Finite volume schemes for constrained conservation laws

Abstract : This paper is devoted to the numerical analysis of the road traffic model proposed by Colombo and Goatin in [CG07]. The model involves a standard conservation law supplemented by a local unilateral constraint on the flux at the point x = 0 (modelling a road light, a toll gate, etc.). We first show that the problem can be interpreted in terms of the the- ory of conservation laws with discontinuous flux function, as developed by Adimurthi et al. [AMG05] and Bu ̈rger et al. [BKT09]. We reformulate accordingly the notion of entropy solution introduced in [CG07], and ex- tend the well-posedness results to the L∞ framework. Then, starting from a general monotone finite volume scheme for the non-constrained conser- vation law, we produce a simple scheme for the constrained problem and show its convergence. The proof uses a new notion of entropy process solution. Numerical examples modelling a “green wave” are presented.
Type de document :
Article dans une revue
Numerische Mathematik, Springer Verlag, 2010, 115 (4), pp.609-645
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00534872
Contributeur : Paola Goatin <>
Soumis le : mercredi 10 novembre 2010 - 16:52:38
Dernière modification le : lundi 16 juillet 2018 - 11:58:02
Document(s) archivé(s) le : jeudi 30 juin 2011 - 12:56:39

Fichier

AGS-preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00534872, version 1

Citation

Paola Goatin, Nicolas Seguin, Boris Andreianov. Finite volume schemes for constrained conservation laws. Numerische Mathematik, Springer Verlag, 2010, 115 (4), pp.609-645. 〈inria-00534872〉

Partager

Métriques

Consultations de la notice

738

Téléchargements de fichiers

170