Optimal μ-Distributions for the Hypervolume Indicator for Problems With Linear Bi-Objective Fronts: Exact and Exhaustive Results

Dimo Brockhoff 1
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : To simultaneously optimize multiple objective functions, several evolutionary multiobjective optimization (EMO) algorithms have been proposed. Nowadays, often set quality indicators are used when comparing the performance of those algorithms or when selecting ``good'' solutions during the algorithm run. Hence, characterizing the solution sets that maximize a certain indicator is crucial---complying with the optimization goal of many indicator-based EMO algorithms. If these optimal solution sets are upper bounded in size, e.g., by the population size μ, we call them optimal μ-distributions. Recently, optimal μ-distributions for the well-known hypervolume indicator have been theoretically analyzed, in particular, for bi-objective problems with a linear Pareto front. Although the exact optimal μ-distributions have been characterized in this case, not all possible choices of the hypervolume's reference point have been investigated. In this paper, we revisit the previous results and rigorously characterize the optimal μ-distributions also for all other reference point choices. In this sense, our characterization is now exhaustive as the result holds for any linear Pareto front and for any choice of the reference point and the optimal μ-distributions turn out to be always unique in those cases. We also prove a tight lower bound (depending on μ) such that choosing the reference point above this bound ensures the extremes of the Pareto front to be always included in optimal μ-distributions.
Type de document :
Communication dans un congrès
Simulated Evolution And Learning (SEAL-2010), Dec 2010, Kanpur, India. 2010
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00534710
Contributeur : Dimo Brockhoff <>
Soumis le : mercredi 10 novembre 2010 - 13:07:45
Dernière modification le : jeudi 11 janvier 2018 - 01:49:38
Document(s) archivé(s) le : vendredi 11 février 2011 - 02:59:27

Fichier

seal135_authorVersion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00534710, version 1

Collections

Citation

Dimo Brockhoff. Optimal μ-Distributions for the Hypervolume Indicator for Problems With Linear Bi-Objective Fronts: Exact and Exhaustive Results. Simulated Evolution And Learning (SEAL-2010), Dec 2010, Kanpur, India. 2010. 〈inria-00534710〉

Partager

Métriques

Consultations de la notice

198

Téléchargements de fichiers

98