D. Ballard, M. Hayhoe, P. Pook, and R. Rao, Deictic codes for the embodiment of cognition, Behavioral and Brain Sciences, vol.20, issue.04, pp.723-765, 1997.
DOI : 10.1017/S0140525X97001611

J. Findlay and R. Walker, A model of saccade generation based on parallel processing and competitive inhibition, Behavioral and Brain Sciences, vol.22, issue.04, pp.661-74, 1999.
DOI : 10.1017/S0140525X99002150

A. Kramer, D. Irwin, J. Theeuwes, and S. Hahn, Oculomotor capture by abrupt onsets reveals concurrent programming of voluntary and involuntary saccades, Behavioral and Brain Sciences, vol.22, issue.4, pp.689-690, 1999.
DOI : 10.1017/S0140525X99382157

R. Godijn and J. Theeuwes, Programming of endogenous and exogenous saccades: Evidence for a competitive integration model., Journal of Experimental Psychology: Human Perception and Performance, vol.28, issue.5, pp.1039-54, 2002.
DOI : 10.1037/0096-1523.28.5.1039

T. Isa, Intrinsic processing in the mammalian superior colliculus, Current Opinion in Neurobiology, vol.12, issue.6, pp.668-77, 2002.
DOI : 10.1016/S0959-4388(02)00387-2

C. Koch and S. Ullman, Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry, Human Neurobiology, vol.4, issue.4, pp.219-246, 1985.
DOI : 10.1007/978-94-009-3833-5_5

L. Itti and C. Koch, Computational modeling of visual attention, Nature Reviews Neuroscience, vol.2, issue.3, pp.194-203, 2001.
DOI : 10.1038/35058500

V. Cutsuridis, A Cognitive Model of Saliency, Attention, and Picture Scanning, Cognitive Computation, vol.78, issue.1???2, pp.292-299, 2009.
DOI : 10.1007/s12559-009-9024-9

T. Trappenberg, M. Dorris, D. Munoz, and R. Klein, A Model of Saccade Initiation Based on the Competitive Integration of Exogenous and Endogenous Signals in the Superior Colliculus, Journal of Cognitive Neuroscience, vol.78, issue.2, pp.256-71, 2001.
DOI : 10.1007/BF00207285

S. Schneider and W. Erlhagen, A neural field model for saccade planning in the superior colliculus: speed-accuracy tradeoff in the double-target paradigm, Neurocomputing, vol.44, issue.46, pp.44-46, 2002.
DOI : 10.1016/S0925-2312(02)00449-6

J. Johnson, J. Spencer, and G. Schoner, Moving to higher ground: The dynamic field theory and the dynamics of visual cognition, New Ideas in Psychology, vol.26, issue.2, pp.227-251, 2008.
DOI : 10.1016/j.newideapsych.2007.07.007

C. Faubel and G. Schoner, Learning to recognize objects on the fly: A neurally based dynamic field approach, Neural Networks, vol.21, issue.4, pp.562-76, 2008.
DOI : 10.1016/j.neunet.2008.03.007

G. Deco and E. Rolls, A Neurodynamical cortical model of visual attention and invariant object recognition, Vision Research, vol.44, issue.6, pp.621-663, 2004.
DOI : 10.1016/j.visres.2003.09.037

N. Rougier and J. Fix, Dana,distributed asynchronous numerical and adaptive modeling framework, Frontiers in Neuroinformatics sub- mitted

M. Goodale and A. Milner, Separate visual pathways for perception and action, Trends in Neurosciences, vol.15, issue.1, pp.20-25, 1992.
DOI : 10.1016/0166-2236(92)90344-8

J. Reynolds and L. Chelazzi, ATTENTIONAL MODULATION OF VISUAL PROCESSING, Annual Review of Neuroscience, vol.27, issue.1, pp.611-658, 2004.
DOI : 10.1146/annurev.neuro.26.041002.131039

M. Posner and Y. Cohen, Attention and performance X, Lawrence Epblaum Associates, Components of visual orienting, pp.531-556, 1984.

H. Wilson and J. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, vol.12, issue.2, pp.55-80, 1973.
DOI : 10.1007/BF00288786

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1007/BF00337259

J. Taylor, Neural bubble dynamics in two dimensions, Biological Cybernetics, vol.80, pp.5167-5174, 1999.

S. Coombes, Waves, bumps, and patterns in neural field theories, Biological Cybernetics, vol.16, issue.2, pp.91-108, 2005.
DOI : 10.1007/s00422-005-0574-y

W. Erlhagen and G. Schoener, Dynamic field theory of movement preparation., Psychological Review, vol.109, issue.3, pp.545-72, 2002.
DOI : 10.1037/0033-295X.109.3.545

W. Erlhagen and E. Bicho, The dynamic neural field approach to cognitive robotics, Journal of Neural Engineering, vol.3, issue.3, pp.36-54, 2006.
DOI : 10.1088/1741-2560/3/3/R02

N. Rougier and J. Vitay, Emergence of attention within a neural population, Neural Networks, vol.19, issue.5, pp.573-81, 2006.
DOI : 10.1016/j.neunet.2005.04.004

URL : https://hal.archives-ouvertes.fr/inria-00000143

E. Sauser and A. Billard, Dynamic updating of distributed neural representations using forward models, Biological Cybernetics, vol.16, issue.6, pp.567-88, 2006.
DOI : 10.1007/s00422-006-0131-3

K. Gurney, T. Prescott, and P. Redgrave, A computational model of action selection in the basal ganglia. I. A new functional anatomy, Biological Cybernetics, vol.84, issue.6, pp.401-411, 2001.
DOI : 10.1007/PL00007984

J. Vitay and N. Rougier, Using neural dynamics to switch attention, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., 2005.
DOI : 10.1109/IJCNN.2005.1556384

URL : https://hal.archives-ouvertes.fr/inria-00000144

K. Kopecz and G. Schoner, Saccadic motor planning by integrating visual information and pre-information on neural dynamic fields, Biological Cybernetics, vol.15, issue.1, pp.49-60, 1995.
DOI : 10.1007/BF00199055

J. Johnson, J. Spencer, S. Luck, and G. Schoner, A Dynamic Neural Field Model of Visual Working Memory and Change Detection, Psychological Science, vol.453, issue.5, pp.568-77, 2009.
DOI : 10.1111/j.1467-9280.2009.02329.x

J. Fix, J. Vitay, and N. Rougier, A Distributed Computational Model of Spatial Memory Anticipation During a Visual Search Task, Anticipatory Behavior in Adaptive Learning Systems: From Brains to Individual and Social Behavior, pp.170-188, 2007.
DOI : 10.1007/978-3-540-74262-3_10

URL : https://hal.archives-ouvertes.fr/inria-00166535

F. Alexandre and F. Guyot, Neurobiological inspiration for the architecture and functioning of cooperating neural networks, pp.24-30, 1995.
DOI : 10.1007/3-540-59497-3_152

S. Stringer, T. Trappenberg, E. Rolls, and I. Araujo, Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells, Network: Computation in Neural Systems, vol.7, issue.2, pp.217-242, 2002.
DOI : 10.1080/net.13.2.217.242

S. Stringer, E. Rolls, and T. Trappenberg, Self-organising continuous attractor networks with multiple activity packets, and the representation of space, Neural Networks, vol.17, issue.1, pp.5-27, 2004.
DOI : 10.1016/S0893-6080(03)00210-7

C. Weber and S. Wermeter, A self-organizing map of sigma???pi units, Neurocomputing, vol.70, issue.13-15, pp.2552-2560, 2007.
DOI : 10.1016/j.neucom.2006.05.014

K. Zhang, Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory, Journal of Neuroscience, vol.16, issue.6, pp.2112-2138, 1996.

A. Pouget and T. Sejnowski, Spatial Transformations in the Parietal Cortex Using Basis Functions, Journal of Cognitive Neuroscience, vol.4, issue.35, pp.222-237, 1997.
DOI : 10.1017/S0140525X00072605

R. Andersen, G. Essick, and R. Siegel, Encoding of spatial location by posterior parietal neurons, Science, vol.230, issue.4724, pp.456-464, 1985.
DOI : 10.1126/science.4048942

E. Salinas and P. Thier, Gain Modulation, Neuron, vol.27, issue.1, pp.15-21, 2000.
DOI : 10.1016/S0896-6273(00)00004-0

G. Tononi, O. Sporns, and G. Edelman, Reentry and the Problem of Integrating Multiple Cortical Areas: Simulation of Dynamic Integration in the Visual System, Cerebral Cortex, vol.2, issue.4, pp.310-345, 1992.
DOI : 10.1093/cercor/2.4.310

F. Hamker, The Reentry Hypothesis: The Putative Interaction of the Frontal Eye Field, Ventrolateral Prefrontal Cortex, and Areas V4, IT for Attention and Eye Movement, Cerebral Cortex, vol.15, issue.4, pp.431-478, 2005.
DOI : 10.1093/cercor/bhh146

G. Deco and T. Lee, A unified model of spatial and object attention based on inter-cortical biased competition, Neurocomputing, vol.44, issue.46, pp.46-775, 2002.
DOI : 10.1016/S0925-2312(02)00471-X

F. Hamker, The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision, Computer Vision and Image Understanding, vol.100, issue.1-2, pp.64-106, 2005.
DOI : 10.1016/j.cviu.2004.09.005

S. Frintrop, VOCUS: A Visual Attention System for Object Detection and Goal-directed Search, Lecture Notes in Computer Science, vol.3899, 2006.
DOI : 10.1007/11682110

M. Riesenhuber and T. Poggio, Hierarchical models of object recognition in cortex, Nature Neuroscience, vol.2, issue.11, pp.1019-1044, 1999.

J. Moran and R. Desimone, Selective attention gates visual processing in the extrastriate cortex, Science, vol.229, issue.4715, pp.782-786, 1985.
DOI : 10.1126/science.4023713

R. Desimone and J. Duncan, Neural Mechanisms of Selective Visual Attention, Annual Review of Neuroscience, vol.18, issue.1, pp.193-222, 1995.
DOI : 10.1146/annurev.ne.18.030195.001205

J. Reynolds, L. Chelazzi, and R. Desimone, Competitive mechanisms subserve attention in macaque areas v2 and v4, Journal of Neuroscience, vol.19, issue.5, pp.1736-53, 1999.

S. Shipp, The brain circuitry of attention, Trends in Cognitive Sciences, vol.8, issue.5, pp.223-253, 2004.
DOI : 10.1016/j.tics.2004.03.004

J. Lynch and J. Tian, Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements, Progress Brain Research, vol.151, pp.461-501, 2005.
DOI : 10.1016/S0079-6123(05)51015-X

O. Hikosaka, Y. Takikawa, and R. Kawagoe, Role of the basal ganglia in the control of purposive saccadic eye movements, Physiological Review, vol.80, issue.3, pp.953-78, 2000.

D. Robinson and S. Petersen, The pulvinar and visual salience, Trends in Neurosciences, vol.15, issue.4, pp.127-159, 1992.
DOI : 10.1016/0166-2236(92)90354-B

L. Zhaoping, A saliency map in primary visual cortex, Trends Cognitive Sciences, vol.6, issue.1, pp.9-16, 2002.

J. Gottlieb, M. Kusunoki, and M. Goldberg, The representation of visual salience in monkey parietal cortex, Nature, vol.391, issue.6666, pp.481-485, 1998.

K. Thompson and N. Bichot, A visual salience map in the primate frontal eye field, Progress Brain Research, vol.147, pp.251-62, 2005.
DOI : 10.1016/S0079-6123(04)47019-8

K. Rockland and G. Vanhoesen, Direct Temporal-Occipital Feedback Connections to Striate Cortex (V1) in the Macaque Monkey, Cerebral Cortex, vol.4, issue.3, pp.300-313, 1994.
DOI : 10.1093/cercor/4.3.300

T. Moore and K. Armstrong, Selective gating of visual signals by microstimulation of frontal cortex, Nature, vol.81, issue.6921, pp.370-373, 2003.
DOI : 10.1038/nature01341

O. Hikosaka, Basal Ganglia Mechanisms of Reward-Oriented Eye Movement, Annals of the New York Academy of Sciences, vol.88, issue.1, pp.229-278, 2007.
DOI : 10.1016/0149-7634(82)90003-3

S. Funahashi, C. Bruce, and P. Goldman-rakic, Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex, Journal of Neurophysiology, vol.61, issue.2, pp.331-380, 1989.

C. Constantinidis and X. Wang, A Neural Circuit Basis for Spatial Working Memory, The Neuroscientist, vol.33, issue.6, pp.553-65, 2004.
DOI : 10.1177/1073858404268742

Y. Watanabe and S. Funahashi, Neuronal Activity Throughout the Primate Mediodorsal Nucleus of the Thalamus During Oculomotor Delayed-Responses. I. Cue-, Delay-, and Response-Period Activity, Journal of Neurophysiology, vol.92, issue.3, pp.1738-55, 2004.
DOI : 10.1152/jn.00994.2003

Y. Watanabe and S. Funahashi, Neuronal Activity Throughout the Primate Mediodorsal Nucleus of the Thalamus During Oculomotor Delayed-Responses. II. Activity Encoding Visual Versus Motor Signal, Journal of Neurophysiology, vol.92, issue.3, pp.1756-69, 2004.
DOI : 10.1152/jn.00995.2003

M. Sommer and R. Wurtz, Influence of the thalamus on spatial visual processing in frontal cortex, Nature, vol.100, issue.7117, pp.374-381, 2006.
DOI : 10.1038/nature05279

J. Duhamel, C. Colby, and M. Goldberg, The updating of the representation of visual space in parietal cortex by intended eye movements, Science, vol.255, issue.5040, pp.90-92, 1992.
DOI : 10.1126/science.1553535

C. Quaia, L. Optican, and M. Goldberg, The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields, Neural Networks, vol.11, issue.7-8, pp.1229-1240, 1998.
DOI : 10.1016/S0893-6080(98)00069-0

G. Rizzolatti, L. Riggio, I. Dascola, and C. Umiltá, Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention, Neuropsychologia, vol.25, issue.1, pp.31-40, 1987.
DOI : 10.1016/0028-3932(87)90041-8