Theoretically Investigating Optimal μ-Distributions for the Hypervolume Indicator: First Results For Three Objectives

Anne Auger 1 Johannes Bader 2 Dimo Brockhoff 1
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : Several indicator-based evolutionary multiobjective optimization algorithms have been proposed in the literature. The notion of optimal μ-distributions formalizes the optimization goal of such algorithms: find a set of μ solutions that maximizes the underlying indicator among all sets with μ solutions. In particular for the often used hypervolume indicator, optimal μ-distributions have been theoretically analyzed recently. All those results, however, cope with bi-objective problems only. It is the main goal of this paper to extend some of the results to the 3-objective case. This generalization is shown to be not straight-forward as a solution's hypervolume contribution has not a simple geometric shape anymore in opposition to the bi-objective case where it is always rectangular. In addition, we investigate the influence of the reference point on optimal μ-distributions and prove that also in the 3-objective case situations exist for which the Pareto front's extreme points cannot be guaranteed in optimal μ-distributions.
Type de document :
Communication dans un congrès
Parallel Problem Solving from Nature (PPSN XI), Sep 2010, Krakow, Poland. 2010
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00534906
Contributeur : Dimo Brockhoff <>
Soumis le : mercredi 10 novembre 2010 - 20:03:21
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : vendredi 11 février 2011 - 03:16:44

Fichier

paper199authorVersion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00534906, version 1

Collections

Citation

Anne Auger, Johannes Bader, Dimo Brockhoff. Theoretically Investigating Optimal μ-Distributions for the Hypervolume Indicator: First Results For Three Objectives. Parallel Problem Solving from Nature (PPSN XI), Sep 2010, Krakow, Poland. 2010. 〈inria-00534906〉

Partager

Métriques

Consultations de la notice

199

Téléchargements de fichiers

136