

(95)

that we reintegrate (in uN+1 again) between vN+1 and
uN+1 to obtain

H
`

u
N , uN+1;v

´

= H
`

u
N , vN+1;v

´

+
1

2

h

H
`

v
N , uN+1

´

−H
`

v
N , vN+1

´

i

.

We can use (94) for replacing H
(

u
N , vN+1;v

)

and obtain

H
`

u;v
´

= c +
1

2

h

H
`

v
N , uN+1

´

−H
`

v
´

i

+
1

2

h

N
X

k=1

H(uk, (vl)l6=k, λ) − (N − 2)H
`

v
´

i

which is nothing but
(

PN+1

)

.

Step 2 : we show that
(

PN

)

and (77) imply (87).

We substitute the expression for H given by
(

PN

)

into
(77):

1

2

h

N
X

k=1

H(uk, (vl)l6=k) − (N − 2)H(v)
i

−1

2

h

N
X

k=1

H
`

vk, (wl)l6=k

´

− (N − 2)H(w)
i

=
1

2

N
X

k=1

ˆ

H
`

uk; (vl)l6=k

´

−H
`

wk; (vl)l6=k

´˜

which leads to

(N − 2)
h

H(v) −H(w)
i

=

N
X

k=1

h

H
`

wk, (vl)l6=k

´

−H
`

vk, (wl)l6=k

´

i

.
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Let us differentiate the above equality with respect to vp:

(N − 2) ∂pH(v) =
X

k 6=p

∂pH
`

wk, (vl)l6=k

´

− ∂pH
`

vp, (wl)l6=p

´

.

Differentiating again with respect to wq with q 6= p, we get

∂2
pqH(wq, (vl)l6=p) = ∂2

pqH(vp, (wl)l6=q).

Finally, differentiating in vr with r /∈ {p, q} we get

∂3
pqrH(wq, (vl)l6=p) = 0,

which yields (88), and thus (87), since v and w are arbi-
trary.

Step 3: we show that (87) implies (89).

The reader will easily check that, using (87)

N
X

k=1

H
`

uk, (vl)l6=k

´ =
X

i<j

n

Hij(ui, vj) +Hij(vi, uj)
o

+
X

i<j

X

k/∈{i,j}

Hij

`

vi, vj

´

.

Substituting this formula into the expression for H given
by

(

PN

)

, we get

H(u,v) =
1

2

X

i<j

n

Hij(ui, vj) +Hij(vi, uj)
o

+
1

2

X

i<j

X

k/∈{i,j}

Hij

`

vi, vj

´

− N − 2

2

X

i<j

Hij

`

vi, vj

´

+ c.

Then it suffices to remark that, by permutation of sums
X

i<j

X

k/∈{i,j}

Hij

`

vi, vj

´

= (N − 2)
X

i<j

Hij

`

vi, vj

´

and to use the consistency condition (44) to get c = 0.
�

This lemma shows that, except for very particular cases,
energy preservation in the sense of definition 2.1 is only
possible for fully implicit schemes.

2.2.4. Construction of fully implicit preserving schemes

Following the same idea as in the previous section, we
can first look for schemes of the form

I h

Ω

un+1
ℓ − 2un

ℓ + un−1
ℓ

∆t2
· vℓ +

I h

Ω

δℓH(∂xu
n+1
ℓ , ∂xu

n−1
ℓ ; ∂xJun

j Kℓ
j 6=ℓ) · ∂xvℓ = 0, (96)

∀ vℓ ∈ Vℓ, ℓ = 1, · · · , N,

where Jun
j Kℓ represents some approximation of uj(t

n), to

be determined, using un+1
j , un

j and un+1
j and that we au-

thorize to depend on ℓ. The decoupled schemes of section

2.2.3 correspond to Jun
j K = un

j . We need another choice to
ensure conservativity for any n. Let us consider

Jun
j Kℓ = u

n+sg(ℓ−j)
j , (97)

where sg(·) is the usual sign function.

The interpretation of this choice is the following (the prin-
ciple is similar to the one of the Gauss-Seidel algorithm for
linear systems) : in the ℓth equation of (96), associated to
the component uℓ, the other components uj are evaluated
at time tn−1 if j < ℓ and at time tn+1 if j > ℓ. As an
illustration, for N = 2 our scheme may be written











































































I h

Ω

un+1
1 − 2un

1 + un−1
1

∆t2
· v1+

I h

Ω

H(∂xu
n+1
1 , ∂xu

n−1
2 ) −H(∂xu

n−1
1 , ∂xu

n−1
2 )

∂xu
n+1
1 − ∂xu

n−1
1

· ∂xv1 = 0,

∀ v1 ∈ V1,

I h

Ω

un+1
2 − 2un

2 + un−1
2

∆t2
· v2+

I h

Ω

H(∂xu
n+1
1 , ∂xu

n+1
2 ) −H(∂xu

n+1
1 , ∂xu

n−1
2 )

∂xu
n+1
2 − ∂xu

n−1
2

· ∂xv2 = 0,

∀ v2 ∈ V2.

(98)
With the choice (97), (96) enters the class (34) with
h

�H(u,v,w)
i

ℓ
:= δℓH

`

uℓ, wℓ;
ˆ

βjℓuj + (1 − βjℓ)wj

˜

j 6=ℓ

´

(99)

where by definition βjℓ = 1 if j < ℓ, 0 if j > ℓ.

Lemma 2.7. The approximate gradient (99) is conserva-
tive in the sense of definition 2.1 and the associate discrete
potential energy is given by:

H(u,v) =
1

2

n

H(u) +H(v)
o

. (100)

Proof. Using (99), we have

�H(u,v,w) · (u − w)

2
=

1

2

X

ℓ

`

δℓH(uℓ, wℓ;
ˆ

βjℓuj + (1 − βjℓ)wj

˜

j 6=ℓ
)
´

(uℓ − wℓ).

Using (75) and the definition of βjℓ, we can write

�H(u,v,w) · (u − w)

2
=

1

2

h

X

ℓ

H(u1, · · · , uℓ, wℓ+1, · · ·wN )

−H(u1, · · · , uℓ−1, wℓ, · · ·wN )
i

As this is a telescopic sum, this results in

�H(u,v,w) · (u − w)

2
=

1

2
H(u1, · · · , uN ) − 1

2
H(w1, · · · , wN ) ≡ H(u,v) − H(v,w).

which completes the proof.
�
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Remark 2.8. The reader will notice that, at a given time
tn+1, if the equations are solved one by one when increas-
ing the value of ℓ, the calculation of each component can
be done in a decoupled way as in the scheme (74) : one
has to solve a triangular non linear system instead of a
diagonal non linear system with (74).

As emphasized by remark 2.8, the numbering of the equa-
tions of (9) (or equivalently the ranking of the components
of u) has an influence on the resulting scheme constructed
with the above procedure. In other words, to any permu-
tation p ∈ SN , where SN is the group of permutations of
{ 1, · · · , N }, we can associate a scheme of the same nature
as (96,74) namely

I h

Ω

un+1
ℓ − 2un

ℓ + un−1
ℓ

∆t2
· vℓ +

I h

Ω

δℓH(∂xu
n+1
ℓ , ∂xu

n−1
ℓ ; ∂xu

n+sg(p(ℓ)−p(j))
j 6=ℓ ) · ∂xvℓ = 0, (101)

∀ vℓ ∈ Vℓ, ℓ = 1, · · · , N,

which corresponds to the discrete gradient

�(u,v,w) ≡ �(p)(u,v,w) , (102)

h

�
(p)(u,v,w)

i

ℓ
:= δℓH(uℓ, wℓ;

ˆ

β
(p)
jℓ uj + (1 − β

(p)
jℓ )wj

˜

j 6=ℓ
),

where by definition

β
(p)
jℓ = 1 if p(j) < p(ℓ), 0 if p(j) > p(ℓ). (103)

Any of these schemes will preserve the same energy (48)
with H given by (100).

As an illustration, for N = 2, we obtain a scheme that
differs from (98) by exchanging the roles of the indices 1
and 2:















































































I h

Ω

un+1
1 − 2un

1 + un−1
1

∆t2
· v1 +

I h

Ω

H(∂xu
n+1
1 , ∂xu

n+1
2 ) −H(∂xu

n−1
1 , ∂xu

n+1
2 )

∂xu
n+1
1 − ∂xu

n−1
1

· ∂xv1 = 0,

∀ v1 ∈ V1,

I h

Ω

un+1
2 − 2un

2 + un−1
2

∆t2
· v2 +

I h

Ω

H(∂xu
n−1
1 , ∂xu

n+1
2 ) −H(∂xu

n−1
1 , ∂xu

n−1
2 )

∂xu
n+1
2 − ∂xu

n−1
2

· ∂xv2 = 0,

∀ v2 ∈ V2.

(104)
A major drawback to these schemes is that neither of them
is centered in time (the property (36) is not satisfied) and
they are consequently only first order accurate in time.
From this point of view, they can not be considered as a
generalization of the θ-schemes.

To restore the second order accuracy which is valid for

the scalar case, the idea is to take the “average” of these
schemes, by choosing the average approximate gradient.
For instance, in the case N = 2, the “average” of the
schemes (98) and (104) is



















































































































I h

Ω

un+1
1 − 2un

1 + un−1
1

∆t2
· v1

+
1

2

I h

Ω

H(∂xu
n+1
1 , ∂xu

n+1
2 ) −H(∂xu

n−1
1 , ∂xu

n+1
2 )

∂xu
n+1
1 − ∂xu

n−1
1

· ∂xv1

+
1

2

I h

Ω

H(∂xu
n+1
1 , ∂xu

n−1
2 ) −H(∂xu

n−1
1 , ∂xu

n−1
2 )

∂xu
n+1
1 − ∂xu

n−1
1

· ∂xv1 = 0,

∀ v1 ∈ V1,

I h

Ω

un+1
2 − 2un

2 + un−1
2

∆t2
· v2

+
1

2

I h

Ω

H(∂xu
n+1
1 , ∂xu

n+1
2 ) −H(∂xu

n+1
1 , ∂xu

n−1
2 )

∂xu
n+1
2 − ∂xu

n−1
2

· ∂xv2

+
1

2

I h

Ω

H(∂xu
n−1
1 , ∂xu

n+1
2 ) −H(∂xu

n−1
1 , ∂xu

n−1
2 )

∂xu
n+1
2 − ∂xu

n−1
2

· ∂xv2 = 0,

∀ v2 ∈ V2.

The generalization to any N consists in taking

�H(u,v,w) =
1

N !

X

p∈SN

�H(p)(u,v,w). (105)

Clearly, this discrete gradient is still conservative with the
discrete energy given by (100). Moreover, it is centered
in time (and then second order accurate) because (36) is
satisfied. To check (36) easily we introduce the bijection
I from SN into itself

p 7→ q = I(p) such that q(j) = p(N + 1 − j). (106)

Then, according to (105) and (102), we write

h

�H(w,v,u)
i

ℓ
=

1

N !

X

p∈SN

`

δℓH(wℓ, uℓ;
ˆ

β
(p)
jℓ wj + (1 − β

(p)
jℓ )uj

˜

j 6=ℓ
)
´

.

We write p = I(q) in the sum (so that q describes SN

when p describes SN ) and notice that

p = I(q) =⇒ β
(p)
jℓ = 1 − β

(q)
jℓ

to write
h

�H(w,v,u)
i

ℓ
=

1

N !

X

q∈SN

`

δℓH(wℓ, uℓ;
ˆ

+ (1 − β
(q)
jℓ )wj + β

(p)
jℓ uj

˜

j 6=ℓ
)
´

.

Since δℓH(uℓ, wℓ; vj 6=ℓ) is symmetric in (uℓ, wℓ) we have

h

�H(w,v,u)
i

ℓ
=

=
1

N !

X

q∈SN

`

δℓH(uℓ, wℓ;
ˆ

β
(q)
jℓ uj + (1 − β

(q)
jℓ )wj +

˜

j 6=ℓ
)
´

=
h

�H(u,v,w)
i

ℓ
.
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In formula (105), �H(u,v,w) appears as a sum of N !
terms. However, we are going to see that, component by
component, it can be rewritten as the sum of only 2N−1

terms, which will be useful for the practical implementa-
tion of the scheme.

To state the result, it is useful to introduce the sets

Jℓ = {1, . . . , N} \ {ℓ}, ℓ = 1, · · · , N,

and for each 1 ≤ ℓ ≤ N , Σℓ = {σ : Jℓ −→ {+1,−1} }, the
set of applications from Jℓ into {+1,−1} (that contains
2N−1 elements). Finally to each σ ∈ Σℓ, we associate the
integer µ(σ) defined by

µ(σ) = #
˘

l ∈ Jk, σ(l) = +1
¯

= #σ−1(+1).

Lemma 2.8. The approximate gradient defined by (105)
is also given by
h

�H(u,v,w)
i

ℓ
=
X

σ∈Σℓ

ζ(σ) δℓH
`

uℓ, wℓ; 〈uj , wj〉σ
´

, (107)

where ζ(σ) =
µ(σ)!

`

N − 1 − µ(σ)
´

!

N !
and

〈uj , wj〉σ :=
“1 + σ(j)

2

”

uj +
“1 − σ(j)

2

”

wj . (108)

Proof. Let us introduce the map

Φℓ : SN −→ Σℓ

p 7→ Φℓ(p) = σℓ
p

(109)

where σℓ
p is defined by

∀ j ∈ Σℓ, σℓ
p(j) = sg

`

p(ℓ) − p(j)
´

. (110)

We can rearrange the sum (105) as:

h

�H(u,v,w)
i

ℓ
=

1

N !

X

σ∈Sℓ

X

p∈Φ−1

ℓ
(σ)

h

�H(p)(u,v,w)
i

ℓ
.

Next, we remark that, inside each level set Φ−1
ℓ (σ) of Φℓ ,

h

�H(p)(u,v,w)
i

ℓ

is independent of p. Indeed, from (103) and (110), we have

β
(p)
jℓ =

1 + σℓ
p(j)

2

“

≡ 1 + σ(j)

2
if p describes Φ−1

ℓ (σ)
”

.

Therefore, using (108), we deduce that for any p ∈ Φ−1
ℓ (σ)

[

�H(p)(u,v,w)
]

ℓ
= δℓH

(

uℓ, wℓ; 〈uj , wj〉σ
)

,

which yields
[

�H(u,v,w)
]

ℓ
=

∑

σ∈Sℓ

[

#Φ−1
ℓ (σ)

]

δℓH
(

uℓ, wℓ; 〈uj , wj〉σ
)

.

To conclude it suffices to show that

#Φ−1
ℓ (σ) = µ(σ)!

`

N − 1 − µ(σ)
´

! . (111)

Given σ ∈ Σℓ, we set m = µ(σ) ∈ { 1, · · · , N − 1} and

I+ = {j ∈ Jℓ |σ(j) = +1} (#I+ = m)

I− = {j ∈ Jℓ |σ(j) = −1} (#I− = N − 1 −m).

Next, it suffices to remark that, with B(E < F ) denoting
the set of bijections between E and F ,

(i) Φℓ(p) = σ ⇐⇒ (ii)

8

>

<

>

:

p(ℓ) = m+ 1

p|I+
∈ B(I+;

˘

1, · · · ,m
¯

)

p|I−
B(I−;

˘

m+ 2, · · · , N
¯

)

(112)

Indeed, Φℓ(p) = σ means that when j describes I+ (resp.
j describes I−), p(j) takes m values strictly smaller than
p(ℓ) (resp. N−1−m values strictly greater than p(ℓ)). As
a consequence, the only possibility is p(I+) =

{

1, · · · ,m
}

,

p(ℓ) = m + 1 and p(I+) =
{

m + 2, · · · , N
}

. This proves
(i) ⇒ (ii). The inverse statement is obvious.

Then, to count the number of antecedents of σ via Φℓ, from
(112), it suffices to multiply the numbers of bijections in a
set with m elements by the numbers of bijections in a set
with N − 1 −m elements, which leads to (111).

�

Finally, the equations of the scheme associated to (105)
(or (107)) are

0 =

I h

Ω

un+1
ℓ − 2un

ℓ + un−1
ℓ

∆t2
· vℓ (113)

+
X

σ∈Σℓ

ζ(σ)

I h

Ω

δℓH(∂xu
n+1
ℓ , ∂xu

n−1
ℓ ; ∂xu

n+σ(ℓ̃)

ℓ̃6=ℓ
) · ∂xvℓ,

∀ vℓ ∈ Vℓ, ℓ = 1, . . . , N.

The starting procedure must be second order accurate
in order to preserve the global accuracy of the scheme.
We propose the following formulas, based on the classical
starting procedures of finite elements:











u0
ℓ = Ih u0,ℓ

u1
ℓ = Ih u0,ℓ + ∆t Ih u1,ℓ −

∆t

2
Ih

`

M−1F ℓ(u0)
´

where Ih is the interpolator operator on Vℓ, and for any

basis function ϕj of Vℓ, Mi,j =
∮ h

Ω
ϕiϕj and

F ℓ
j (u) =

X

σ∈Σℓ

ζ(σ)

I h

Ω

δℓH(∂xu
n+1
ℓ , ∂xu

n−1
ℓ ; ∂xu

n+σ(ℓ̃)

ℓ̃6=ℓ
) · ∂xϕj .

To give a concrete example of this scheme, it becomes in
the particular case N = 3 the following scheme : Find
(u1, u2, u3) ∈ Vh such that for any (v1, v2, v3) ∈ Vh,










































I h

Ω

un+1
1 − 2un

1 + un−1
1

∆t2
· v1

+
1

6

h

2 δ1H(∂xu
n+1
1 , ∂xu

n−1
1 ; ∂xu

n+1
2 , ∂xu

n+1
3 ) +

2 δ1H(∂xu
n+1
1 , ∂xu

n−1
1 ; ∂xu

n−1
2 , ∂xu

n−1
3 ) +

δ1H(∂xu
n+1
1 , ∂xu

n−1
1 ; ∂xu

n+1
2 , ∂xu

n−1
3 ) +

δ1H(∂xu
n+1
1 , ∂xu

n−1
1 ; ∂xu

n−1
2 , ∂xu

n+1
3 )

i

∂xv1 = 0,
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I h

Ω

un+1
2 − 2un

2 + un−1
2

∆t2
· v2

+
1

6

h

2 δ2H(∂xu
n+1
2 , ∂xu

n−1
2 ; ∂xu

n+1
1 , ∂xu

n+1
3 ) +

2 δ2H(∂xu
n+1
2 , ∂xu

n−1
2 ; ∂xu

n−1
1 , ∂xu

n−1
3 ) +

δ2H(∂xu
n+1
2 , ∂xu

n−1
2 ; ∂xu

n+1
1 , ∂xu

n−1
3 ) +

δ2H(∂xu
n+1
2 , ∂xu

n−1
2 ; ∂xu

n−1
1 , ∂xu

n+1
3 )

i

∂xv2 = 0,











































I h

Ω

un+1
3 − 2un

3 + un−1
3

∆t2
· v3

+
1

6

h

2 δ3H(∂xu
n+1
3 , ∂xu

n−1
3 ; ∂xu

n+1
1 , ∂xu

n+1
2 ) +

2 δ3H(∂xu
n+1
3 , ∂xu

n−1
3 ; ∂xu

n−1
1 , ∂xu

n−1
2 ) +

δ3H(∂xu
n+1
3 , ∂xu

n−1
3 ; ∂xu

n+1
1 , ∂xu

n−1
2 ) +

δ3H(∂xu
n+1
3 , ∂xu

n−1
3 ; ∂xu

n−1
1 , ∂xu

n+1
2 )

i

∂xv3 = 0.

3. Application to the nonlinear string model

3.1. The geometrically exact model and its variants

3.1.1. Establishment of the geometrically exact model

We are interested in the string vibration, for instance
a piano string. The problem has been formulated in its
nonlinear version in [28], then used and modified by sev-
eral authors. The geometrically exact model uses an ex-
act geometric description of the movement of the string
: this introduces geometric nonlinearity. The most com-
plete model takes into account the three components of
the points of the string (which corresponds to N = 3 with
the notation of the previous section, see section 3.1.2) but,
for simplicity, we present the model where it is assumed
that the movement of the string remains in a plane (x, y)
(N = 2). Figure 1, inspired by [2], presents the unknowns
of the problem. What follows is widely based on [33].

We will use the following notation : Ω is a segment of R or

y

xx x+ δx

u(x, t)

u(x+ δx, t)

v(x, t) v(x+ δx, t)

s(x+ δx, t)

s(x, t)

−T (x, t)

R(x, t)

R(x+ δx, t)

T (x+ δx, t)

Figure 1: Transversal and longitudinal motions of a string.

R itself (infinite string), x ∈ Ω is the coordinate along the
string, and t > 0 is time. The function u(x, t) indicates the

transversal component of the string motion (along ey), and
v(x, t) indicates the longitudinal component of the string
motion (along ex). E is Young’s modulus of the string, A
is the section area, µ is the lineic mass of the string, and
T0 is its tension at rest. They are supposed to be indepen-
dent of x and t. The position vector for a point marked
by x is

R(x, t) =
`

x+ v(x, t)
´

ex + u(x, t) ey = x ex + U(x, t),

where U(x, t) is the vector of unknowns
(

v(x, t), u(x, t)
)

.
We apply Newton’s second law to a string element [x, x+
δx]. We make the assumptions that the only forces acting
on the string come from the tensions T (x, t) and T (x +
δx, t) of the string at the extreme points of the segment
and that these are tangent to the string. If we denote
T (x, t) ∈ R the tension of the string and s(x, t) ∈ R

2 the
(oriented) tangent unit vector to the string at point x and
time t, we have

1

δx

h

µ
d2

dt2

„Z x+δx

x

R(y, δx, t) dy

«

i

=

1

δx

ˆ

T (x+ δx, t)s(x+ δx, t) − T (x, t)s(x, t)
˜

,

hence, taking the limit when δx → 0, µ
∂2

R

∂t2
=

∂

∂x

[

T s
]

.

The physical stress-strain relation gives us an expression
of the tension T , varying along the string, according to
the deformation of the string, namely the relative exten-
sion δa(x, t). The length of the element at rest is δx and
becomes

∣

∣

∣
R(x+ δx, t) − R(x, t)

∣

∣

∣
,

hence the relative extension, after a Taylor expansion and
neglecting O(|δx|2) is

δa(x, δx, t) :=

˛

˛

˛
R(x+ δx, t) − R(x, t)

˛

˛

˛
− δx

δx
≃
˛

˛

˛

˛

∂R

∂x

˛

˛

˛

˛

− 1.

In the general case, the constitutive stress-strain law can
be written

T (x, t) = φ
`

δa (x, t)
´

(114)

for some function φ : R → R. Defining d : R
N → R and

F : R
N → R

N as:

d(v) =
˛

˛ex + v
˛

˛− 1 and F
`

v
´

= φ ◦ d
`

v
´ ex + v
˛

˛ex + v
˛

˛

,

the mechanical PDE system takes the same form, which
can lead to a Hamiltonian form

µ∂2
t U − ∂x∇

h

Φ ◦ d
“

∂xU

”i

= 0. (115)

Setting H = Φ ◦ d, we have the nonlinear Hamiltonian
systems of wave equations class:

µ∂2
t U − ∂x

h

∇H
`

∂xU
´

i

= 0. (116)

In the case where the stress-strain law is affine, it is called
Hooke’s law. The constant T0 is called the prestress of the
string, and the law can be written as

φ(τ) = T0 + EA τ. (117)
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Projecting the system on the axes, we obtain


























µ∂2
t u = ∂x

2

4EA∂xu− (EA− T0)
∂xu

q

`

∂xu
´2

+
`

1 + ∂xv
´2

3

5 ,

µ ∂2
t v = ∂x

2

4EA∂xv − (EA− T0)

`

1 + ∂xv
´

q

`

∂xu
´2

+
`

1 + ∂xv
´2

3

5 .

With appropriate space and time scaling, we can write
the following equivalent system, depending on a unique
parameter 0 < α < 1 given by the formula α = EA−T0

EA .
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

∂2
t u = ∂x

2

4 ∂xu− α
∂xu

q

`

∂xu
´2

+
`

1 + ∂xv
´2

3

5 ,

∂2
t v = ∂x

2

4 ∂xv − α

`

1 + ∂xv
´

q

`

∂xu
´2

+
`

1 + ∂xv
´2

3

5 .

(118)

Using the notation u = (u, v) and ∀ (ux, vx) ∈ R
2,

Hex(ux, vx) =
1

2
u2

x +
1

2
v2

x − α
h

p

u2
x + (1 + vx)2 − (1 + vx)

i

,

we can write the string system in the form of a Hamiltonian
system of wave equations (NLSWE):

∂2
t u − ∂x

[

∇Hex

(

∂xu
)]

= 0 (119)

3.1.2. The geometrically exact model with three unknowns

We can generalize the geometrically exact model to the
non planar motion of a string, considering two transversal
displacements u1 and u2, and the longitudinal displace-
ment v. The system of three equations can be derived in
the same way as the previous system:



















































∂2
t u1 − ∂x

2

4 ∂xu1 − α
∂xu1

q

`

∂xu1

´2
+
`

∂xu2

´2
+
`

1 + ∂xv
´2

3

5 = 0,

∂2
t u2 − ∂x

2

4 ∂xu2 − α
∂xu2

q

`

∂xu1

´2
+
`

∂xu2

´2
+
`

1 + ∂xv
´2

3

5 = 0,

∂2
t v − ∂x

2

4 ∂xv − α
1 + ∂xv

q

`

∂xu1

´2
+
`

∂xu2

´2
+
`

1 + ∂xv
´2

3

5 = 0.

Using the notation u = (u1, u2, v) and

Hex(u1, u2, v) =
1

2
u2

1 +
1

2
u2

2 +
1

2
v2 − α

h
q

u2
1 + u2

2 + (1 + v)2 − (1 + v)
i

,

the previous system can also be written in a NLSWE form.

3.1.3. Approximations of the geometrically exact model

Under the assumption of small deformations, it is nat-
ural to look for approximate models by considering various
Taylor expansions of Hex for small values of (ux, vx). Let
us note that, near the origin,

Hex(ux, vx) =
1 − α

2
u2

x +
1

2
v2

x (120)

+
α

2

h

u2
xvx − u2

xv
2
x +

1

4
u4

x

i

+O( |ux|5 ).

The linear model. The linear model is obtained by consid-
ering only the quadratic terms in (120)

Hex(ux, vx) ≃ HDL2(ux, vx) =
1 − α

2
u2

x +
1

2
v2

x,

and we write the classical linear model of two uncoupled
wave equations (since α < 1):

{

∂2
t u− (1 − α) ∂2

xu = 0, x ∈ Ω, t > 0,

∂2
t v − ∂2

xv = 0, x ∈ Ω, t > 0.

From this system we can deduce an approximate propa-
gation speed for each direction : 1 for the longitudinal
direction, and

√
1 − α for the transversal direction. Since

α ≃ 1 in real applications, we obtain the well known re-
sult in mechanics saying that the longitudinal waves have a
propagation speed much higher than the transversal waves.
However, with this model, we cannot take into account the
coupling between the longitudinal and transverse compo-
nents of the displacement field, which is an essential char-
acteristic of the behavior of a piano string.

Higher order models. As in [5], it is natural to consider
the third and fourth order approximations of Hex, namely

HDL3 =
1 − α

2
u2

x +
1

2
v2

x +
α

2
u2

xvx ,

HDL4 =
1 − α

2
u2

x +
1

2
v2

x +
α

2

h

u2
xvx − u2

xv
2
x +

1

4
u4

x

i

.

However, the corresponding models should be rejected be-
cause the fundamental assumption (H2) is not satisfied
(the energy is neither positive nor bounded from below).
In [1, 2, 5], the authors proposed a less natural model, con-
sisting in neglecting the quartic term − α

2 u2
xv

2
x in (120).

This can be fully justified (see [7]) when the string is sub-
mitted to transverse solicitations only. This gives the fol-
lowing expression

HBS =
1 − α

2
u2

x +
1

2
v2

x +
α

2

h

u2
xvx +

1

4
u4

x

i

leading to the system

8

>

<

>

:

∂2
t u = ∂x

h

(1 − α) ∂xu+ α
`

∂xu ∂xv +
1

2
(∂xu)

3´
i

,

∂2
t v = ∂x

h

∂xv −
α

2
(∂xu)

2
i

.

(121)

which will be referred to as the “Bank and Sujbert” model
in the following.

3.2. Properties of the string models

3.2.1. Assumptions (H1) to (H5)

In this section, we investigate which of the assump-
tions (H1) to (H5) are satisfied by the nonlinear models
Hex and HBS .

The regularity assumption (H1) is obviously satisfied with
HBS and locally around the origin with Hex. One can
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show (see [7]) that the coercivity assumption (H2) is sat-
isfied with K = 1−α

2 . Because α < 1, both HBS and
Hex are locally convex : (H3), which ensures the local hy-
perbolicity of (118) and (121). However, neither Hex nor
HBS is globally convex. It can be shown (see [7] again)
that assumption (H4), that ensures a global bound for the
propagation velocity of the solution, is satisfied by Hex

with c+ = 1. However, it is not satisfied by HBS . For
instance, one computes that

|∇HBS |2(ux, 0) =
α2

4
u6

x + α

„

1 − 3α

4

«

u4
x + (1 − α)2u2

x

which cannot be bounded by a constant times HBS(ux, 0),
which is a polynomial of degree 4. This difference is due
to the fact that while HBS and Hex are close to each other
around the origin, they are very different at infinity : HBS

grows superlinearly while Hex grows linearly. For the same
reason, Hex satisfies (H5) but HBS does not.

3.2.2. Existence of a classical solution

Up to now, we have not spoken of existence or unique-
ness results. The results of this paragraph rely on the first
order system form of NLSWE (1) as given in section 1.3
and more specifically on its non conservative form:

8

>

>

>

<

>

>

>

:

Find U : R × R
+ → R

n,

∂tU +A(U) ∂xU = 0,

U(x, 0) = U0(x)

(122)

where A(U) is given by (4) or (7) in the case of NLSWE.

In what follows, we shall refer to the notation of section
1.3. Let us first recall some classical definitions:

Definition 3.1. Linearly degenerate field

The couple (µk, rk) is said to be linearly degenerate on D
(L.D.) if

∇µk(u) · rk(u) = 0, ∀u ∈ D.

Definition 3.2. Genuinely nonlinear field

The couple (µk, rk) is said to be genuinely nonlinear on D
(G.N.L.) if

∇µk(u) · rk(u) 6= 0, ∀u ∈ D.

The theory of hyperbolic systems shows that in general,
even if initial conditions are very smooth, classical solu-
tions do not exist beyond some finite time interval. How-
ever, we can state a global existence result for (122), using
the results of Li Ta-tsien page 89 of [32], who considered
A(u) locally C2, under the following assumptions:

Assumption 1: The system (122) is locally hyperbolic
(cf. definition 1.1) and strictly hyperbolic at the origin:

µ1(0) < µ2(0) < · · · < µn(0).

Assumption 2: The system (122) is locally linearly de-
generate, i.e. all couples (µk, rk) are L.D. on a neighbor-
hood of 0.

Theorem 3.1 (Li Ta-tsien). Suppose that A(U) is C2

in a neighborhood of U = 0 and satisfies assumptions 1
and 2. Suppose that U0 is C1 and has compact support
such that

Supp(U0) ⊆ [α0, β0].

Then, there exists θ0 > 0 such that if

θ := (β0 − α0) sup
x∈R

|U
′

0(x)| < θ0,

(122) admits a unique global solution

U ≡ U(x, t) ∈ C1(R × R
+).

In the case of nonlinear Hamiltonian systems of wave equa-
tions, the unknown vector U is (∂tu, ∂xu) and the matrix
A(U) is given by (7). The regularity needed on A(U) is
then deferred on D2H(Ux), so that we can write:

Corollary 3.1. Suppose in (1) that H is C4 and strictly
convex in a neighborhood of ux = 0 (local form of (H3)).
Assume also that u0 is C2, u1 is C1 and both have compact
support included in [α0, β0]. Suppose furthermore that the
eigenpairs

(

λi(v), ri(v)
)

, i ∈ [1, N ] of D2H(v) satisfy

∇λi(v) · vi(v) = 0, ∀v ∈ D (123)

D being the neighborhood of 0. Then there exists θ0 > 0
such that if

θ := (β0 − α0) sup
x∈R

ˆ

|u′′
0 (x)| , |u′

1(x)|
˜

< θ0,

Cauchy problem (1) admits a unique global C2 solution u ≡
u(x, t) ∈ C2(R × R

+).

Proof. Wefirst remark that A(U) depends on Ux only
via D2H (see (7)). The eigenpairs of A(U) are given by:

µ±
i (U) = ±

p

λi(Ux),

r
±
i (U) =

“

±
p

λi(Ux)vi(Ux),vi(Ux)
”

, ∀ 1 ≤ i ≤ N.

One then computes

∇µ±
i (U) · r±i (U) = ± ∇λi(Ux)

2
p

λi(Ux)
· vi(Ux) = 0

using (123). The corollary is then a rephrasing of theo-
rem 3.1 adapted to the NLSWE.

�

We can show that corollary 3.1 can be applied to the geo-
metrically exact model. Indeed, D2Hex has the following
eigenvalues:

λ1(ux, vx) = 1 and λ2(ux, vx) = 1 − α
p

u2
x + (1 + vx)2

associated with the eigenvectors:

v1(ux, vx) =

„

ux

1 + vx

«

and v2(ux, vx) =

„

−(1 + vx)
ux

«
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We can also easily show that for i ∈ [1, 2]

∇λi(ux, vx) · vi(ux, vx) = 0, ∀ux 6= 0 and vx 6= −1.

The first order form of (118) is then linearly degener-
ate. Under assumptions on initial data, we can then ap-
ply theorem (3.1) and conclude that there exists a global
C2 solution of the equation. All the computations of the
first part of the article are valid since solutions are smooth
enough.

In the case of the Bank-Sujbert model (121), the calcula-
tion of ∇λ.v leads to:














































∇λ1.v1 =
α

8

h

9u2
x + 6

√
∆ − 12

1√
∆

+ 27
1√
∆
u4

x

+36
1√
∆
u2

xvx + 9u2
x + 12

1√
∆
v2

x + 6vx

i

∇λ2.v2 = α
h 9

4
u2

x +
3

4
vx − 3

8

√
∆ +

3

2

1√
∆

− 27

8

1√
∆
u4

x

−9

2

1√
∆
u2

xvx

i

,

where ∆ = 4
[

(

1 − vx − 3
2u

2
x

)2
+ 4u2

x

]

.

This calculation shows that the first order form of (121) is
genuinely nonlinear unless α = 0. Consequently, the-
orem 3.1 cannot be applied in this case. In fact, if the
system is G.N.L. (all couples (λ, r) are G.N.L., see defini-
tion 3.2), there exists a blow up result in [32] which states
that the C2 norm of the solution of (121) must blow up in
a finite time depending on the size of the initial data.

Remark 3.1. This existence result is true for the geomet-
rically exact model for N > 2 but is false when the equation
is scalar (N = 1) for the nonlinear case. As for the ap-
proximate Bank-Sujbert model mentioned earlier, the non-
linear scalar case is genuinely nonlinear, hence the blow
up theorem can be applied, meaning that the C2 norm of
the solution must blow up in a finite time depending on
the size of the initial data. This result has been mentioned
before by John [21] and Kleinerman and Majda [24].

The nonlinear scalar wave equation often found in the lit-
erature is the following:

utt −
`

K(ux)
´

x
= 0.

It is possible to write this second order scalar equation as
a first order system having two opposite eigenvalues λ± =
±

√

K ′(ux) associated with the two eigenvectors

v± =

„

1

∓
p

K′(ux)

«

⇒ ∇λ±.v± = ± K′′(ux)

2
p

K′(ux)

The classical “nonlinear string model” is to set

K(v) =
v√

1 + v2 ,

which leads indeed to a genuinely nonlinear field.

3.3. Computational algorithm

Finite element discretization. Concretely, in the case of
the nonlinear string, Ω is a segment, noted [0, L]. For
each direction, we discretize H1

0

(

[0, L]
)

with Lagrange Pk

elements. We can evaluate the dimension of Vh, that is to
say the number of degrees of freedom, which depends on
the degree k of the chosen basis functions, on the number
of elements Nx − 1 in the mesh, and on the size N of the
system. The amount leads to Nh degrees of freedom, with
Nh = N [(Nx − 1)k + 1].

Nonlinear resolution. Programming the scheme (113) am-
ounts to nullifying, at each time step, a function F : R

Nh −→
R

Nh which is a priori highly non linear. The method we
use to find a zero of F is Newton’s method, which consists
in going from an initial point, then inverting the jacobian
matrix of F until we find a point U

∗ such that F (U∗) is
“sufficiently close” to zero. We have to calculate this Ja-
cobian matrix, which depends on the point at which we
estimate it, since the problem is nonlinear.
We can write the scheme’s solution uh as its decomposition
on basis functions:

uh =

N
X

ℓ=1

Nd
X

j=1

uℓ,jψℓ,j

where ψℓ,j is a vector having only one non zero component,
directed in the direction ℓ, which is φj ie the basis function
of Pk associated with the degree of freedom j, and Nd is
the number of degrees of freedom for each direction. The
unknown of the problem, at each time step, is the vector
Uh =

(

un+1
ℓ,j

)

ℓ,j
, the values

(

un
ℓ,j

)

ℓ,j
and

(

un−1
ℓ,j

)

ℓ,j
being

considered known and constant. Then, the scheme consists
in Nh lines, and the line corresponding to the direction ℓ
and the degree of freedom j can be written

Fℓ,j(Uh) =

I h

[0 L]

un+1
ℓ − 2un

ℓ + un−1
ℓ

∆t2
φj

+

I h

[0 L]

X

σ∈Σℓ

ζ(σ) δℓH(∂xu
n+1
ℓ , ∂xu

n−1
ℓ ; ∂xu

n+σ(ℓ̃)

ℓ̃6=ℓ
)∂xφj ,

where uℓ =

Nd
∑

p=1

uℓ,pφp.

The Jacobian of this scheme is then a matrix of the appli-
cations from R

Nh to R:














































∂Fℓ,j

∂uℓ,n
=

1

∆t2

I h

[0 L]

φnφj

+
X

σ∈Σℓ

ζ(σ)

I h

[0 L]

∂δℓH

∂ℓ
(∂xu

n+1
ℓ , ∂xu

n−1
ℓ ; ∂xu

n+σ(ℓ̃)

ℓ̃6=ℓ
)∂xφn∂xφj

∂Fℓ,j

∂uk,n
=
X

σ∈Σℓ

σ(k)=+1

ζ(σ)

I h

[0 L]

∂δℓH

∂k
(∂xu

n+1
ℓ , ∂xu

n−1
ℓ ; ∂xu

n+σ(ℓ̃)

ℓ̃6=ℓ
)∂xφn∂xφj .
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3.4. Tests of numerical results for the string model

Using our preserving scheme (113), we have imple-
mented the nonlinear string model described in section 3.1
(geometrically exact model), and the approximate Bank-
Sujbert model. The numerical results were interesting for
showing the influence of nonlinearity on the behavior of
a vibrating string, and to show the comparison between
exact and developed models. We remind that the sys-
tem (118) is equivalent to the geometrically exact model,
and has been obtained by a space and time scaling, intro-
ducing α = EA−T0

EA . Increasing α amounts to decreasing T0

(all other parameters equal) ie slackening the string. The
following numerical experiments have been made on scaled
systems, using linear shape functions (P1) for the finite el-
ements space approximation, a space step ∆x = 0.01 and
a time step ∆t = 0.0033.

3.4.1. Influence of the nonlinearity

Numerical experiments have been carried out on very
simple problems to show the influence of the nonlinear-
ity on the string vibration. Nonlinear behavior can come
from two different factors : either the nonlinear factor α
comes closer to 1, or the initial amplitude grows. Figure 2
shows the deformation of a string with a sine function as
initial condition in the transversal direction. The time is
represented as the third space variable, and the different
snapshots are displayed in different colors from blue to
red. The nonlinear factor is changed between the lines,
and the initial amplitude of the sine is changed between
the columns.
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Figure 2: Evolution of the string deformation (time evolution in each
subfigure from blue (left) to red (right) ), for different values of α

and initial amplitude.

The first line has been made with a nonlinear factor α = 0,
which leads to two linear uncoupled wave equations. In-
deed, the initial amplitude of the data has just a scaling
influence on the vibration of the string, expressing the lin-
ear behavior of the solution.

The first column shows, for small initial data, the influ-
ence of the nonlinear factor α. We can notice that the
vibration slows when α increases, which is in agreement
with the second order Taylor expansion of the potential
energy Hex: we indeed get as approximated system two
uncoupled linear wave equations, with a celerity of 1 for
the longitudinal wave and

√
1 − α for the transversal wave,

which is the one that we can observe. For α = 0 the celer-
ity is c = 1 and for α = 0.99 the celerity is c = 0.1, ten
times less.

Finally, if we look at the last two lines, we can see that
increasing the initial amplitude leads to unusual behaviors
of the string, pointing out the nonlinear influence of the
equation, and especially the stretching of the string due to
the presence of longitudinal waves.

We add that the simulations presented here have shown a
very good energy preservation (about 10−13 relative error
on the energy preservation for a Newton tolerance of 10−13

on the ℓ2 norm of F (Uh)).

3.4.2. Comparison with approximate Bank-Sujbert model

Another interesting point was to compare the string
deformation when we use the geometrically exact model
and when we use the Taylor expansion used in [2] and [5].
Our scheme makes it easy to switch from one model to an-
other, and the result of simulation can be seen in figure 3.

α\|u0| 0.01 0.1 0.3

0

! "
(!#!$

!#!$

! "
(!#$

!#$

! "
(!#$

!#$

0.8

! "
(!#!$

!#!$

! "
(!#$

!#$

! "
(!#$

!#$

0.99

! "
(!#!$

!#!$

! "
(!#$

!#$

! "
(!#$

!#$

Figure 3: Comparison of a snapshot of the string deformation for
exact (red, solid) and approximate (blue, dashed) model, for different
values of α and initial amplitude.

The system of lines and columns is exactly the same as
in the previous figure : different nonlinear factors α in
lines, different initial amplitudes in columns. Each sub-
figure shows the string deformation by the exact model in
red (solid line) and by the expanded model in blue (dashed
line).

For α = 0 (the first line) the two models coincide, and
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we can see that the simulations give the same result (red
(solid) curve and blue (dashed) curve are the same). But
for more realistic values of α (for real piano strings it can
be more than 0.999) the two curves are about the same
for a very small initial amplitude, but are slightly differ-
ent for |u0| = 0.1 and very different for |u0| = 0.3. This
illustrates the fact that the expanded model is a good ap-
proximation of the exact model for small amplitudes, but
becomes rather bad when the amplitudes grow.

Conclusions & Perspectives

In this paper we have proposed one solution for achiev-
ing our goal : constructing energy preserving schemes for
nonlinear Hamiltonian systems of wave equations. Work
is currently in progress on an energy preserving discretiza-
tion of a more general class of systems. The future plan for
this study is to develop a mathematical and a numerical
model for the full grand piano. One of the main difficulties
is to consider the coupling of the strings’ movement with
the vibrations of the soundboard and with the sound radi-
ation, and we believe that the method that we developed,
using an energy technique, will make it possible to achieve
stability for the whole coupled problem.
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