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tIn many ma
hine learning settings, labeled examples are di�
ult to 
olle
t whileunlabeled data are abundant. Also, for some binary 
lassi�
ation problems, positiveexamples whi
h are elements of the target 
on
ept are available. Can these additionaldata be used to improve a

ura
y of supervised learning algorithms? We investigatein this paper the design of learning algorithms from positive and unlabeled data only.Many ma
hine learning and data mining algorithms, su
h as de
ision tree indu
tionalgorithms and naive Bayes algorithms, use examples only to evaluate statisti
alqueries (SQ-like algorithms). Kearns designed the Statisti
al Query learning modelin order to des
ribe these algorithms. Here, we design an algorithm s
heme whi
htransforms any SQ-like algorithm into an algorithm based on positive statisti
alqueries (estimate for probabilities over the set of positive instan
es) and instan
estatisti
al queries (estimate for probabilities over the instan
e spa
e). We provethat any 
lass learnable in the Statisti
al Query learning model is learnable frompositive statisti
al queries and instan
e statisti
al queries only if a lower bound onthe weight of any target 
on
ept f 
an be estimated in polynomial time. Then, wedesign a de
ision tree indu
tion algorithm POSC4.5, based on C4.5, that uses onlypositive and unlabeled examples and we give experimental results for this algorithm.In the 
ase of imbalan
ed 
lasses in the sense that one of the two 
lasses (say thepositive 
lass) is heavily underrepresented 
ompared to the other 
lass, the learningproblem remains open. This problem is 
hallenging be
ause it is en
ountered inmany real-world appli
ations.Key words: PAC learning, Statisti
al Query model, Semi-supervised Learning,Data Mining? This resear
h was partially supported by: "CPER 2000-2006, Contrat de Planétat - région Nord/Pas-de-Calais: axe TACT, projet TIC"; fonds européens FEDERPreprint submitted to Elsevier Preprint 26 August 2002



1 Introdu
tionThe �eld of Data Mining (sometimes referred to knowledge dis
overy in data-bases) addresses the question of how best to use various sets of data to dis
overregularities and to improve de
isions. The learning step is 
entral in the datamining pro
ess. A �rst generation of supervised ma
hine learning algorithms(e.g. de
ision tree indu
tion algorithms, neural network learning methods,bayesian learning methods, logisti
 regression, ...) have been demonstratedto be of signi�
ant value in a Data Mining perspe
tive and they are nowwidely used and available in 
ommer
ial produ
ts. But these ma
hine learn-ing methods are issued from non parametri
 statisti
s and suppose that theinput sample is a quite large set of independently and identi
ally distributed(i.i.d.) labeled data des
ribed by numeri
 or symboli
 features. But, in a DataMining or a Text Mining perspe
tive, one has to use histori
al data that havebeen 
olle
ted from various origins and moreover, i.i.d. labeled data may beexpensive to 
olle
t or even unavailable. On the other hand, unlabeled dataproviding information about the underlying distribution or examples of oneparti
ular 
lass (that we shall 
all the positive 
lass) may be easily available.Can this additional information help to learn? Here, we address the issue ofdesigning 
lassi�
ation algorithms that are able to utilize data from diversedata sour
es: labeled data (if available), unlabeled data, and positive data.Along this line of resear
h, there has re
ently been signi�
ant interest in semi-supervised learning, that is the design of learning algorithms from both labeledand unlabeled data. In the semi-supervised setting, one of the questions is: 
anunlabeled data be used to improve a

ura
y of supervised learning algorithms?Intuitively, the answer is positive be
ause unlabeled data must provide someinformation about the hidden distribution. Nevertheless, it seems that thequestion is 
hallenging from a theoreti
al perspe
tive as well as a pra
ti
alone. A promising line of resear
h is the 
o-training setting �rst de�ned in [3℄.Supposing that the features are naturally divided into two disjoint sets, the
o-training algorithm builds two 
lassi�ers, and ea
h one of these two is usedto label unlabeled data for the other. In [3℄, theoreti
al results are proved,learning situations for whi
h the assumption is true are des
ribed in [14℄,experimental results may be found in [3℄ and [15℄. See also [8℄ for anotherapproa
h of the 
o-training setting. Other approa
hes in
lude using the EMalgorithm [16℄, and using transdu
tive inferen
e [11℄. A NIPS'99 workshopand a NIPS'00 
ompetition were also organized on using unlabeled data forsupervised learning.In this paper, we 
onsider binary 
lassi�
ation problems. One of the two 
lasses"TIC - Fouille Intelligente de données - Traitement Intelligent des Connaissan
es"OBJ 2-phasing out - 2001/3 - 4.1 - n 3" 2



is 
alled the positive 
lass. We are interested in the following questions:� How 
an unlabeled data and positive data be used to improve the a

ura
yof supervised learning algorithms?� How 
an learning algorithms from unlabeled data and positive data be de-signed from previously known supervised learning algorithms?First, let us justify that the problem is relevant for appli
ations. We argue that,in many pra
ti
al situations, elements of the target 
on
ept may be abundantand 
heap to 
olle
t. For instan
e, 
onsider one diagnosis of diseases: in orderto obtain an i.i.d. sample of labeled examples, it is ne
essary to systemati
allydete
t the disease on a representative sample of patients and this task may bequite expensive (or impossible). On the other hand, it may be easy to 
olle
tthe medi
al �les of patients who have the disease. Also, unlabeled data areany pool of patients possibly having the disease.Se
ond, let us note that many ma
hine learning algorithms as de
ision treelearning algorithms and Bayesian learning algorithms only use examples toestimate statisti
s. In other words, many ma
hine learning algorithms maybe 
onsidered as Statisti
al Query (SQ) learning algorithms. Thus we areinterested in general s
hemes whi
h transform supervised SQ-like learning al-gorithms into learning algorithms from both unlabeled data and positive data.In a preliminary paper [6℄, we have given eviden
e � with both theoreti
al andempiri
al arguments � that positive data and unlabeled data 
an boost a

u-ra
y of SQ-like learning algorithms. It was noted that learning with positiveand unlabeled data is possible as soon as the weight of the target 
on
ept (i.e.the ratio of positive examples) is known by the learner. An estimate of theweight 
an be obtained either by an extra-ora
le (say for a similar problem)or from a small set of labeled examples. In the present paper, we 
onsider themore general problem where only positive data and unlabeled data are avail-able. We present a general s
heme whi
h transforms any SQ-like supervisedlearning algorithm L into an algorithm PL using only positive data and un-labeled data. We prove that PL is a learning algorithm as soon as the learneris given a

ess to a lower bound on the weight of the target 
on
ept. It re-mains open whether it is possible to design an algorithm from positive dataand unlabeled data from any SQ learning algorithm in the general 
ase.The theoreti
al framework is presented in Se
tion 2. Our learning algorithm isde�ned and proved in Se
tion 3, some 
onsequen
es about the equivalen
e ofmodels are also given. It is applied to tree indu
tion and experimental resultsare given in Se
tion 4. 3



2 Learning models2.1 Learning Models from Labeled DataFor ea
h n � 1, Xn denotes an instan
e spa
e on n attributes. A 
on
ept fis a subset of some instan
e spa
e Xn or equivalently a f0; 1g-valued fun
tionde�ned on Xn. For ea
h n � 1, let Cn � 2Xn be a set of 
on
epts. ThenC = Sn�1 Cn denotes a 
on
ept 
lass over X = Sn�1Xn. The size of a 
on
eptf is the size of a smallest representation of f for a given representation s
heme.An example of a 
on
ept f is a pair hx; f(x)i, whi
h is positive if f(x) = 1 andnegative otherwise. Let D be a distribution over the instan
e spa
e Xn, for asubset A of Xn, we denote by D(A) the probability of the event [x 2 A℄. For asubset A of Xn su
h that D(A) 6= 0, we denote by DA the indu
ed distributionover A. For instan
e, for a 
on
ept f over Xn su
h that D(f) 6= 0 and for anyx 2 Xn, Df (x) = D(x)=D(f) when f(x) = 1 and Df(x) = 0 otherwise. Let fand g be 
on
epts over the instan
e spa
e Xn, we denote by f the 
omplementof the set f in Xn and by f�g the set f�g = fx 2 Xn j f(x) 6= g(x)g.Let f be a target 
on
ept over X in some 
on
ept 
lass C. Let D be the hiddendistribution de�ned over X. In the PAC model [18℄, the learner is given a

essto an example ora
le EX(f;D) whi
h returns an example hx; f(x)i drawnrandomly a

ording to D at ea
h 
all. A 
on
ept 
lass C is PAC learnableif there exist a learning algorithm L and a polynomial p(:; :; :; :) with thefollowing property: for any n and any f 2 Cn, for any distribution D on Xn,and for any 0 < � < 1 and 0 < Æ < 1, if L is given a

ess to EX(f;D)and to inputs � and Æ, then with probability at least 1 � Æ, L outputs ahypothesis 
on
ept h satisfying error(h) = D(f�h) � � in time boundedby p(1=�; 1=Æ; n; size(f)). In this paper, we always suppose that the value ofsize(f) is known by the learner. Re
all that if size(f) is not given then thehalting 
riterion of the algorithm is probabilisti
 [9℄. Also, for many 
on
ept
lasses the natural de�nition of size(f) is already bounded by a polynomialin n.One 
riti
ism of the PAC model is that it is a noise free model. Thereforeextensions in whi
h the label provided with ea
h random example may be
orrupted with random noise were studied. The 
lassi�
ation noise model (CNmodel for short) was �rst de�ned by Angluin and Laird [1℄. A variant of theCN model, namely the 
onstant-partition 
lassi�
ation noise model (CPCNmodel for short) has been de�ned by De
atur [5℄. In this model, the labeledexample spa
e is partitioned into a 
onstant number of regions, ea
h of whi
hmay have a di�erent noise rate. An interesting example is the 
ase where therate of false positive examples di�ers from the rate of false negative examples.We only de�ne this restri
ted variant of the CPCN model. The noisy ora
le4



EX�+;��(f;D) is a pro
edure whi
h, at ea
h 
all, draws an element x of Xna

ording to D and returns (i) (x; 1) with probability 1 � �+ and (x; 0) withprobability �+ if x 2 f , (ii) (x; 0) with probability 1 � �� and (x; 1) withprobability �� if x 2 f . Let C be a 
on
ept 
lass over X. We say that Cis CPCN learnable if there exist a learning algorithm L and a polynomialp(:; :; :; :; :) with the following property: for any n and any f 2 Cn, for anydistribution D on Xn, and for any 0 � �+; �� < 1=2 and 0 < �; Æ < 1, if L isgiven a

ess to EX�+;��(f;D) and to inputs � and Æ, then with probability atleast 1�Æ, L outputs a hypothesis 
on
ept h 2 C satisfyingD(f�h) � � in timebounded by p(1=�; 1=Æ; 1=
; size(f); n) where 
 = minf1=2� �+; 1=2� ��g.Many ma
hine learning algorithms only use examples in order to estimateprobabilities. This is the 
ase for indu
tion tree algorithms su
h as C4.5 [17℄and CART [4℄. This is also the 
ase for highly pra
ti
al Bayesian learningmethod as the naive Bayes 
lassi�er. Kearns de�ned the statisti
al query model(SQ model for short) in [12℄. The SQ model is a spe
ialization of the PACmodel in whi
h the learner forms its hypothesis solely on the basis of estimatesof probabilities. A statisti
al query over Xn is a mapping � : Xn � f0; 1g !f0; 1g asso
iated with a toleran
e parameter 0 < � � 1. In the SQ modelthe learner is given a

ess to a statisti
al ora
le STAT (f;D) whi
h, at ea
hquery (�; �), returns an estimate of D(fx j �(hx; f(x)i) = 1g) within a

ura
y� . Let C be a 
on
ept 
lass over X. We say that C is SQ learnable if thereexist a learning algorithm L and polynomials p(:; :; :); q(:; :; :) and r(:; :; :) withthe following property: for any f 2 C, for any distribution D over X, andfor any 0 < � < 1, if L is given a

ess to STAT (f;D) and to input �, then,for every query (�; �) made by L, the predi
ate � 
an be evaluated in timeq(1=�; n; size(f)), and 1=� is bounded by r(1=�; n; size(f)), L halts in timebounded by p(1=�; n; size(f)) and L outputs a hypothesis h 2 C satisfyingD(f�h) � �.We slightly modify the statisti
al ora
le STAT (f;D). Let f be the target
on
ept and let us 
onsider a statisti
al query � made by a statisti
al querylearning algorithm L. The statisti
al ora
le STAT (f;D) returns an estimate
D� of D� = D(fx j �(hx; f(x)i) = 1g) within some given a

ura
y. We maywrite:D� = D(fx j �(hx; 1i) = 1 ^ f(x) = 1g) +D(fx j �(hx; 0i) = 1 ^ f(x) = 0g)= D(fx j �(hx; 1i) = 1g \ f) +D(fx j �(hx; 0i) = 1g \ f)= D(B \ f) +D(C \ f)where the sets B and C are de�ned by:B = fx j �(hx; 1i) = 1g and C = fx j �(hx; 0i) = 1g:5



Therefore, we 
onsider a statisti
al ora
le whi
h, at ea
h query (A; �), returnsestimates for probabilitiesD(f\A) andD(f\A) within a

ura
y � , where f isthe target 
on
ept, f its 
omplement and A any subset � for whi
h membershipis de
idable in polynomial time � of the instan
e spa
e. It should be 
lear forthe reader that this te
hni
al modi�
ation does not 
hange the SQ learnable
lasses.It is 
lear that a

ess to the example ora
le EX(f;D) being given, it is easyto simulate the statisti
al ora
le STAT (f;D) by drawing a su�
iently largeset of labeled examples. Moreover, there is a general s
heme whi
h transformsany SQ learning algorithm into a PAC learning algorithm. It is also provedin [12℄ that the 
lass of parity fun
tions is learnable in the PAC model but
annot be learned from statisti
al queries.It has been shown by Kearns that any 
lass learnable from statisti
al queryis also learnable in the presen
e of 
lassi�
ation noise [12℄. Following theresults by Kearns, it has been proved by De
atur [5℄ that any 
lass learnablefrom statisti
al queries is also learnable in the presen
e of 
onstant-partition
lassi�
ation noise. The proof uses the hypothesis testing property : a hypothesiswith small error 
an be sele
ted from a set of hypotheses by sele
ting the onewith the fewest errors on a set of CPCN 
orrupted examples. If we 
onfuse, inthe notations, the name of the model and the set of learnable 
lasses, we 
anwrite the following in
lusions:SQ � CPCN � CN � PAC (1)SQ � PAC (2)To our knowledge, the equivalen
es between the models CN and SQ or betweenthe models CN and PAC remain open despite re
ent insights [2℄ and [10℄.2.2 Learning Models from Positive and Unlabeled DataThe learning model from positive examples (POSEX for short) was �rst de�nedin [7℄. The model di�ers from the PAC model in the following way: the learnergets information about the target fun
tion and the hidden distribution fromtwo ora
les, namely a positive example ora
le POS(f;D) and an instan
eora
le INST (D) instead of an example ora
le EX(f;D). At ea
h request bythe learner, the instan
e ora
le INST (D) returns an element of the instan
espa
e X, i.e. an unlabeled example, a

ording to the hidden distributionD. Atea
h request by the learner, the positive example ora
le POS(f;D) returnsa positive example a

ording to the hidden distribution Df . We have thefollowing result:Proposition 1 [7℄ Any 
lass learnable in the CPCN model is learnable in the6



POSEX model.PROOF. The proof is simple and as it may help to understand the proof ofthe main algorithm of the present paper, we sket
h it below.Let C be a CPCN learnable 
on
ept 
lass, let L be a learning algorithm for Cin the CPCN model, let f be the target 
on
ept, let D be a distribution overthe instan
e spa
e and let us suppose that D(f) 6= 0. We must show how L
an be used to learn from the ora
les POS(f;D) and INST (D).Run L. At ea
h 
all of the noisy ora
le:� with probability 2=3, 
all POS(f;D) and keep the positive label� with probability 1=3, 
all INST (D) and label the example as negative.It 
an easily be shown that this is stri
tly equivalent 
alling the noisy ora
leEX�+;��(f;D0) where:
D0(x) = 8><>: D(x)3 if f(x) = 0D(x)+2Df (x)3 if f(x) = 1�+ = D(f)2 +D(f)�� = 0Note that �+ � 1=3 < 1=2. And as for any subset A of the instan
e spa
e,we have D(A) � 3D0(A), it is su�
ient to run the algorithm L with inputa

ura
y �=3 and input 
on�den
e Æ to output with 
on�den
e greater than1� Æ a hypothesis whose error rate is less than �.The learning model from positive queries (POSQ for short) was also de�nedin [7℄. In the POSQ model, there are a positive statisti
al ora
le PSTAT (f;D)whi
h provides estimates for probabilities Df (A) for any subset A of theinstan
e spa
e within a given toleran
e and an instan
e statisti
al ora
leISTAT (D) whi
h provides estimates for probabilities D(A) for any subsetA of the instan
e spa
e within a given toleran
e. The de�nition of a POSQlearnable 
lass is similar to the de�nition of a SQ learnable 
lass: the ora
leSTAT (f;D) is repla
ed by the two ora
les PSTAT (f;D) and ISTAT (D).The POSQ model is weaker than the SQ model as there is no dire
t way toobtain an estimate of the weight D(f) of the target 
on
ept. However, if we
an get su
h an estimate, both models be
ome equivalent. Indeed, statisti
al7



queries 
an be 
omputed from instan
e queries and positive statisti
al queriesas soon as the weight of the target 
on
ept is known be
ause of the followingequations: D̂(f \ A) = D̂f (A)� D̂(f)D̂(f \ A) = D̂(A)� D̂(f \ A) (3)So, any 
lass learnable in the SQ model is learnable in the POSQ model assoon as the learner is given a

ess to the weight of the target 
on
ept or
an 
ompute it from the positive statisti
al ora
le and the instan
e statisti
alora
le. This is formalized in the following result:Proposition 2 [7℄ Let C be a 
on
ept 
lass su
h that the weight of any target
on
ept 
an be estimated in polynomial time within any given toleran
e. If Cis SQ learnable then C is POSQ learnable.We 
an summarize all the results with the following in
lusions:POSQ � SQ � CPCN � POSEX � PAC (4)CPCN � CN � PAC (5)SQ � POSEX (6)The inequality between SQ and POSEX holds be
ause the 
lass of parityfun
tions is POSEX learnable but not SQ learnable. Equivalen
es betweenPOSQ and SQ and between POSEX and PAC remain open.3 Learning Algorithms from Positive and Unlabeled ExamplesWe have already noti
ed that in prati
al Data Mining and Text Mining sit-uations, statisti
al query-like algorithms, su
h as C4.5 or naive Bayes, arewidely used. It is straightforward to see how a statisti
al query 
an be eval-uated from labeled data. In a similar way, positive and instan
e statisti
alqueries 
an easily be evaluated from positive and unlabeled data. So, in orderto adapt 
lassi
al learning algorithms to positive and unlabeled examples, we
an show how SQ learning algorithms 
an be modi�ed into POSQ learningalgorithms.In [6℄, we have studied the 
ase where the weight of the target 
on
ept is eithergiven by an ora
le or evaluated from a small set of labeled examples. In this8




ase, Equations 3 and Proposition 2 show how the transformation of the SQalgorithm 
an be a
hieved. We now 
onsider the more general problem whereno information on the weight of the target 
on
ept is given to the learner.3.1 A Generi
 learning algorithm from positive statisti
al queries and in-stan
e statisti
al queriesIn this se
tion, we provide a general s
heme whi
h transforms any SQ-likealgorithm into a POSQ-like algorithm.Let us 
onsider a 
on
ept 
lass C learnable in the SQ model by a learningalgorithm L, and let 
 be a positive real number. Let us re
all that we supposethat size(f) is known by the learner. Also note that for most 
on
ept 
lassesC learnable from statisti
al queries, the size of every target 
on
ept f 2 Cnis bounded by a polynomial in n. We design a POSQ learning algorithm PLbased on the algorithm L whi
h learns any target 
on
ept f in C su
h thatD(f) � 
. A 
onsequen
e of this result is that whenever a lower bound onthe weight of the target 
on
ept is known a priori, every SQ learnable 
lass isPOSQ learnable. First, we give some 
omments on the algorithm PL whi
h isdes
ribed in Figure 1 and se
ond, we prove its 
orre
tness in Se
tion 3.2.The algorithm PL is based on a statisti
al query learning algorithm L and isgiven a

ess to a lower bound 
 on the weight of the target 
on
ept. PL is
omposed of two stages: in the �rst stage, a set of hypotheses is 
onstru
ted;in the se
ond stage, a hypothesis is sele
ted in the hypothesis set.In the �rst stage, the algorithm PL iterates over larger guesses for D(f).At ea
h guess, the statisti
al query learning algorithm is 
alled. But onlypositive and instan
e queries are available, thus when L makes a statisti
alquery, Equations 3 are used with the 
urrent estimate p̂i of D(f) togetherwith the estimates returned by the ora
les PSTAT (f;D) and ISTAT (D): atea
h statisti
al query (A; �), return D̂(f \ A) = D̂f(A)� p̂i and D̂(f \ A) =D̂(A)� D̂(f \A) where D̂f (A) is the estimate given by the positive statisti
alora
le PSTAT (f;D) with set A within toleran
e �min=4 and where D̂(A) isthe estimate given by the instan
e statisti
al ora
le with set A within toler-an
e �min=4. Note that the simulation of STAT (f;D) may produ
e erroneousresults when the estimate p̂i of D(f) is poor. In this 
ase, the behavior of thealgorithm L is not known. Thus we bound the running time of L and outputa default hypothesis.In the se
ond stage, the algorithm PL sele
ts the hypothesis h whi
h minimizesthe quantity ê(h). Minimizing ê(h) is equivalent to minimizing an estimate ofthe error rate a

ording to the noisy ora
le de�ned in the proof of Proposi-9



POSQ learning algorithm PLparameters: SQ learning algorithm L, 
 2 (0; 1); let p (respe
tively r)be the polynomial whi
h bounds the running time of L (respe
tively theinverse of the toleran
e needed for queries)input: �Constru
tion of a hypothesis setSet �0 to 12 � 
2�
 � �, �min to 1r(1=�;n;size(f)) , N to d 2�min e, � to 12Nfor i = 1 to Nthe 
urrent estimate of D(f) is p̂i = (2i� 1)�run L with a

ura
y �0 using ora
les PSTAT (f;D), ISTAT (D)within toleran
e �min4 and use Equations 3 ;if the running time ex
eeds p(1=�0; n; size(f))then let hi be a default hypothesiselse let hi be the output of LHypothesis testing algorithmfor i = 1 to N
all PSTAT with input hi within toleran
e �12
all ISTAT with input hi within toleran
e �12set ê(hi) to 2D̂f(hi) + D̂(hi)output: h = argminhi ê(hi)Fig. 1. Learning algorithm from positive and unlabeled queriestion 1: with probability 2=3 draw a positive example and label it as positiveand with probability 1=3 draw an unlabeled example and label it as negative.Indeed, if an unlabeled example is drawn, the probability of error is equal toD(h). And if a positive example is drawn, the probability of error is equal toDf(h). That is, the error rate using the noisy ora
le is (2Df(h) +D(h))=3.Minimizing ê(h) 
an also be seen as: 
hoosing a hypothesis h approximately
onsistent with positive data � when minimizing the �rst term of the sum2D̂f(hi)� while avoiding over-generalization � when minimizing the se
ondterm D̂(hi).Note that as the statisti
al ora
les PSTAT (f;D) and ISTAT (D) 
an be sim-ulated by using positive and unlabeled examples. Consequently the previouss
heme allows to transform any SQ-like learning algorithm into an algorithmusing positive and unlabeled examples only.3.2 Proof of the algorithmLemma 3 There exists i 2 f1; : : : ; Ng su
h that error(hi) � �0.10



PROOF. There exists i su
h that D(f) 2 [p̂i� �; p̂i +�℄ sin
e, by de�nitionof p̂i, Si[p̂i��; p̂i+�℄ = [0; 1℄. For that value, p̂i is an estimate of D(f) withintoleran
e �min4 sin
e � � �min4 . For all queries made by L, the ora
les PSTATand ISTAT are 
alled with toleran
e �min4 and Equations 3 are used. It iseasy to prove that estimates for algorithm L are made within toleran
e �min.Consequently, by hypothesis on L, L outputs some hi su
h that error(hi) � �0.Lemma 4 Let f be the target 
on
ept, let g be some hypothesis and let � �2D(f). We haveerror(g) � e�(g)�D(f) � error(g) � �D(f)D(f) !where error(g) = D(f�g) is the (
lassi
al) error and e�(g) = �Df(g)+D(g).PROOF. We haveerror(g) = D(f \ g) +D(g \ f)= D(g)�D(f) + 2D(f \ g)= e�(g)�D(f) + 2D(f \ g)� �Df(g)= e�(g)�D(f) +D(f \ g) 2� �D(f)!e�(g)�D(f) = error(g) +D(f \ g)� � 2D(f)D(f)As � � 2D(f) and D(f \ g) � error(g), we haveerror(g) � e�(g)�D(f) � error(g) "1 + � � 2D(f)D(f) # = error(g)� �D(f)D(f)Note that the learner is not given a

ess to an upper bound on D(f). Theprevious lemma holds if � � 2D(f), thus we set � to 2 and we simply de-note e2(h) by e(h). That is we have: e(g) = 2Df(g) + D(g) and the readershould note that in the hypothesis testing stage of the algorithm PL we usean estimate ê(h) of e(h) where h is a hypothesis in the hypothesis set.Lemma 5 Let h and h0 be two hypotheses su
h that error(h) � 12 � 
2�
 � �and error(h0) > �, then e(h0)� e(h) > �2 .PROOF. 11



Using the previous lemma � with � = 2 �, we have:e(h0)� e(h) � error(h0)� error(h) 2�D(f)D(f) ! :As the fun
tion r(x) = 2�xx is de
reasing and D(f) � 
, we havee(h0)� e(h) � error(h0)� error(h) 2� 

 ! :By hypothesis on h and h0,error(h) < 12  
2� 
! error(h0);so e(h0)� e(h) > error(h0)2 > �=2:Proposition 6 The output hypothesis satis�es error(h) � � and the runningtime is polynomial in 1=�, n, l and 1=
.PROOF. All estimates ê(hi) of e(hi) are done within toleran
e �4 and Lem-mas 3 and 5 ensure that the output hypothesis satis�es error(h) � �.The number of hypotheses is N whi
h is linear in 1=�min. We have supposedfor sake of 
larity in the de�nition of the algorithm that �min was �xed andknown by the learner. A
tually, �min is polynomial in the input a

ura
y of L,therefore �min is polynomial in �0 that is also polynomial in � and 
. It is easyto verify that all queries are made within a toleran
e polynomial in � and 
.3.3 Equivalen
e of the SQ and POSQ modelsWhether or not any SQ algorithm 
an be transformed into a POSQ algorithmremains an open question. It has been proved in [7℄ that this transformationis possible when the weight of the target 
on
ept 
an be estimated from theora
les PSTAT (f;D) and ISTAT (D) in polynomial time. In this paper, weimprove this result by showing that any SQ algorithm 
an be transformed intoa POSQ algorithm when a lower bound on the weight of the target 
on
ept isgiven to the learner. However, the running time of the algorithm is polynomialin the inverse of this lower bound.Let us 
onsider a 
on
ept 
lass C whi
h is SQ learnable. We say that C satis�esthe property Lowerbound if there exists an algorithmW whi
h, for any f in C,12



for any distribution D on X, with input � and given a

ess to PSTAT (f;D)and ISTAT (D)
outputs 8>>>>><>>>>>: yes if D(f) < �2 ;no if D(f) > �;? if �2 � D(f) � �in time polynomial in 1=�. Then we have the following result:Proposition 7 Any SQ learnable 
lass whi
h satis�es Lowerbound is POSQlearnable.PROOF. Consider the following algorithm:input: �if W outputs yesoutput fun
tion 0elserun the POSQ learning algorithm with parameter 
 = �2 and input �It is easy to prove that this algorithm is a learning algorithm from positiveand instan
e statisti
al queries using Proposition 6 and the de�nition of theproperty Lowerbound.Note that proving the property Lowerbound for every SQ learnable 
on
ept
lass would imply the equality between SQ and POSQ.4 De
ision Tree Learning Algorithms from Positive and UnlabeledExamplesIndu
tion tree algorithms are widely used for Data Mining purposes. Thesealgorithms are �statisti
al query like� sin
e they only use examples in order toestimate probabilities. In the �rst part of this se
tion, we re
all the notionsof entropy and information gain on whi
h C4.5 is based. In the se
ond part,we introdu
e C4.5POSUNL, a learning algorithm based on C4.5 �rst de�nedin [6℄, where the statisti
al queries required by C4.5 are estimated with thehelp of Equations 3, an estimate of the weight of the target 
on
ept being givenas input. In the third part of this se
tion, we present POSC4.5 an indu
tiontree learning algorithm from positive data and unlabeled data only. In the13



last part of this se
tion, we give experimental results for POSC4.5 both onarti�
ial problems and on two ben
hmarks 
hosen from the UCI Ma
hineLearning Database.4.1 Top down de
ision tree algorithmsMost algorithms for tree indu
tion use a top-down, greedy sear
h through thespa
e of de
ision trees. The splitting 
riterion used by C4.5 [17℄ is based ona statisti
al property, 
alled information gain, itself based on a measure frominformation theory, 
alled entropy. We only 
onsider binary problems. Givena sample S of some target 
on
ept, the entropy of S isEntropy(S) = �p0 log2 p0 � p1 log2 p1 (7)where pi is the proportion of examples in S belonging to the 
lass i. The infor-mation gain is the expe
ted redu
tion in entropy by partitioning the samplea

ording to an attribute test t. It is de�ned asGain(S; t) = Entropy(S)� Xv2V alues(t) NvN Entropy(Sv) (8)where V alues(t) is the set of every possible value for the attribute test t, Nvis the 
ardinality of the set Sv of examples in S for whi
h t has value v andN is the 
ardinality of S.As the information gain 
riterion has a strong bias in favor of tests with manyout
omes, the 
riterion used in C4.5 is the Gain ratio de�ned byGainRatio(S; t) = Gain(S; t)SplitInfo(S; t)where SplitInfo(S; t) = � Xv2V alues(t) NvN log NvN :Let D be the hidden distribution de�ned over the set of instan
es. Let nbe the 
urrent node, let Dn be the �ltered distribution, that is the hiddendistribution D restri
ted to instan
es rea
hing the node n. Let S be the setof training examples asso
iated with the 
urrent node n and let p1 be theproportion of positive examples in S: p1 is an estimate of Dn(f) and p0 is anestimate of Dn(f). 14



4.2 C4.5POSUNL: a top-down indu
tion tree algorithm from positive andunlabeled examples with the help of an estimate of the weight of the target
on
eptRoughly speaking, C4.5POSUNL is a version of C4.5 in whi
h the statisti
alqueries are estimated from positive examples and unlabeled examples by usingEquations 3, an estimate of the weight of the target 
on
ept being given. Thedi�eren
es between C4.5POSUNL and C4.5 are the following:� C4.5POSUNL takes as input:� a set POS of positive examples,� together with a set UNL of unlabeled examples,� together with an estimate D̂(f) of D(f) whi
h is the weight of the target
on
ept.� For the 
urrent node, entropy and gain are 
al
ulated using Equations 7and 8 where, based on Equations 3, the ratios p0 and p1 are given by theequations: p1 = inf ( jPOSnjjPOSj � D̂(f)� jUNLjjUNLnj ; 1)p0 = 1� p1 (9)where POSn is the set of positive examples asso
iated with the node n andUNLn is the set of unlabeled examples asso
iated with the node n;� When the Gain Ratio is used instead of the information gain , split infor-mation SplitInfo is 
al
ulated from unlabeled examples;� The majority 
lass is 
hosen as 0 or 1 a

ording to the values of p0 and p1
al
ulated with equations (9);� Halting 
riteria during the top-down tree generation are evaluated fromunlabeled data;� When pruning trees, 
lassi�
ation errors are estimated with the help ofratios p0 and p1 from (9).4.3 POSC4.5: a top-down indu
tion tree algorithm from positive and unla-beled examples onlyThe learning algorithm POSC4.5 is given in Figure 2. It is based on the theo-reti
al result proved in Se
tion 3. We intend to use the algorithm s
heme PLto transform C4.5. But as C4.5POSUNL 
an already be viewed as a variantof C4.5 whi
h uses positive and unlabeled examples together with an estimateof the target weight, we have dire
tly in
orporated C4.5POSUNL in the PLalgorithm. 15



POSC4.5input: a set POS of positive examples and a set UNL of unlabeled examplesSplit POS and UNL with ratios 2/3, 1/3 into POSL, POST , UNLL and UNLTConstru
tion of a hypothesis setfor i = 1 to 9the 
urrent estimate of D(f) is set to D̂(f) = i10run C4.5POSUNL with input POSL, UNLL and D̂(f) = i10 , and output hiSele
ting the best estimate of D(f)for i = 1 to 9set ê(hi) to 2 jfx2POST jhi(x)=0gjjPOST j + jfx2UNLT jhi(x)=1gjjUNLT jset j to argmini ê(hi)Constru
tion of the �nal hypothesisrun C4.5POSUNL with input POS, UNL and D̂(f) = j10 , and output hFig. 2. POSC4.5: indu
tion tree algorithm from positive and unlabeled examplesAnother di�eren
e between PL and POSC4.5 is that the lower bound 
 is notgiven as input to POSC4.5. Instead, it is impli
itly supposed that the weightof the target 
on
ept is not too small.The algorithm takes as input a set POS of examples of the target 
lass togetherwith a set UNL of unlabeled examples. The algorithm splits the set POS(respe
tively UNL) into two sets POSL and POST (respe
tively UNLL andUNLT ) using the usual values 2=3 and 1=3.The sets POSL and UNLL are used for the 
onstru
tion of the hypothesis set.More pre
isely these sets are used to simulate the positive statisti
al ora
le andthe instan
e statisti
al ora
le. In this stage, we run nine times C4.5POSUNLwith input POSL, UNLL and an estimate D̂(f) of D(f) taking the su

essivevalues 0.1, . . . , 0.9.In the se
ond stage of POSC4.5, i.e, the hypothesis testing algorithm, the setsPOST and UNLT are used to simulate the positive statisti
al ora
le and theinstan
e statisti
al ora
le. In our implementation, we sele
t in POSC4.5 thebest estimate D̂(f) of D(f) a

ording to the minimal estimate ê(h) of e(h)instead of sele
ting the best hypothesis like in PL.The output of POSC4.5 is the output of C4.5POSUNL with input POS, UNLtogether with the best estimate D̂(f) of D(f).16



4.4 Experiments with De
ision ListsA de
ision list over x1; : : : ; xn is an ordered sequen
e L = (m1; b1); : : : ; (mp; bp)of terms, in whi
h ea
h mj is a monomial over x1; : : : ; xn, and ea
h bj 2 f0; 1g.The last monomial is always mp = 1. For any input a 2 f0; 1gn, the value L(a)is de�ned as bj, where j is the smallest index satisfying mj(a) = 1. We only
onsider 1-de
ision list where ea
h monomial is a variable xi or its negationxi. We set p to 11 and n to 20. The 
hoi
e of a target de
ision list f , the 
hoi
eof the weight D(f) and the 
hoi
e of the distribution D are done as follows:� a target de
ision list f is 
hosen randomly;� for any a 2 f0; 1gn, a weight wa is 
hosen randomly in [0; 1);� a normalization pro
edure is applied to the two sets of weights fwa j f(a) =1g and fwa j f(a) = 0g. Thus we get two distributions D1 on f and D2 onf ;� a weight D(f) for the target 
on
ept is 
hosen using a pro
edure that de-pends on the experiment;� D is de�ned by: 8a 2 f0; 1gn, D(a) = D(f)�D1(a) + (1�D(f))�D2(a).In the experiments, we 
ompare C4.5POSUNL and POSC4.5. The algorithmC4.5POSUNL takes as input a set POS of positive examples, a set UNL ofunlabeled examples and an estimate D̂(f) of D(f). The experimental resultsfor C4.5POSUNL depend on the a

ura
y of the estimate D̂(f) of D(f). Thuswe 
onsider two 
ases:� the exa
t value of D(f) is given as input of the learning algorithm. In thefollowing and in the �gures, we denote by C4.5POSUNL(D(f)) this variantof C4.5POSUNL;� the estimate D̂(f) is set to the ratio of positive examples in a (small) setLAB of labeled examples given as input. We denote by C4.5POSUNL(LAB)this variant of C4.5POSUNL. The set LAB is only used for the 
al
ulationof D̂(f).In the experimental results and in the plots, the error rates and target weightsare expressed in per
ent. The size of a set is its 
ardinality.Experiment 1.In order to obtain experimental results on the relative value of examples,we let the number of positive examples vary and we 
ompare POSC4.5,C4.5POSUNL(LAB) and C4.5POSUNL(D(f)). We set D(f) to 0.5, thesize of POS is equal to the size of UNL and ranges from 50 to 1000 by step50, the size of LAB is �xed to 25. For a given size of POS, we iterate 100times the experiment: a target f is drawn, a distribution D is 
hosen, setsLAB, POS and UNL are drawn randomly, we run the three algorithmsand 
al
ulate the error rate of the output hypothesis on a large test set of17



10000 examples. We average the error rates over the 100 experiments. Theresults are given in Figure A.1.The learning algorithmPOSC4.5 performs as well as C4.5POSUNL(D(f))where the exa
t value of D(f) is given to the learner. Thus for this arti�
ialproblem, the results of POSC4.5 whi
h is based on a hypothesis testing al-gorithm are 
onvin
ing. The reader should also note that the two algorithmsPOSC4.5 and C4.5POSUNL(D(f)) outperform C4.5POSUNL(LAB) whi
huses a rough estimate of D(f) (solely based on 25 labeled examples). In this�rst set of experiments, the weight of the target 
on
ept is set equal to0.5. An equal ratio between positive and negative examples is the mostfavourable to POSC4.5. Therefore, in a se
ond set of experiments, we 
on-sider di�erent values for D(f).Experiment 2.The weight D(f) of the target 
on
ept ranges from 0 to 1 by step 0.05.The size of POS is equal to the size of UNL and is set to 1000. The sizeof LAB is �xed to 25. For a given value of D(f), we average the error ratesover 100 experiments. The results are given in Figure A.2.The results are similar: POSC4.5 performs as well as C4.5POSUNL(D(f));POSC4.5 and C4.5POSUNL(D(f)) outperform C4.5POSUNL(LAB). Forthis set experiments, POSC4.5 is robust to the value of the weight of thetarget 
on
ept. Note that the plots for D(f) = 0:05 and D(f) = 0:95 arenot signi�
ant be
ause POSC4.5 makes its guesses from 0.1 to 0.9.4.5 Experiments with UCI problemsWe 
onsider two data sets from the UCI Ma
hine Learning Database [13℄:kr-vs-kp and adult. The majority 
lass is 
hosen as positive. In the experi-ments, we 
ompare C4.5POSUNL and POSC4.5 with C4.5.Experiment 3.In order to obtain experimental results for the relative value of examples,we 
ompare C4.5 and C4.5POSUNL(LAB). For kr-vs-kp, the size of POSand the size of UNL are set equal to 600; the error rate is estimated on ahold-out test set of 1000 labeled examples. For adult, the size of POS andthe size of UNL are set equal to 10 000; the error rate is estimated on ahold-out test set of 15 000 labeled examples. We let the number of labeledexamples vary, and 
ompare the error rate of C4.5 and C4.5POSUNL(LAB).For a given size of LAB, we iterate 100 times the following: all sets aresele
ted randomly, we 
ompute the error rate for C4.5 with input LAB andthe error rate for C4.5POSUNL with input POS, UNL and an estimate ofthe weight of the target 
on
ept whi
h is the ratio of positive examples inthe set LAB. The reader should note that C4.5POSUNL(LAB) only useslabeled examples to 
ompute a rough estimate of the weight of the target18




on
ept. Then, we average the error rates over the 1000 experiments.Theresults 
an be seen in Figure A.3.For the two datasets, C4.5POSUNL(LAB) outperforms C4.5 when thenumber of labeled examples is small until a limit whi
h is about 100 forkr-vs-kp � re
all that there are 600 positive examples and 600 unlabeledexamples � and about 500 for adult � re
all that there are 10 000 positiveexamples and 10 000 unlabeled examples �. One 
ould also note that, whenthe estimate of the weight of the target 
on
ept is pre
ise enough, the er-ror rate for is C4.5POSUNL 
onstant. Also note that C4.5POSUNL treesare 
onsistently larger than C4.5 ones be
ause of the pruning pro
edure inC4.5POSUNL whi
h is not optimized.Experiment 4.In this se
ond set of experiments, we �x the size of LAB and we let thenumber of positive and unlabeled examples vary, and 
ompare the error rateof C4.5POSUNL(LAB), C4.5POSUNL(D(f)) and POSC4.5. The results
an be seen in Figure A.4. For kr-vs-kp, the plots are similar, the leastgood results are obtained by POSC4.5. This seems natural be
ause it usesless information. Surprisingly, POSC4.5 obtains the best results for the dataset adult.5 Con
lusionWe have given eviden
e in the present paper that the weight of the target
on
ept is a key parameter for learning from positive data and unlabeleddata. In the 
o-training framework [3℄, it seems that the weight of the target
on
ept is impli
itly known by the learner. The ratio of positive examples inthe labeled training sample is set to the weight of the target 
on
ept and thisratio is preserved throughout the learning pro
ess. It is un
lear whether theresults depend on this impli
it hypothesis.In this paper, we have shown that knowledge of a lower bound of the targetweight is su�
ient when learning from positive and unlabeled data. Never-theless the equivalen
e between SQ and POSQ remains open. In the semi-supervised setting as in our setting of learning from positive and unlabeledexamples, it should be interesting to investigate the relative value of examples(labeled examples vs positive examples vs unlabeled examples). Also it shouldbe 
lear that more experimental results are needed. We are 
urrently applyingthe results of the present paper to real-world text mining problems using thenaive Bayes algorithm.Lastly, it is now a 
hallenging problem to �nd algorithms from positive dataand unlabeled data when the weight of the target 
on
ept is quite small be-
ause many appli
ations fall in this 
ase. For imbalan
ed 
lasses the 
lassi�er's19



performan
e 
annot be expressed in terms of the a

ura
y: if only 1% examplesare positive the default hypothesis a
hieves an a

ura
y of 99%. Thus another
riterion of su

ess for the learning algorithm should be used, say for examplethe geometri
 mean of a

ura
ies observed separately on positive examples,and on negative examples. We also plan to investigate this problem, but it isknown to be di�
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Fig. A.1. We 
onsider de
ision lists where D(f) = 0:5. We 
ompareC4.5POSUNL(LAB) where the estimate of D(f) is done on a small random setof 25 labeled examples, C4.5POSUNL(D(f)) where the exa
t value of D(f) is givenas input, and POSC4.5. The three algorithms take as input a set POS and a setUNL where size(POS) = size(UNL) ranges from 50 to 1000 by step 50.
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Fig. A.2. We 
onsider de
ision lists where D(f) ranges from 0 to 1 by step 0.05.We 
ompare C4.5POSUNL(LAB) where the estimate of D(f) is done on a smallrandom set of 25 labeled examples, C4.5POSUNL(D(f)) where the exa
t value ofD(f) is given as input, and POSC4.5. The three algorithms take as input a set POSand a set UNL where size(POS) = size(UNL) = 1000.
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Fig. A.3. error rate of C4.5 and C4.5POSUNL(LAB) averaged over 100 trials on thekr-vs-kp data set (left plot) and on the adult data sets (right plot).
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