N

HAL

open science

Learning from Positive and Unlabeled Examples

Francois Denis, Rémi Gilleron, Fabien Letouzey

» To cite this version:

Francois Denis, Rémi Gilleron, Fabien Letouzey. Learning from Positive and Unlabeled Examples.
Theoretical Computer Science, 2005, 348 (1), pp.70-83. 10.1016/j.tcs.2005.09.007 . inria-00536692

HAL Id: inria-00536692
https://inria.hal.science/inria-00536692
Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00536692
https://hal.archives-ouvertes.fr

Learning From Positive and Unlabeled
Examples *

Francois DENIS# Rémi GILLERON® Fabien LETOUZEY ”

2 Fquipe BDAA, LIF, Centre de Mathématiques et d’Informatique (CMI),
Université de Provence, Marseille, FRANCE. E-mail: fdenis@cmi.univ-mrs.fr

b Equipe Grappa, LIFL, UPRESA 8022 CNRS, Université de Lille 1 and
Université Charles de Gaulle, Lille 3, FRANCE. E-mail:{gilleron,letouzey}@Ufl.fr

Abstract

In many machine learning settings, labeled examples are difficult to collect while
unlabeled data are abundant. Also, for some binary classification problems, positive
examples which are elements of the target concept are available. Can these additional
data be used to improve accuracy of supervised learning algorithms? We investigate
in this paper the design of learning algorithms from positive and unlabeled data only.
Many machine learning and data mining algorithms, such as decision tree induction
algorithms and naive Bayes algorithms, use examples only to evaluate statistical
queries (SQ-like algorithms). Kearns designed the Statistical Query learning model
in order to describe these algorithms. Here, we design an algorithm scheme which
transforms any SQ-like algorithm into an algorithm based on positive statistical
queries (estimate for probabilities over the set of positive instances) and instance
statistical queries (estimate for probabilities over the instance space). We prove
that any class learnable in the Statistical Query learning model is learnable from
positive statistical queries and instance statistical queries only if a lower bound on
the weight of any target concept f can be estimated in polynomial time. Then, we
design a decision tree induction algorithm POSC4.5, based on C4.5, that uses only
positive and unlabeled examples and we give experimental results for this algorithm.
In the case of imbalanced classes in the sense that one of the two classes (say the
positive class) is heavily underrepresented compared to the other class, the learning
problem remains open. This problem is challenging because it is encountered in
many real-world applications.

Key words: PAC learning, Statistical Query model, Semi-supervised Learning,
Data Mining

* This research was partially supported by: "CPER 2000-2006, Contrat de Plan
état - région Nord/Pas-de-Calais: axe TACT, projet TIC"; fonds européens FEDER

Preprint submitted to Elsevier Preprint 26 August 2002

1 Introduction

The field of Data Mining (sometimes referred to knowledge discovery in data-
bases) addresses the question of how best to use various sets of data to discover
regularities and to improve decisions. The learning step is central in the data
mining process. A first generation of supervised machine learning algorithms
(e.g. decision tree induction algorithms, neural network learning methods,
bayesian learning methods, logistic regression, ...) have been demonstrated
to be of significant value in a Data Mining perspective and they are now
widely used and available in commercial products. But these machine learn-
ing methods are issued from non parametric statistics and suppose that the
input sample is a quite large set of independently and identically distributed
(i.i.d.) labeled data described by numeric or symbolic features. But, in a Data
Mining or a Text Mining perspective, one has to use historical data that have
been collected from various origins and moreover, i.i.d. labeled data may be
expensive to collect or even unavailable. On the other hand, unlabeled data
providing information about the underlying distribution or examples of one
particular class (that we shall call the positive class) may be easily available.
Can this additional information help to learn? Here, we address the issue of
designing classification algorithms that are able to utilize data from diverse
data sources: labeled data (if available), unlabeled data, and positive data.

Along this line of research, there has recently been significant interest in semi-
supervised learning, that is the design of learning algorithms from both labeled
and unlabeled data. In the semi-supervised setting, one of the questions is: can
unlabeled data be used to improve accuracy of supervised learning algorithms?
Intuitively, the answer is positive because unlabeled data must provide some
information about the hidden distribution. Nevertheless, it seems that the
question is challenging from a theoretical perspective as well as a practical
one. A promising line of research is the co-training setting first defined in [3].
Supposing that the features are naturally divided into two disjoint sets, the
co-training algorithm builds two classifiers, and each one of these two is used
to label unlabeled data for the other. In [3|, theoretical results are proved,
learning situations for which the assumption is true are described in [14],
experimental results may be found in [3] and [15]. See also [8] for another
approach of the co-training setting. Other approaches include using the EM
algorithm [16], and using transductive inference [11]. A NIPS’99 workshop
and a NIPS’00 competition were also organized on using unlabeled data for
supervised learning.

In this paper, we consider binary classification problems. One of the two classes

"TIC - Fouille Intelligente de données - Traitement Intelligent des Connaissances"
OBJ 2-phasing out - 2001/3 - 4.1 - n 3"

is called the positive class. We are interested in the following questions:

e How can unlabeled data and positive data be used to improve the accuracy
of supervised learning algorithms?

e How can learning algorithms from unlabeled data and positive data be de-
signed from previously known supervised learning algorithms?

First, let us justify that the problem is relevant for applications. We argue that,
in many practical situations, elements of the target concept may be abundant
and cheap to collect. For instance, consider one diagnosis of diseases: in order
to obtain an i.i.d. sample of labeled examples, it is necessary to systematically
detect the disease on a representative sample of patients and this task may be
quite expensive (or impossible). On the other hand, it may be easy to collect
the medical files of patients who have the disease. Also, unlabeled data are
any pool of patients possibly having the disease.

Second, let us note that many machine learning algorithms as decision tree
learning algorithms and Bayesian learning algorithms only use examples to
estimate statistics. In other words, many machine learning algorithms may
be considered as Statistical Query (SQ) learning algorithms. Thus we are
interested in general schemes which transform supervised SQ-like learning al-
gorithms into learning algorithms from both unlabeled data and positive data.

In a preliminary paper [6], we have given evidence — with both theoretical and
empirical arguments — that positive data and unlabeled data can boost accu-
racy of SQ-like learning algorithms. It was noted that learning with positive
and unlabeled data is possible as soon as the weight of the target concept (i.e.
the ratio of positive examples) is known by the learner. An estimate of the
weight can be obtained either by an extra-oracle (say for a similar problem)
or from a small set of labeled examples. In the present paper, we consider the
more general problem where only positive data and unlabeled data are avail-
able. We present a general scheme which transforms any SQ-like supervised
learning algorithm L into an algorithm PL using only positive data and un-
labeled data. We prove that PL is a learning algorithm as soon as the learner
is given access to a lower bound on the weight of the target concept. It re-
mains open whether it is possible to design an algorithm from positive data
and unlabeled data from any SQ learning algorithm in the general case.

The theoretical framework is presented in Section 2. Our learning algorithm is
defined and proved in Section 3, some consequences about the equivalence of
models are also given. It is applied to tree induction and experimental results
are given in Section 4.

2 Learning models

2.1 Learning Models from Labeled Data

For each n > 1, X,, denotes an instance space on n attributes. A concept f
is a subset of some instance space X, or equivalently a {0, 1}-valued function
defined on X,,. For each n > 1, let C, C 2%" be a set of concepts. Then
C = U,>1 C, denotes a concept class over X = J,,~; X,. The size of a concept
f is the size of a smallest representation of f for a given representation scheme.
An ezample of a concept f is a pair (x, f(x)), which is positive if f(z) = 1 and
negative otherwise. Let D be a distribution over the instance space X,,, for a
subset A of X,,, we denote by D(A) the probability of the event [x € A]. For a
subset A of X, such that D(A) # 0, we denote by D4 the induced distribution
over A. For instance, for a concept f over X, such that D(f) # 0 and for any
r € Xy, Df(xz) = D(z)/D(f) when f(x) =1 and D(z) = 0 otherwise. Let f
and ¢ be concepts over the instance space X,,, we denote by f the complement
of the set f in X, and by fAg the set fAg={z € X, | f(z) # g(x)}.

Let f be a target concept over X in some concept class C. Let D be the hidden
distribution defined over X. In the PAC model [18], the learner is given access
to an example oracle EX(f, D) which returns an example (z, f(z)) drawn
randomly according to D at each call. A concept class C is PAC learnable
if there exist a learning algorithm L and a polynomial p(.,.,.,.) with the
following property: for any n and any f € C,, for any distribution D on X,
and for any 0 < ¢ < 1 and 0 < ¢ < 1, if L is given access to EX(f, D)
and to inputs € and ¢, then with probability at least 1 — 0, L outputs a
hypothesis concept h satisfying error(h) = D(fAh) < € in time bounded
by p(1/€,1/6,n, size(f)). In this paper, we always suppose that the value of
size(f) is known by the learner. Recall that if size(f) is not given then the
halting criterion of the algorithm is probabilistic [9]. Also, for many concept
classes the natural definition of size(f) is already bounded by a polynomial
in n.

One criticism of the PAC model is that it is a noise free model. Therefore
extensions in which the label provided with each random example may be
corrupted with random noise were studied. The classification noise model (CN
model for short) was first defined by Angluin and Laird [1|. A variant of the
CN model, namely the constant-partition classification noise model (CPCN
model for short) has been defined by Decatur [5]. In this model, the labeled
example space is partitioned into a constant number of regions, each of which
may have a different noise rate. An interesting example is the case where the
rate of false positive examples differs from the rate of false negative examples.
We only define this restricted variant of the CPCN model. The noisy oracle

EX"™"-(f, D) is a procedure which, at each call, draws an element z of X,
according to D and returns (i) (z,1) with probability 1 — 7, and (z,0) with
probability n, if = € f, (ii) (z,0) with probability 1 — n_ and (z,1) with
probability 7_ if € f. Let C be a concept class over X. We say that C
is CPCN learnable if there exist a learning algorithm L and a polynomial
p(es -, -, .) with the following property: for any n and any f € C,, for any
distribution D on X,,, and for any 0 < n,,n_ < 1/2 and 0 <€, < 1,if L is
given access to EX™ - (f D) and to inputs € and ¢, then with probability at
least 1—0, L outputs a hypothesis concept h € C satisfying D(fAh) < €in time
bounded by p(1/€,1/5,1/v, size(f),n) where v = min{1/2 —n,,1/2 —n_}.

Many machine learning algorithms only use examples in order to estimate
probabilities. This is the case for induction tree algorithms such as C4.5 [17|
and CART |[4]. This is also the case for highly practical Bayesian learning
method as the naive Bayes classifier. Kearns defined the statistical query model
(SQ model for short) in [12]. The SQ model is a specialization of the PAC
model in which the learner forms its hypothesis solely on the basis of estimates
of probabilities. A statistical query over X, is a mapping y : X, x {0,1} —
{0,1} associated with a tolerance parameter 0 < 7 < 1. In the SQ model
the learner is given access to a statistical oracle STAT(f, D) which, at each
query (x, T), returns an estimate of D({z | x({z, f(2))) = 1}) within accuracy
7. Let C be a concept class over X. We say that C is SQ learnable if there
exist a learning algorithm L and polynomials p(., .,.),q(.,.,.) and r(.,.,.) with
the following property: for any f € C, for any distribution D over X, and
for any 0 < € < 1, if L is given access to STAT(f, D) and to input e, then,
for every query (x,7) made by L, the predicate x can be evaluated in time
q(1/¢,n,size(f)), and 1/7 is bounded by r(1/e,n, size(f)), L halts in time
bounded by p(1/e,n, size(f)) and L outputs a hypothesis h € C satisfying
D(fAh) <.

We slightly modify the statistical oracle STAT(f, D). Let f be the target
concept and let us consider a statistical query y made by a statistical query
learning algorithm L. The statistical oracle ST AT'(f, D) returns an estimate

D, of D, = D({z | x({z, f(z))) = 1}) within some given accuracy. We may
write:

Dy =D({z | x({z,1)) = 1A f(2) = 1}) + D({z | x({z,0)) = 1 A f(x) = 0})
D({z | x((z,1)) =1} N f) + D({z | x((2,0)) =1} N f)
D

(BN f)+D(CNFf)

where the sets B and C' are defined by:

B={z|x({z,1)) =1} and C = {z | x((x.0)) = 1}.

Therefore, we consider a statistical oracle which, at each query (A, 7), returns
estimates for probabilities D(fNA) and D(fNA) within accuracy 7, where f is
the target concept, f its complement and A any subset — for which membership
is decidable in polynomial time — of the instance space. It should be clear for
the reader that this technical modification does not change the SQ learnable
classes.

It is clear that access to the example oracle EX(f, D) being given, it is easy
to simulate the statistical oracle STAT(f, D) by drawing a sufficiently large
set of labeled examples. Moreover, there is a general scheme which transforms
any SQ learning algorithm into a PAC learning algorithm. It is also proved
in [12] that the class of parity functions is learnable in the PAC model but
cannot be learned from statistical queries.

It has been shown by Kearns that any class learnable from statistical query
is also learnable in the presence of classification noise [12|. Following the
results by Kearns, it has been proved by Decatur [5] that any class learnable
from statistical queries is also learnable in the presence of constant-partition
classification noise. The proof uses the hypothesis testing property: a hypothesis
with small error can be selected from a set of hypotheses by selecting the one
with the fewest errors on a set of CPCN corrupted examples. If we confuse, in
the notations, the name of the model and the set of learnable classes, we can
write the following inclusions:

SQ C CPCN C CN C PAC (1)
SQ C PAC 2)

To our knowledge, the equivalences between the models CN and SQ or between
the models CN and PAC remain open despite recent insights [2| and [10].

2.2 Learning Models from Positive and Unlabeled Data

The learning model from positive examples (POSEX for short) was first defined
in [7]. The model differs from the PAC model in the following way: the learner
gets information about the target function and the hidden distribution from
two oracles, namely a positive example oracle POS(f, D) and an instance
oracle INST (D) instead of an example oracle EX (f, D). At each request by
the learner, the instance oracle INST (D) returns an element of the instance
space X, i.e. an unlabeled example, according to the hidden distribution D. At
each request by the learner, the positive example oracle POS(f, D) returns
a positive example according to the hidden distribution D;. We have the
following result:

Proposition 1 /7] Any class learnable in the CPCN model is learnable in the

POSEX model.

PROQOF. The proof is simple and as it may help to understand the proof of
the main algorithm of the present paper, we sketch it below.

Let C be a CPCN learnable concept class, let L be a learning algorithm for C
in the CPCN model, let f be the target concept, let D be a distribution over
the instance space and let us suppose that D(f) # 0. We must show how L
can be used to learn from the oracles POS(f, D) and INST(D).

Run L. At each call of the noisy oracle:

e with probability 2/3, call POS(f, D) and keep the positive label
e with probability 1/3, call INST(D) and label the example as negative.

It can easily be shown that this is strictly equivalent calling the noisy oracle
EXmn-(f, D) where:

D(a) : _
D'(x) = D?m)—i—QD (@) =0
=R f(x) =1
__D(y)
T D)

n-=>0

Note that n, < 1/3 < 1/2. And as for any subset A of the instance space,
we have D(A) < 3D'(A), it is sufficient to run the algorithm L with input
accuracy €/3 and input confidence d to output with confidence greater than
1 — ¢ a hypothesis whose error rate is less than e.

The learning model from positive queries (POSQ for short) was also defined
in [7]. In the POSQ model, there are a positive statistical oracle PSTAT(f, D)
which provides estimates for probabilities D¢(A) for any subset A of the
instance space within a given tolerance and an instance statistical oracle
ISTAT(D) which provides estimates for probabilities D(A) for any subset
A of the instance space within a given tolerance. The definition of a POSQ
learnable class is similar to the definition of a SQ learnable class: the oracle
STAT(f, D) is replaced by the two oracles PSTAT(f, D) and ISTAT(D).
The POSQ model is weaker than the SQ model as there is no direct way to
obtain an estimate of the weight D(f) of the target concept. However, if we
can get such an estimate, both models become equivalent. Indeed, statistical

queries can be computed from instance queries and positive statistical queries
as soon as the weight of the target concept is known because of the following
equations:

(3)

So, any class learnable in the SQ model is learnable in the POSQ model as
soon as the learner is given access to the weight of the target concept or
can compute it from the positive statistical oracle and the instance statistical
oracle. This is formalized in the following result:

Proposition 2 [7] Let C be a concept class such that the weight of any target
concept can be estimated in polynomial time within any given tolerance. If C
18 SQ learnable then C is POS(Q) learnable.

We can summarize all the results with the following inclusions:

POSQ C SQ C CPCN C POSEX C PAC (4)
CPCN C CN C PAC (5)
SQ ¢ POSEX (6)

The inequality between SQ and POSEX holds because the class of parity
functions is POSEX learnable but not SQ learnable. Equivalences between
POSQ and SQ and between POSEX and PAC remain open.

3 Learning Algorithms from Positive and Unlabeled Examples

We have already noticed that in pratical Data Mining and Text Mining sit-
uations, statistical query-like algorithms, such as C4.5 or naive Bayes, are
widely used. It is straightforward to see how a statistical query can be eval-
uated from labeled data. In a similar way, positive and instance statistical
queries can easily be evaluated from positive and unlabeled data. So, in order
to adapt classical learning algorithms to positive and unlabeled examples, we
can show how S(Q learning algorithms can be modified into POSQ learning
algorithms.

In [6], we have studied the case where the weight of the target concept is either
given by an oracle or evaluated from a small set of labeled examples. In this

case, Equations 3 and Proposition 2 show how the transformation of the SQ
algorithm can be achieved. We now consider the more general problem where
no information on the weight of the target concept is given to the learner.

3.1 A Generic learning algorithm from positive statistical queries and in-
stance statistical queries

In this section, we provide a general scheme which transforms any SQ-like
algorithm into a POSQ-like algorithm.

Let us consider a concept class C learnable in the SQ model by a learning
algorithm L, and let v be a positive real number. Let us recall that we suppose
that size(f) is known by the learner. Also note that for most concept classes
C learnable from statistical queries, the size of every target concept f € C,
is bounded by a polynomial in n. We design a POSQ learning algorithm PL
based on the algorithm L which learns any target concept f in C such that
D(f) > ~. A consequence of this result is that whenever a lower bound on
the weight of the target concept is known a priori, every SQ learnable class is
POSQ learnable. First, we give some comments on the algorithm PL which is
described in Figure 1 and second, we prove its correctness in Section 3.2.

The algorithm PL is based on a statistical query learning algorithm L and is
given access to a lower bound v on the weight of the target concept. PL is
composed of two stages: in the first stage, a set of hypotheses is constructed;
in the second stage, a hypothesis is selected in the hypothesis set.

In the first stage, the algorithm PL iterates over larger guesses for D(f).
At each guess, the statistical query learning algorithm is called. But only
positive and instance queries are available, thus when L makes a statistical
query, Equations 3 are used with the current estimate p; of D(f) together
with the estimates returned by the oracles PSTAT(f, D) and ISTAT(D): at
each statistical query (A,7), return D(f N A) = D;(A) x p; and D(f N A) =
D(A) — D(fNA) where D;(A) is the estimate given by the positive statistical
oracle PSTAT(f, D) with set A within tolerance Tp;,/4 and where D(A) is
the estimate given by the instance statistical oracle with set A within toler-
ance T, /4. Note that the simulation of STAT(f, D) may produce erroneous
results when the estimate p; of D(f) is poor. In this case, the behavior of the
algorithm L is not known. Thus we bound the running time of L and output
a default hypothesis.

In the second stage, the algorithm P L selects the hypothesis A which minimizes
the quantity é(h). Minimizing é(h) is equivalent to minimizing an estimate of
the error rate according to the noisy oracle defined in the proof of Proposi-

POSQ learning algorithm PL

parameters: SQ learning algorithm L, v € (0,1); let p (respectively r)
be the polynomial which bounds the running time of L (respectively the
inverse of the tolerance needed for queries)

input: €
Construction of a hypothesis set
1 1 2 1
Setﬁ’tO§XﬁX6,Tmint0m,NtO ’Vﬁ—‘,atOW
fori=1to N

the current estimate of D(f) is p; = (2i — 1)«
run L with accuracy € using oracles PSTAT(f, D), ISTAT(D)
within tolerance 2 and use Equations 3 ;
if the running time exceeds p(1/€',n, size(f))
then let h; be a default hypothesis
else let h; be the output of L
Hypothesis testing algorithm
fori=1to N
call PSTAT with input h; within tolerance 5
call IST AT with input h; within tolerance
set é(h;) to 2D(h;) + D(hy)
output: h = argmin é(h;)

i

Fig. 1. Learning algorithm from positive and unlabeled queries

tion 1: with probability 2/3 draw a positive example and label it as positive
and with probability 1/3 draw an unlabeled example and label it as negative.
Indeed, if an unlabeled example is drawn, the probability of error is equal to
D(h). And if a positive example is drawn, the probability of error is equal to

D¢(h). That is, the error rate using the noisy oracle is (2D;(h) + D(h))/3.

Minimizing é(h) can also be seen as: choosing a hypothesis h approximately
consistent with positive data — when minimizing the first term of the sum
Qﬁf(h_i)f while avoiding over-generalization — when minimizing the second
term D(h;).

Note that as the statistical oracles PSTAT(f, D) and IST AT (D) can be sim-
ulated by using positive and unlabeled examples. Consequently the previous
scheme allows to transform any SQ-like learning algorithm into an algorithm
using positive and unlabeled examples only.

3.2 Proof of the algorithm

Lemma 3 There exists i € {1,..., N} such that error(h;) < €.

10

PROOF. There exists i such that D(f) € [p; — «, p; + o] since, by definition
of p;, Ui[pi — o, ps + @] = [0, 1]. For that value, p; is an estimate of D(f) within
tolerance ™ since o < ™. For all queries made by L, the oracles PST AT
and ISTAT are called with tolerance ™= and Equations 3 are used. Tt is
easy to prove that estimates for algorithm L are made within tolerance 7,,;,.
Consequently, by hypothesis on L, L outputs some h; such that error(h;) < €.

Lemma 4 Let [be the target concept, let g be some hypothesis and let >
2D(f). We have

B- D(f))
D(f)

where error(g) = D(fAg) is the (classical) error and eg(g) = FD(g) + D(g).

error(g) < ez(g) — D(f) < error(g) (

PROOF. We have

D(fN7) + D(gnT)
D(g) - D(f) +2D(f N7)
es(g) — D(f) +2D(f ng) — BDy(9)
(9) ~ D(f) + D(f ") (2—%)
5—2D(f)

()

error(g)

Il
o

B
es(g) — D(f) = error(g) + D(f Ng)

As 5> 2D(f) and D(f N7g) < error(g), we have

error(g) < es(g) — D(f) < error(g) [1 + %lf))(f)] = error(g)BDT

Note that the learner is not given access to an upper bound on D(f). The
previous lemma holds if 5 > 2D(f), thus we set 3 to 2 and we simply de-
note es(h) by e(h). That is we have: e(g) = 2D;(g) + D(g) and the reader
should note that in the hypothesis testing stage of the algorithm PL we use
an estimate é(h) of e(h) where h is a hypothesis in the hypothesis set.

Lemma 5 Let h and b’ be two hypotheses such that error(h) < 5 x 37

and error(h') > €, then e(h') —e(h) > 5.

DO | =

PROOF.

11

Using the previous lemma — with g = 2 —, we have:

e(h') — e(h) > error(h') — error(h) (%) :

As the function r(z) = 2% is decreasing and D(f) > v, we have

e(H) — e(h) > error(h) — error(h) (2_77> |

By hypothesis on h and A/,

1
error(h) < 3 <L> error(h),

2—y
SO h’
e(h) — e(h) > 6”02# > €/2.

Proposition 6 The output hypothesis satisfies error(h) < € and the running
time is polynomial in 1/e, n, | and 1/~.

PROOF. All estimates é(h;) of e(h;) are done within tolerance § and Lem-
mas 3 and 5 ensure that the output hypothesis satisfies error(h) < e.

The number of hypotheses is N which is linear in 1/7,,;,. We have supposed
for sake of clarity in the definition of the algorithm that 7,,;, was fixed and
known by the learner. Actually, 7,,;, is polynomial in the input accuracy of L,
therefore 7,,;, is polynomial in € that is also polynomial in € and ~. It is easy
to verify that all queries are made within a tolerance polynomial in € and +.

3.3 FEquivalence of the SQ and POS(Q models

Whether or not any SQ algorithm can be transformed into a POS(Q algorithm
remains an open question. It has been proved in [7]| that this transformation
is possible when the weight of the target concept can be estimated from the
oracles PSTAT(f, D) and ISTAT (D) in polynomial time. In this paper, we
improve this result by showing that any SQ algorithm can be transformed into
a POSQ algorithm when a lower bound on the weight of the target concept is
given to the learner. However, the running time of the algorithm is polynomial
in the inverse of this lower bound.

Let us consider a concept class C which is SQ learnable. We say that C satisfies
the property Lowerbound if there exists an algorithm W which, for any f in C,

12

for any distribution D on X, with input e and given access to PSTAT(f, D)
and ISTAT(D)

yes if D(f) < 3,
outputs § no if D(f) > e,
2 it 5 <D(f)<e

in time polynomial in 1/e. Then we have the following result:

Proposition 7 Any SQ learnable class which satisfies Lowerbound is POSQ
learnable.

PROOF. Consider the following algorithm:

input: €
if W outputs yes
output function 0
else
€

run the POSQ learning algorithm with parameter v = £ and input €

It is easy to prove that this algorithm is a learning algorithm from positive
and instance statistical queries using Proposition 6 and the definition of the
property Lowerbound.

Note that proving the property Lowerbound for every SQ learnable concept
class would imply the equality between SQ and POSQ).

4 Decision Tree Learning Algorithms from Positive and Unlabeled
Examples

Induction tree algorithms are widely used for Data Mining purposes. These
algorithms are “statistical query like” since they only use examples in order to
estimate probabilities. In the first part of this section, we recall the notions
of entropy and information gain on which C4.5 is based. In the second part,
we introduce C4.5POSUNL, a learning algorithm based on C4.5 first defined
in [6], where the statistical queries required by C4.5 are estimated with the
help of Equations 3, an estimate of the weight of the target concept being given
as input. In the third part of this section, we present POSC4.5 an induction
tree learning algorithm from positive data and unlabeled data only. In the

13

last part of this section, we give experimental results for POSC4.5 both on
artificial problems and on two benchmarks chosen from the UCI Machine
Learning Database.

4.1 Top down decision tree algorithms

Most algorithms for tree induction use a top-down, greedy search through the
space of decision trees. The splitting criterion used by C4.5 [17] is based on
a statistical property, called information gain, itself based on a measure from
information theory, called entropy. We only consider binary problems. Given
a sample S of some target concept, the entropy of S is

Entropy(S) = —po log, po — p1log, p1 (7)

where p; is the proportion of examples in S belonging to the class i. The infor-
mation gain is the expected reduction in entropy by partitioning the sample
according to an attribute test t. It is defined as

N,
Gain(S,t) = Entropy(S)— > —Entropy(S,) (8)
veValues(t) N

where Values(t) is the set of every possible value for the attribute test ¢, N,
is the cardinality of the set S, of examples in S for which ¢ has value v and
N is the cardinality of S.

As the information gain criterion has a strong bias in favor of tests with many
outcomes, the criterion used in C4.5 is the Gain ratio defined by

| 4 Gain(S,t
GainRatio(S,t) = W]EO(S)@

where
N, N,
SplitInfo(S,t) = — > —log N

vEValues(t)

Let D be the hidden distribution defined over the set of instances. Let n
be the current node, let D,, be the filtered distribution, that is the hidden
distribution D restricted to instances reaching the node n. Let S be the set
of training examples associated with the current node n and let p; be the
proportion of positive examples in S: p; is an estimate of D,(f) and pg is an

estimate of D, (f).

14

4.2 C4.5POSUNL: a top-down induction tree algorithm from positive and
unlabeled examples with the help of an estimate of the weight of the target
concept

Roughly speaking, C4.5POSUNL is a version of C4.5 in which the statistical
queries are estimated from positive examples and unlabeled examples by using

Equations 3, an estimate of the weight of the target concept being given. The
differences between C4.5POSUNL and C4.5 are the following:

e C4.5POSUNL takes as input:
- aset POS of positive examples,
- together with a set UNL of unlabeled examples,
- together with an estimate D(f) of D(f) which is the weight of the target

concept.

e For the current node, entropy and gain are calculated using Equations 7
and 8 where, based on Equations 3, the ratios py and p; are given by the
equations:

. \POS™ . [UNL|
2] —1nf{ POS] x D(f) x |UNL”\’1

po=1-—p

(9)

where POS™ is the set of positive examples associated with the node n and
UNL" is the set of unlabeled examples associated with the node n;

e When the Gain Ratio is used instead of the information gain , split infor-
mation SplitInfo is calculated from unlabeled examples;

e The majority class is chosen as 0 or 1 according to the values of py and p;
calculated with equations (9);

e Halting criteria during the top-down tree generation are evaluated from
unlabeled data;

e When pruning trees, classification errors are estimated with the help of
ratios py and p; from (9).

4.3 POSC/.5: a top-down induction tree algorithm from positive and unla-
beled examples only

The learning algorithm POSC4.5 is given in Figure 2. It is based on the theo-
retical result proved in Section 3. We intend to use the algorithm scheme PL
to transform C4.5. But as C4.5POSUNL can already be viewed as a variant
of C4.5 which uses positive and unlabeled examples together with an estimate
of the target weight, we have directly incorporated C4.5POSUNL in the PL
algorithm.

15

POSC4.5
input: a set POS of positive examples and a set UN L of unlabeled examples
Split POS and UN L with ratios 2/3, 1/3 into POS, POSy, UNLy and UN Lt
Construction of a hypothesis set
fori=1to 9

the current estimate of D(f) is set to D(f) = =

run C4.5POSUNL with input POSy, UNLy and ﬁ(f) = %, and output h;
Selecting the best estimate of D(f)

for:=1to9

. |{z€POST|hi(x)=0}| | |{z€UNLt|hi(z)=1}|
set é(h;) to 2 P05y + TN]

set j to argmin é(h;)
i

Construction of the final hypothesis
run C4.5POSUNL with input POS, UNL and D(f) =

<, and output h

Fig. 2. POSC4.5: induction tree algorithm from positive and unlabeled examples

Another difference between PL and POSC4.5 is that the lower bound 7 is not
given as input to POSC4.5. Instead, it is implicitly supposed that the weight
of the target concept is not too small.

The algorithm takes as input a set POS of examples of the target class together
with a set UNL of unlabeled examples. The algorithm splits the set POS
(respectively UNL) into two sets POSy, and POSr (respectively UNL;, and
UN L) using the usual values 2/3 and 1/3.

The sets POSy, and UN Ly, are used for the construction of the hypothesis set.
More precisely these sets are used to simulate the positive statistical oracle and
the instance statistical oracle. In this stage, we run nine times C4.5POSUNL
with input POS;, UNLy, and an estimate D(f) of D(f) taking the successive
values 0.1, ..., 0.9.

In the second stage of POSC4.5, i.e, the hypothesis testing algorithm, the sets
POSt and UN Ly are used to simulate the positive statistical oracle and the
instance statistical oracle. In our implementation, we select in POSC4.5 the
best estimate D(f) of D(f) according to the minimal estimate é(h) of e(h)
instead of selecting the best hypothesis like in PL.

The output of POSC4.5 is the output of C4.5POSUNL with input POS,UNL
together with the best estimate D(f) of D(f).

16

4.4 Experiments with Decision Lists

A decision list over xy, ..., x, is an ordered sequence L = (mq,by),..., (m,,b,)
of terms, in which each m; is a monomial over z, ..., z,, and each b; € {0,1}.
The last monomial is always m, = 1. For any input a € {0, 1}", the value L(a)
is defined as b;, where j is the smallest index satisfying m;(a) = 1. We only
consider 1-decision list where each monomial is a variable x; or its negation
T;. We set p to 11 and n to 20. The choice of a target decision list f, the choice
of the weight D(f) and the choice of the distribution D are done as follows:

e a target decision list f is chosen randomly;

e for any a € {0,1}", a weight w, is chosen randomly in [0, 1);

e a normalization procedure is applied to the two sets of weights {w, | f(a) =
1} and {w, | f(a) = 0}. Thus we get two distributions D; on f and Dy on
f;

e a weight D(f) for the target concept is chosen using a procedure that de-
pends on the experiment;

e D is defined by: Va € {0,1}", D(a) = D(f) x Di(a) + (1 — D(f)) x Da(a).

In the experiments, we compare C4.5POSUNL and POSC4.5. The algorithm
C4.5POSUNL takes as input a set POS of positive examples, a set UNL of
unlabeled examples and an estimate D(f) of D(f). The experimental results
for C4.5POSUNL depend on the accuracy of the estimate D(f) of D(f). Thus
we consider two cases:

e the exact value of D(f) is given as input of the learning algorithm. In the
following and in the figures, we denote by C4.5POSUNL(D(f)) this variant
of C4.5POSUNL:

e the estimate D(f) is set to the ratio of positive examples in a (small) set
LAB of labeled examples given as input. We denote by C4.5POSUNL(LAB)
this variant of C4.5POSUNL. The set LAB is only used for the calculation
of D(f).

In the experimental results and in the plots, the error rates and target weights
are expressed in percent. The size of a set is its cardinality.

Experiment 1.

In order to obtain experimental results on the relative value of examples,
we let the number of positive examples vary and we compare POSCA4.5,
C4.5POSUNL(LAB) and C4.5POSUNL(D(f)). We set D(f) to 0.5, the
size of POS is equal to the size of UNL and ranges from 50 to 1000 by step
50, the size of LAB is fixed to 25. For a given size of POS, we iterate 100
times the experiment: a target f is drawn, a distribution D is chosen, sets
LAB, POS and UNL are drawn randomly, we run the three algorithms
and calculate the error rate of the output hypothesis on a large test set of

17

10000 examples. We average the error rates over the 100 experiments. The
results are given in Figure A.1.

The learning algorithm POSC4.5 performs as well as C4.5POSUNL(D(f))
where the exact value of D(f) is given to the learner. Thus for this artificial
problem, the results of POSC4.5 which is based on a hypothesis testing al-
gorithm are convincing. The reader should also note that the two algorithms
POSC4.5 and C4.5POSUNL(D(f)) outperform C4.5POSUNL(LAB) which
uses a rough estimate of D(f) (solely based on 25 labeled examples). In this
first set of experiments, the weight of the target concept is set equal to
0.5. An equal ratio between positive and negative examples is the most
favourable to POSC4.5. Therefore, in a second set of experiments, we con-
sider different values for D(f).

Experiment 2.

The weight D(f) of the target concept ranges from 0 to 1 by step 0.05.
The size of POS is equal to the size of UNL and is set to 1000. The size
of LAB is fixed to 25. For a given value of D(f), we average the error rates
over 100 experiments. The results are given in Figure A.2.

The results are similar: POSC4.5 performs as well as C4.5POSUNL(D(f));
POSC4.5 and C4.5POSUNL(D(f)) outperform C4.5POSUNL(LAB). For
this set experiments, POSC4.5 is robust to the value of the weight of the
target concept. Note that the plots for D(f) = 0.05 and D(f) = 0.95 are
not significant because POSC4.5 makes its guesses from 0.1 to 0.9.

4.5 Ezrperiments with UCI problems

We consider two data sets from the UCI Machine Learning Database [13]:
kr-vs-kp and adult. The majority class is chosen as positive. In the experi-
ments, we compare C4.5POSUNL and POSC4.5 with C4.5.

Experiment 3.

In order to obtain experimental results for the relative value of examples,
we compare C4.5 and C4.5POSUNL(LAB). For kr-vs-kp, the size of POS
and the size of UNL are set equal to 600; the error rate is estimated on a
hold-out test set of 1000 labeled examples. For adult, the size of POS and
the size of UNL are set equal to 10 000; the error rate is estimated on a
hold-out test set of 15 000 labeled examples. We let the number of labeled
examples vary, and compare the error rate of C4.5 and C4.5POSUNL(LAB).
For a given size of LAB, we iterate 100 times the following: all sets are
selected randomly, we compute the error rate for C4.5 with input LAB and
the error rate for C4.5POSUNL with input POS, UNL and an estimate of
the weight of the target concept which is the ratio of positive examples in
the set LAB. The reader should note that C4.5POSUNL(LAB) only uses
labeled examples to compute a rough estimate of the weight of the target

18

concept. Then, we average the error rates over the 1000 experiments.The
results can be seen in Figure A.3.

For the two datasets, C4.5POSUNL(LAB) outperforms C4.5 when the
number of labeled examples is small until a limit which is about 100 for
kr-vs-kp — recall that there are 600 positive examples and 600 unlabeled
examples — and about 500 for adult — recall that there are 10 000 positive
examples and 10 000 unlabeled examples —. One could also note that, when
the estimate of the weight of the target concept is precise enough, the er-
ror rate for is C4.5POSUNL constant. Also note that C4.5POSUNL trees
are consistently larger than C4.5 ones because of the pruning procedure in
C4.5POSUNL which is not optimized.

Experiment 4.

In this second set of experiments, we fix the size of LAB and we let the
number of positive and unlabeled examples vary, and compare the error rate
of C4.5POSUNL(LAB), C4.5POSUNL(D(f)) and POSC4.5. The results
can be seen in Figure A.4. For kr-vs-kp, the plots are similar, the least
good results are obtained by POSCA4.5. This seems natural because it uses
less information. Surprisingly, POSC4.5 obtains the best results for the data
set adult.

5 Conclusion

We have given evidence in the present paper that the weight of the target
concept is a key parameter for learning from positive data and unlabeled
data. In the co-training framework [3], it seems that the weight of the target
concept is implicitly known by the learner. The ratio of positive examples in
the labeled training sample is set to the weight of the target concept and this
ratio is preserved throughout the learning process. It is unclear whether the
results depend on this implicit hypothesis.

In this paper, we have shown that knowledge of a lower bound of the target
weight is sufficient when learning from positive and unlabeled data. Never-
theless the equivalence between SQ and POS(Q remains open. In the semi-
supervised setting as in our setting of learning from positive and unlabeled
examples, it should be interesting to investigate the relative value of examples
(labeled examples vs positive examples vs unlabeled examples). Also it should
be clear that more experimental results are needed. We are currently applying
the results of the present paper to real-world text mining problems using the
naive Bayes algorithm.

Lastly, it is now a challenging problem to find algorithms from positive data
and unlabeled data when the weight of the target concept is quite small be-
cause many applications fall in this case. For imbalanced classes the classifier’s

19

performance cannot be expressed in terms of the accuracy: if only 1% examples
are positive the default hypothesis achieves an accuracy of 99%. Thus another
criterion of success for the learning algorithm should be used, say for example
the geometric mean of accuracies observed separately on positive examples,
and on negative examples. We also plan to investigate this problem, but it is
known to be difficult even when learning from labeled data.

References

[1] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning,
2(4):343-370, 1988.

[2] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. In Proceedings of the 32th Annual
ACM Symposium on Theory of Computing, pages 435-440, 2000.

[3] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the 11th Annual Conference on Computational
Learning Theory, pages 92-100, 1998.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
regression trees. Technical report, Wadsworth International, Monterey, CA,
1984.

[5] S. E. Decatur. Pac learning with constant-partition classification noise and
applications to decision tree induction. In Proceedings of the 14th International
Conference on Machine Learning, pages 83-91, 1997.

[6] F. DeComite, F. Denis, R. Gilleron, and F. Letouzey. Positive and unlabeled
examples help learning. In Proceedings of the 10th International Conference on
Algorithmic Learning Theory, pages 219-230, 1999.

[7] F. Denis. PAC learning from positive statistical queries. In Proceedings of the
9th International Conference on Algorithmic Learning Theory, pages 112-126,
1998.

[8] Sally Goldman and Yan Zhou. Enhancing supervised learning with unlabeled
data. In Proceedings of the 17th International Conference on Machine Learning,
pages 327-334, 2000.

[9] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of
models for polynomial learnability. Information Computation, 95(2):129-161,
1991.

[10] J. Jackson. On the efficiency of noise-tolerant PAC algorithms derived
from statistical queries. In Proceedings of the 13th Annual Conference on
Computational Learning Theory, pages 7-15, 2000.

20

[11] Thorsten Joachims. Transductive inference for text classification using support
vector machines. In Proceedings of 16th International Conference on Machine
Learning, pages 200-209, 1999.

[12] M. Kearns. Efficient noise-tolerant learning from statistical queries. In
Proceedings of the 25th ACM Symposium on the Theory of Computing, pages
392-401, 1993.

[13] C.J. Merz and P.M. Murphy. UCI repository of machine learning databases,
1998.

[14] T. Mitchell. Machine learning and data mining. In Communications of the
ACM, volume 42(11):30-36, 1999.

[15] Kamal Nigam and Rayid Ghani. Analyzing the applicability and effectiveness of
co-training. In Proceedings of the 9th International Conference on Information
and Knowledge Management, pages 86—93, 2000.

[16] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell.
Text classification from labeled and unlabeled documents using EM. Machine
Learning, 39(2/3):103-134, 2000.

[17] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[18] L.G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

A Experimental results

C4.5POSUNL(LAB)
C45POSUNL(D() -
POSCA4.5 -

00 601
size(POS)=size(UNL)

Fig. A.l. We consider decision lists where D(f) = 0.5. We compare
C4.5POSUNL(LAB) where the estimate of D(f) is done on a small random set
of 25 labeled examples, C4.5POSUNL(D(f)) where the exact value of D(f) is given
as input, and POSC4.5. The three algorithms take as input a set POS and a set
UNL where size(POS) = size(UN L) ranges from 50 to 1000 by step 50.

21

"C4.5POSUNL(LAB) ——
C4.5POSUNL(D(7)
POSCA.5 -

Fig. A.2. We consider decision lists where D(f) ranges from 0 to 1 by step 0.05.
We compare C4.5POSUNL(LAB) where the estimate of D(f) is done on a small
random set of 25 labeled examples, C4.5POSUNL(D(f)) where the exact value of
D(f) is given as input, and POSC4.5. The three algorithms take as input a set POS
and a set UNL where size(POS) = size(UNL) = 1000.

LAB only —— LAB only ——
LAB + fixed number of POS and UNL examples -~ LAB + fixed number of POS and UNL examples -------

0 50 100 150 200 250 300 [100 200 300 400 500 600 700 800
LAB size LAB size

Fig. A.3. error rate of C4.5 and C4.5POSUNL(LAB) averaged over 100 trials on the
kr-vs-kp data set (left plot) and on the adult data sets (right plot).

€4 5POSUNL(LAB) ——) C4.5POSUNL(LAB) ——
CA5POSUNL(D(f) - CA5POSUNL(D(7) -~
POSCA.5 POSCA4.5 i

3 i 3
majority ruie
50| C4.5 with 35000 labeled examples ----
40
35
w0l
20|
g g
s 30F 551
B S
20|
15 1
10 1
101
5|
0 0
0 100 200 300 400 500 600 700 0 2000 4000 6000 8000 10000
size(POS)=size(UNL) size(POS)=size(UNL)

Fig. A.4. the kr-vs-kp data set corresponds to the left plot where size(LAB) = 25,
size(POS) = size(UNL) ranges from 50 to 700 by step 50 and D(f) =~ 0.5;
the adult data set corresponds to the right plot where size(LAB) = 25,
size(POS) = size(UNL) ranges from 500 to 10000 by step 500 and D(f) ~ 0.75

22

