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Parallel Model Checking for

Marta Kwiatkowska ! and Alessio

Abstract. We investigate the problem of the verification of multi-
agent systems by means of parallel algorithms. We presegnt al
rithms for CTLK, a logic combining branching time temporagic
with epistemic modalities. We report on an implementatibthese
algorithms and present the experimental results obtaifteelresults
point to a significant speed-up in the verification step.

1 Introduction

Temporal-epistemic logics are a well-known formalism tasen
about multi-agent systems [6]. One of its recent applicatibas
been the development of model checking techniques for thiftcee
tion of multi-agent systems (MAS) specified by means of terabo
epistemic logics. Several approaches have been put forwahds
direction. [14] introduced an approach based on boundedemod
checking for the verification of CTLK, the combination of CWlith
epistemic logic. [7] used binary-decision diagrams to @enf sym-
bolic model checking on CTLK. This approach was also folldwe
in the development of MCMAS [9], an open-source model checke
for MAS. While these techniques and resulting toolkits aapable
of checking very considerable state-space, they stilesdfbm the
state-explosion problem. This is a well-known difficultyvierifica-
tion resulting from the fact that the state-space grows egptally
with the number of variables in the program to be verified. fdeo
to be able to verify large systems it remains of paramounbitamce
to devise methodologies that mitigate this difficulty. Reaesearch
has focused on techniques such as abstraction [5] and syynreet
duction [4] to alleviate the problem.

Even if significant gains can be achieved, ultimately anfinéue
of this kind needs to confront the problem of computing ancbeln
ing a very large state-spaces by means of a serial prograraetreral
years research in model checking has been able to benefitfrom
tinuously increasing computational power in the undedysingle-
core computer architectures. However, there are incrgagims that
current CPU development is hitting the barriers of the ulyitey
physics, thereby providing only limited scope for fasteiaeCPUs.
Current CPUs already provide several execution cores; tingber
of cores in a single CPU is expected to increase significanttiie
next few years. It is therefore of interest to develop modieloking
algorithms ready to reap the benefits of the underlying peisth.

Steps in this direction have already been taken. In [16] thes
space is partitioned and the overall model constructed plogrg
in parallel the sub-models generated by the represengativbe par-
titions. This approach was applied to explicit model chegkpro-
cedures; however, similar algorithms [8, 16] have beensgelior
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symbolic, i.e., OBDD-based, representations as well. Aadlitty of
these approaches resides in the partitioning process. lisheil,

if we are performing breath-first search and assign newsstata
different thread, at times we are forced to cross-refereheepar-
tial sub-models to the different execution threads. Théits in a
computation overhead that may well offset any possible gtiared

by the parallel search. To overcome this difficulty the staddalgo-
rithms for computing the set of states satisfying a logioatfula [3]
have been modified in order to minimise the communicatiornr-ove
head between threads.

In this paper we take inspiration from these observationdeto
velop parallel approaches to symbolic model checking MA&csp
ified by means of branching-time temporal epistemic logjmedH-
ically, we report on partitioning strategies for the reprgstion of
state spaces generated by MAS encoded as interpreted sy4t&m
and parallel algorithms for the satisfaction of epistenperators,
including distributed and common knowledge.

The rest of the paper is organised as follows. In Section 2ewe r
call the interpreted systems formalism for MAS and the teralpo
epistemic logic CTLK. in Section 3 we give the sequential glod
checking procedures for CTLK. We introduce a partitiontsgg and
parallel satisfaction algorithms for CTLK in Section 4. lec8ion 5
we evaluate the methodology by reporting the performanctiesoél-
gorithms on four scalable models. Section 6 presents @recof
future work.

2 Interpreted systems and CTLK

We model a MAS as an interpreted system [6], and follow the
presentation in [10]. An interpreted system is composed eéta
A = {1,...,n} of agents and an environmeat We assume that
at any given time each agent in the system is in a particutzal lo
state. We associate a set of instantanéacal statesl; to each agent

1 € Aand a sef. to the environment.

To represent the instantaneous configuration of the whol& M
a given time we use the notion of global state. A global stateS is
atuples = (I, ...,In,l.) where each componehte L; represents
the local state an ageitis in, together with the environment state.
The set of all global stateS C Ly x ... x L, x L. is a subset of
the Cartesian product of all local states and the local statethe
environment/ C S is a set of initial states for the system.

Each agent has a repertoire of actionéct, available, similarly
has the environment. It is assumedil € Act,; for each agent
wherenull is the null action. The action selection mechanism is
given by the notion of local protocd?; : L; — 24¢% foranyi € A;

P; is a function giving the set of possible actions that may hbe pe
formed when in a given local state. In other worgg/;) represents
the actions that may be performed by agewhen in the staté,.

The evolution of the system is given by locked transitionsafib



the agents and the environment. The model assumes that gewah a
moves from local state to local state at each time tick. Téyesitions
between local states depend on which actions have beenrmedo
by all agents in the system. So an agent’s action may affexthan
agent’s resulting next state. Formally, for each agent veeiras a
local transition function; : L; X Act1 X ... X Actn X Acte — L;
defining the local state for agehtesulting from a local state and and
a joint action.

Local transitions may be combined together to give a josmdi-
tion functiont : S x Act1 X ... X ... Acty, X Acte — S giving
the overall transition function for the system. We wiites’) € T
if 7(s,a1,...,an,a.) = s’ for some joint actiof{a1, . . ., an, ac).

We introduce paths to give an interpretation to a branchimeg t
language. Apath 7 = (so, s1,...,s;) IS a sequence of possible
global states such thdt;, s;+1) € T for each0 < i < j. For a
patht = (so, s1,...), we taker (k) = sy.

Definition 1 (Models) A modelM = (S,I,T,~1,...
a tuple such that:

, ~n, L) IS

I C Sis aset of initial states for the system,

T is the temporal relation for the system defined as above,

For each agent € A, ~; is an epistemic indistinguishably rela-
tion defined by(l1, ..., ln,le) ~; (I1,..., 1, 1) if l; = L.

L : S — 247 is a labelling function over the set P of atomic
propositions.

The above models allow us to interpret a temporal episteanic |

S C Lix,...x L, x L. is the set of global states for the system,

Definition 3 (Satisfaction) Given an ISM, the satisfaction of a
CTLK formulag in a global states is recursively defined as follows.

M,s) E piffp € L(s);
M, s) |E —¢iffitis not the case thatM, s) = ¢;

M, s) = ¢V iff (M, s) = ¢or (M,s) = ¢

M, s) = EX¢ iff there exists a pathr starting ats such that
M,x(1)) E ¢.

M, s) E EG¢ iff there exists a pathr starting ats such that
M, (k) = ¢forall k > 0;

M, s) E E¢U iff there exists a pathr starting ats such that
for somek > 0, (M, (k)) E ¢ and (M, n(j)) E ¢ for all
0<j<k;

(M, s) E K¢ iffforall s’ € Sif s ~; s’ then(M,s') | ¢.

E Ergiffforall s' € Sif s ~E s then(M,s) |= 6.
E Droiffforall s € Sif s ~£ s’ then(M,s) = ¢.
= Croiffforalls’ € Sif s ~& s’ then(M,s') = ¢.

(
(
(
(
(
(
(
(

(M, s)
(M, s)
(M, s)

In model checking we are normally interested in checkingtiviie
a formulag is satisfied in a modeM, which is equivalent to whether
¢ is satisfied in all initial states, i.e.,

(M, I) | giffforall s € I,(M,s) = o.

3 Model Checking CTLK formulae

guage. The relatioff is used to interpret temporal operators whereasGiven a MAS represented as an interpreted system and a specifi

~; is used to interpret epistemic modalities [6]. In additiotknowl-
edge for individual agent, we can define knowledge with ressjzea
groupI’ C A of agents in the following way.

e Everybody knows~f= [J ~;. We haves ~f s iff Vi €
el
I such thats ~; s'.
e Distributed knowledge-f = () ~;. We haves ~F
el

s"iff 3 e

" such thats ~; s’.
e Common knowledge~t'= (|J ~:)", wheret denotes the re-
i€l
flexive transitive closure of the underlying relation.

The syntax of the temporal epistemic logic CTLK is given bg th
following BNF notation.

Definition 2 (Syntax of CTLK)

) pl=¢|oVY | EXe| E¢Uy | EGY |
K¢ | Er¢ | Dré | Cro.

In the above definitiorp is an atomic proposition, the connectives
X, G andU are CTL path operators, standing for “next”, “globally”
and “until”, respectivelyF is the existential quantifier on paths. The
modal connective¥(;, Er, Dr andCr stand for knowledge, every-
body knows, distributed knowledge and common knowledgee®s
tively. K;¢ means that agentknows ¢; Er¢ means all agents in
groupT” know ¢; Dr¢ means one agent in groipknows ¢; Cr¢
meansp is common knowledge in group. Other temporal modali-
ties, e.g.,F', and the universal path quantifidrcan defined in terms
of the above as usual.

When a CTLK formulap is evaluated to true in a global statén
an ISM, we say that is satisfied ins, denoted by.M, s) = ¢. Let
L(s) C AP be set of atomic propositions satisfiedsin

tion ¢ € CTLK, the model checking problem involves checking
whether(M, I) |= ¢, i.e., establishing whether the formuds sat-
isfied in the system starting from initial states. Symboppmaches
tackle this problem by computing the set of stategvihthat satisfy

¢ by means of the transition relatioh and compare it against the
set of initial stated in M . Recall that sets can be easily represented
in terms of ordered-binary decision diagrams (OBDDs); soago-
rithm can be implemented directly on OBDDs [1].

Several procedures exist to calculate the set of reachtgitessin
Procedure 1, reported below, the functionage(next, 7) returns
the set of successor states of thersett of states with respect tp.
The setnext of states is thérontier during the generation.

Procedure LREACH (I,T)

1. S<=lnext<=1,8 <1
2: while S # S’ do

3 S <« 9 next = Image(next,T); S’ < S Unext;
4: end while

5: return S;

The second step in the model checking procedure is to céécula
S ATy, the set of states i that satisfy the formulg. The proce-
dure for calculatingS ATy for ¢ € CTLK is given in [15] and re-
sults from an extension of the algorithms given in [3] for CQiven
that in the sequel we do not modify the algorithms for the terap
modalities, below we only report the cases for the epistentdali-
ties.

Procedure 2 reports the algorithm for the basic epistemitatity.
In a nutshell we first compute the set of states-figr then construct
the set of states that can “see” by means of the epistemitorela
state satisfying ¢, and finally we return the complement of this set.



Procedure 2S ATk (¢, 1) for K;¢.

1. X < SAT-y;

2Y < {s€S|3s € X suchthats ~; s'};
3: return —Y' N S;

The procedure for everybody knows (distributed knowledge,
spectively) is similar to that above, except that the retationsidered
is the union (intersection, respectively) of the episterelations in
.

Procedure 3SATg(¢,T") for Erg.

1. X < SAT-y;

22Y «<{s€eS|3s’ € Xsuchthatli € T',s ~; s’}
3: return Y NS,

Procedure 4SATp(¢,T') for Dr¢.

1. X < SAT-y,

22Y «{s€eS|3s’ € Xsuchthati € T',s ~; s’}
3: return Y NS,

ComputingCr normally involves a fix point computation. For ef-
ficiency we use the algorithm below. Procedure 5 starts fiwrset

We then compute the set of reachable states in each qauiititi
parallel;

Finally, we carry out model checking checks simultangoos
all sets of reachable states.

The only communication requirement in the above is in Steyh&re
it is possible that a process may require to access stateg bem-
puted by another process.

In more detail, assumgis divided intom partitions/y, ..., I,,.
We defineMy, = (Sk, Ir, Tr, ~5, ..., ~F . Lx) (1 < k < m) to
be asubmodebf M if S, C S is the set of states reachable from
the states itl,, and~* (L, Tz, respectively) is the projection ef;

(L, Tx, respectively) ontdy, i.e, for alls, s’ € Sy, (s,s') € T &
(5,8') € Ty s ~F 8" & s ~; s andLi(s) = L(s). Note that for
constructing the set of reachable states from Anwe can equally
use the relationg, ~;, for anyi € A.

In view of the remarks at the end of the previous section we be-
gin by giving a general procedure for model checking that lsan
parallelised.

Procedure 7P_CHECK (M, ¢) for checking(M, I) = ¢
1: for k =1tomdo

2. if CHECKy(My, ¢)=FALSEreturn FALSE end if
3: end for

4: return TRUE

of states where is not satisfied and repeatedly extends it by adding

any state related by an agentlirto any of state in the working set.
The set of states satisfyin@r is the complement of the result of the
recursive computation above.

Procedure 55 AT¢(¢,T) for Cre.
1. X< SY <« SAT-4;
: while X # Y do
X <Y,
Y < {s€ 5|3’ € X andJi € T such thats ~; s'};
end while
return =X NS,

Qg AW

Since we can calculate the s€tof reachable states and the set
SATy of states satisfying any formula € CTLK, we can now
give the general model checking algorithm, reported in &dace 6.
Effectively, the algorithm checks whether the formula imsidera-
tion is true at all initial statesI(C SAT}).

Procedure 6CHECK (M, ¢)
1. if I C SAT, then

2 return TRUE

3: else

4: return FALSE

5: end if

4 Parallel model checking algorithm for CTLK

In this section we present the proposed parallel approaeérifying
CTLK. Given a modelM and a formulap to be checked we follow
the steps below.

1. We first partition the set of initial states and assign each partition
to a process.

Clearly thefor loop can be made parallel by meanswfparallel
processes (PPs), simply calculating the reachable stathe corre-
sponding submodel and checking the satisfiability of thenfda on
it (see Procedure 8). Every PP executes step 1 in Procedaes8 i
pendently and afterwards execut@sl EC K, (M}, ¢) with limited
synchronisation with other PPs. We then generaterdrol process
(CP) to collect the return values from the individual PPsrélby im-
plementingP CHECK (M, ¢).

Procedure 8SIMPLE_PARA(k, ¢)

1: Sy <= REACH (I);
2: CHECK (M, ¢);

The distributed procedur€ H EC K,,(M, ¢) to run on the sub-
model is identical taC H EC K (M, ¢) apart the test of, against
the set of states returned by theS AT, procedures.

Procedure 9CHECKp(My, ¢)
1. if I, C P_SAch then

2 return TRUE

3: else

4: return FALSE

5. end if

The P_SAT, procedure for the cases EX, EG, EU is the
same as the sequential proceduse$T, thereby reducing the syn-
chronisations among PPs. The parallel proceduretorEr, Dr,

Cr cases are defined as follows.

The procedureP_SATk(¢,1,k,Sy) differs from the serial
SATk (9,1, k, S) by means of a loop to get all reachable states in
which ¢ is not satisfied. Théor loop needs to synchronise with other
PPs: each PR needs to get a copy of; (1 < j # k < m) from
other PPj.



Procedure 10P_SATx (o, i, k, Sk ) for K:¢. Proof. (Sketch) by induction on syntax gf. a

L Xy <= P_SAT(—¢); X <= 0; Efficiency considerationsWe now pursue different optimisation
2: for j =1tomdo X < X U Xj; end for strategies that will be analysed experimentally in the redtion.
3. Y <= {s € Sk | 3s’ € X suchthats ~; s'}; Observe that the parallel procedure above is as slow asdhest
4: return =Y N S; PP. This is because of the communication required amongIBPBs.

a priori not trivial to identify a partitioning of the initlstates so that
The procedure® _SATr (4,1, k, Si) andP_SATp(¢,T', k, Sk) all PPs share a similar load. Additionally, since in any iempénta-
are obtained in the similar way fro®ATg(¢,I") andSATp(4,I))  tion the computations above are performed on OBDDs, thalvri

respectively with similar synchronisation steps. reordering mechanisms make any prediction even harder.
In an attempt to distribute evenly the workload to the vasiou
Procedure 11P_SATg(¢,T', k, Sy) for Er¢. PPs, we can partitiod in a number of sets greater than the num-
1 X < P.SAT(—¢); X < 0; ber of processes available. In this way the various PPs can pe
2: for j = 1tomdo X < X U X;; end for form their respective computations and can, when finishealfem
3 Y < {s€cS;|3s’ € XsuchthaBi € T',s ~; s’} to the next partition. Several strategies are possible. W& can
4: return =Y N Sy, try to explore as many reachable states as possible, or @ttem

run the check for satisfaction of the formula in questione Hno-
cedure M ERGE_PARA(k, ¢, sp) below adopts the former line.
Here, after a successful computation of the reachable sptee
from a partition, the next unexplored set of initial statestera-

Procedure 12P_SATp(¢,T', k,Gy) for Dr¢

L Xy <= P_SAT(=¢); X < 0; tively computed, before performing the check for the formin

2: for j =1tomdo X < X U Xj; end for question M ERGE_PARA(k, ¢, sp) is illustrated in Procedure 14
3 Y <= {s€Gr |3’ € Xsuchthati € I',s ~; s'} below wheresp is a global pointer to the next available partition and
4: return Y N Gg; m the number of parallel processes. Note tHaand S}, are the ini-

tial states and reachable states of the submadglrespectively.

The parallel procedure far'r¢, reported below, is more complex
because of the fix point computation. Observe thaPi$ AT we  Procedure 14M ERGE_PARA(k, ¢, sp)

1S, <01, <0

Procedure 13P_SAT¢c (¢, T, k, Si) for Cro 2: repeat
1. Y, < P.SAT(—¢); 3. if sp <mthenj < sp;sp < sp+ 1;endif
2: repeat 4 I, <1, UI;; S, < S, UREACH(I;);
3. Y <« (; F, < FALSE; 5: until sp > m
4: forj=1tomdoY < Y UYj;end for 6: CHECKy(M}, ¢);
5. repeat
? é( <Y S, 13 € X and3i € T h thats ~. s/} The procedureSIMPLE_PARA(k, ¢, sp) is a special case of
o untl x Egé k| 3s" € Xand3i € Dsuchthak ~i s}y ppap pARA(K, ¢, sp) such thatm — .
o if Y, — Y then F, < TRUE: elseY, < Y- end if In many cases, especially when the length of the formuiia

short, the time to generate the state space is predominatfiein
overall model checking time. However, the time spent penfog

P_S AT, is at times non-negligible. In some of these caBeS AT,

runs faster on a number of small OBDDs than on a single large on
even taking into count the extra synchronisations needked.pro-
cedureFULL_PARA(k, ¢, sp), reported below, is an extension of
need to compute a double fix point. In fact, eachkiRgalculates set A/ ERGE_PARA where sets of reachable states are not merged, in
Y. of states in whichy is not satisfied and broadcasts it to other PPs.gn attempt to exploit the considerations above. Note Ehaind S},

Following this, and givers;, andY = [j Y;, each PR: computes ~ are the initial and reachable states of the submadglrespectively.
j=1
the set of state¥,, C S in whichCr¢ is not satisfied. If there exists Procedure 1ISFULL_PARA(k, ¢, sp)
a PPk (1 < k < m) such that}, # Y}, then all PPs assigi; to 1T t<=0:
Yy, rebroadcast’,, and re-computé’y. This iteration is repeated 5. rgpeat
until Yy, = Yy forall 1 < k < m. Since we only deal with systems 3. if 5 < then j < sp; sp < sp + 1; end if
with finite statesP_SATc(¢, T, k, Sk) eventually terminates. 4 tet+ 11 < 1; St < REACH(IL,);
The parallel Procedures 8, 9, and 10 are integrated into Pro-s. yntil sp > m
cedure 7 thereby defining a parallel approach to verifyind KT 4. for j = 1tot do CHECK, (M, ¢); end for
formulae on IS models. It can be shown by induction that all
P_.CHECK (M, ¢) return the correct set of states.

10: F < TRUE;

11: for j =1tomdo F < F A Fj; end for
12: until FF = TRUE

13: return =Y N Sk;

Lastly, in order to demonstrate the impact of model checkiray
Theorem 1(Soundness and completenes§jiven a CTLK formula  cedures on OBDDs of different sizes, we also explore a final pr
¢, m partitions of initial states!, ..., I, and corresponding sets cedure, that we call EMI_PARA(k, ¢). Procedure 16 is a sim-
of reachable states, ..., Sm, we have that’_ CHECK (M, $)  plification of SIMPLE_PARA(k, ). In SEMI_PARA(k, ),
ifand only ifCH EC K(M, ¢). PP 1 collectsS; from all other PPs, and then constructs the



set S. Then it executes the sequential model checking procedurgvherecven represents an even number of cryptographers claiming
CHECK (M, ¢). Other PPs terminate when they send tigirto that the two coins fell on the same side andd; represents that the

PP 1. bill was paid by the-th cryptographer. The set of initial states was
splitinto V + 1 partitions for MERGE- and FULL-PARA. We found
Procedure 165SEMI_PARA(k, ¢) the following results.
1. S < REACH(Ik),
2: if k = 1then Table 1. \Verification results for the dining cryptographers scemari
3 S<0;
4 forj=1tomdoS < 5US;; endfor N | States Seq| Semi| Simple | Merge | Ful
5. CHECK(M,¢); 10 [ 45056 21s 1Is 12s 65 5s
6: end if 20MB 67MB 69MB 60MB 58MB
14 | 9.8x10° 128s 26s 56s 28s 15s
) 51MB 91IMB 99MB 83MB 84MB
We analyse the performance of these variants below. 18 | 2.0x107 160s 140s 186s 21s 48s
55MB | 174MB | 159MB 82MB 96MB
22 | 3.9x108 2098s 6783s 6622s 85s 85s
5 Experiments 127MB | 357MB | 353MB | 126MB | 149MB
26 | 7.2x107 365s 161s 184s 58s 55s
We implemented the different model checking algorithmsented T 58MB | 176MB | 1/0MB | 11/MB | 164MB
. . 30 | 1.3x10 2823s | 12771s| 12009s 160s 496s
in Section 4 on top of MCMAS [9], an open-source model checker T05EMB | 227MB | 412MB | T76MB | 205MB

for temporal-epistemic logic. MCMAS was the natural choéeeit
already supports the semantics of Interpreted SystemsKGPECI-  c5rq games [5].Here we used the formula presented in [5] for our
fication languages, and performs OBDD operations by meatieof ;qq;s:
efficient CUDD_ library [17]. In a MCMAS model, ea_ch agent hgs a AG (allredl — Kpayer1(AF winl)),
set of local variables and a local state is an evaluationesetvari- o o _
ables. A global state is an evaluation over all variablesiénsystem. 1 he specification states that it is always the case that yiepla has
The set of initial states is specified by a Boolean expressiar only red cards, then he knows that eventually he will win theng.
variables, i.e., any global state that satisfies the exjoress an ini- The initial states are partitioned based on the possiblieebof each
tial state. player’s first card. The number of partitions(®& — 1) N, whereN

To allow parallel model checking in a model, we only need to re IS the number of total cards.

organise the expression for the initial states. The newessgion is of
m o o Table 2. Verification results for the card games example.
the formes A (\/ e;). Any global states satisfying A ey, is in par-

j=1

tition I, (1 < k < m)for FULL_.PARAandMERGE_PARA.

- i N States Seq Semi | Simple | Merge Full
For SIMPLE_PARA and SEMI_PARA, partition I, is con- 8 8x10% 1s 1s 1s 1s 1s
structed ags A (€(k—1)x (654 1)+1 V- - - V €ha(s,41)) TOr 1 < k < 61, 13MB | 48MB | 48MB | 54MB | 54MB
Of €5 A (€(k—1)soa46,+1 V - -+ V Ekssyts,) fOr 61 < k < T where 10 [ 7.4x10° 62s 32s 33s 34s 22s

48MB | 150MB | 140MB | 215MB | 213MB
12 | 2,9x10™0 | 51242s| 15160s| 13974s| 3569s 3960s
14GB| 25GB| 22GB| 1.9GB| 1.9GB

01 = mmodm andde = |m/m].
In order to provide a thorough assessment we tested ourimple
mentation on four examples already used with MCMAS. These ar
the dining cryptographers scenario [2], the card gamesxainple, . .
the NSPK protocol [12], and the muddy children puzzle [6]. &% NSPK protocol [12]. In this examp!e Wwe ran exper!ments one
fer to the cited publications and MCMAS's documentationrfare {2’ 3,4} number of agents, resp(_actl\_/ely, together me L)n par-
details. The experiments were performed on an AMD Pheno)n(tmt't'ons' The CTLK formulae verified in each case are listelble
9600B Quad-Core Processor with 8GB memory running Fedora 1z AG
x86.64 Linux (kernel 2.6.31.5-127). Four parallel threads wgre- 3. AGQ
erated for all the examples. 4. AG
We found that in all examples the overall memory consump- AG
tion was often three or four times higher than that in the jolbl
available MCMAS. This was entirely expected as each thread ¢ The first formula says that whenever agent 2 terminates, bergkn
ates an independent BDD manager. The experiments were teeantthat he and agent 3 agree on the protocol variables. The dermn
check whether we can perform checks faster than on a singte co specifies that globally when agent 3 terminates, he knowsHaa
The tables below report the running time (in seconds) and memagrees with either agent 1 or agent 2 on the protocol vasable
ory (in MBs) for the examples discussed. Note that Seq reptes  Muddy children [6]. The formula verified on this example is
sequential model checking procedure, and Semi (Simplegdler
and Full respectively) represents SERARA(SIMPLEPARA,  AG(((Kchitavmuddyl)V (Kchiar—~muddyl)) — saysknowsl),
MERGE_PARA and FULLPARA respectively).
Dining cryptographers [2]. In this example, we checked the follow-
ing common knowledge formula specification

i2_end — K;2 agree_i2_i1).

13_end — K;3(agree_i3_il V agree_i3_i2)).
13-end — K;3(agreei3-il V agree_i3_i2)).
t4_end — Kia(agreeidil V agree_id_i2)).

—~ e~~~

specifying that whenever child 1 knows whether or not he haddy
forehead, he will announce that he knows this. The initetlest were
partitioned into 8 disjunctive groups.

The results above demonstrate that the parallel algoritbfns

AG(even — CF(/\ ~paidi)), fer good performance in the first three examples. The vetidica



Table 3. \Verification results for the NSPK protocol.
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