\

Expressiveness of a spatial logic for trees

Iovka Boneva, Jean-Marc Talbot, Sophie Tison

» To cite this version:

Iovka Boneva, Jean-Marc Talbot, Sophie Tison. Expressiveness of a spatial logic for trees. 20th
Annual IEEE Symposium on Logic in Computer Science, 2005, Chicago, United States. pp.280-289.
inria-00536696

HAL Id: inria-00536696
https://inria.hal.science/inria-00536696
Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00536696
https://hal.archives-ouvertes.fr

Expressiveness of Spatial Logic for Trees

Iovka Boneva, Jean-Marc Talbot and Sophie Tison
LIFL - UMR CNRS 8022 and INRIA Futurs - MOSTRARE project
59655 Villeneuve d’ Ascq Cédex, France
{boneva, talbot, tison } @lifl.fr

Abstract

In this paper we investigate the quantifier-free fragment
of the TQL logic proposed by Cardelli and Ghelli. The
TQL logic, inspired from the ambient logic, is the core of
a query language for semistructured data represented as
unranked and unordered trees. The fragment we consider
here, named STL, contains as main features spatial com-
position and location as well as a fixed point construct.
We prove that satisfiability for STL is undecidable. We
show also that STL is strictly more expressive than the
Presburger monadic second-order logic (PMSO) of Seidl,
Schwentick and Muscholl when interpreted over unranked
and unordered edge-labelled trees. We define a class of tree
automata whose transitions are conditioned by arithmetical
constraints; we show then how to compute from a closed
STL formula a tree automaton accepting precisely the mod-
els of the formula. Finally, still using our tree automata
framework, we exhibit some syntactic restrictions over STL
formulae that allow us to capture precisely the logics MSO
and PMSO.

1 Introduction

Spatial logics allow one to express properties about
structures such as trees [8], graphs [6, 14] and heaps [19].
The main ingredient of spatial logics is an operator called
composition (or separation). This operator permits com-
positional reasoning over concurrent and mobile processes
[10, 4] or over imperative programs with shared mutable
data structures [18].

The TQL logic [7, 8] is the core of a query language for
semistructured data represented as unranked and unordered
trees. The TQL logic is based on the static fragment of
the ambient logic: it contains spatial primitives, least fixed
point operator and quantification over labels and trees. Spa-
tial connectives are location a[¢)], satisfied by trees having a
single edge starting from the root that is labelled with @ and
leads to a subtree satisfying the formula ¢ and composition

¢ | ¢ satisfied by trees which can be obtained by merging
the roots of two trees, one satisfying ¢ and the other one ¢'.
The least fixed point operator considers formulae as map-
pings over sets of trees.

An important question about logics is the decidability of
satisfiability. It has been shown in [11] that satisfiability is
undecidable for a fragment of the ambient logic contained
in TQL. The use of quantification over names is crucial
for this result. However, decidable fragments of the logic
TQL could be useful in several domains: for constructing
type systems for semistructured data as the one proposed in
[5] or for testing query correctness, query containment and
defining constraints, as suggested in [8].

The logic TL introduced by Dal Zilio et al. in [12, 13] is
also inspired by the ambient logic. This logic is quantifier-
free and equipped with a restricted form of recursion but
it allows an additional spatial primitive (composition ad-
junct). However, this new construct adds no expressiveness
to the logic. The logic TL can be encoded into the so called
sheaves automata [12], which are automata whose transi-
tions are conditioned by Presburger formulae. As emptiness
is decidable for sheaves automata, satisfiability is decidable
for the logic TL. Sheaves automata are the first proposal of
a class of tree automata for ambient-based logics. It is not
clear whether the restriction of recursion in TL is neces-
sary for decidability. Additionally, it is not known whether
sheaves-like automata could be defined for larger fragments
of TQL.

Another fundamental question is the expressiveness of
a logic. A well-known logic used to express properties
about trees is the monadic second-order logic (MSO). It
is known that the TQL logic can express some counting
properties in trees that can not be defined in MSO; the for-
mula p.(al€] | b[E] | £ V 0) expresses that any node has
as many outgoing edges labelled with a as outgoing edges
labelled with b. Recently, Seidl et al. introduced in [20]
the Presburger monadic second order (PMSO) as an exten-
sion of MSO with some counting constraints allowing one
to express relationship between the number of children of a
given node satisfying some property. An example of such

a constraint is “as many children labelled with a as chil-
dren labelled with b”. Seidl et al. also introduced so called
Presburger tree automata and showed equivalence between
these automata and the logic PMSO. Presburger automata
are quite similar to sheaves automata as they both have
Presburger arithmetic formulae as conditions for transitions.
This similarity suggests that there is probably a strong rela-
tion between fragments of the TQL logic and PMSO logic,
but the precise relationship is unknown yet.

In this paper we focus on the quantification-free frag-
ment of the TQL logic that we call spatial tree logic (STL
for short). We study the satisfiability problem as well as
the expressiveness of this logic. In particular, we compare
STL with MSO and PMSO logics when interpreted over un-
ranked and unordered trees.

We show that satisfiability is undecidable for STL and
that STL is strictly more expressive than the logic PMSO
when interpreted over unranked and unordered trees. We
also identify two syntactic fragments of STL, denoted gSTL
and pgSTL, that correspond precisely to PMSO and to MSO
logics respectively. The equivalence is shown using a new
tree automata framework for STL: we define a general class
of tree automata in the spirit of Presburger and sheaves au-
tomata that use some arithmetical constraints as conditions
for the transition relation. By restricting these arithmetical
constraints, we obtain subclasses of automata equivalent to
the logics gSTL and pgSTL respectively.

The paper is organised as follows: Section 2 contains
definitions for the tree model we consider and for the logics
STL, MSO and PMSO; in Section 3 we introduce so called
automata with arithmetical constraints and we define two
subclasses of these automata that are equivalent to the logics
MSO and PMSO respectively. We prove in Section 4 unde-
cidability of satisfiability for STL; Section 5 describes the
construction of an automaton equivalent to some STL for-
mula. Finally, in Section 6 we define the fragments gSTL
and pgSTL of STL and we use automata with arithmeti-
cal constraints to show equivalence between these two frag-
ments and the logics MSO and PMSO respectively.

2 Tree model and logics : definitions

Let A be a finite set of labels. All through this paper,
by tree we mean a finite, unranked and unordered tree with
edges labelled from A.

We consider two different representations of trees
namely as nested multisets and as logical structures.

Nested multisets This representation, introduced in [7],
is quite natural for unranked and unordered trees.

Let us denote {} the empty multiset and W the multiset
union. The set Tree is the least set containing the empty
multiset {} and such that if ¢',¢"” belong to Tree and a is
a label from A, then ¢’ & t” and {a[t']}} belong to Tree as
well. Elements of multisets, also called tree elements, are
always of the form a[t] for some label a and some tree ¢.
The set of all tree elements is denoted ETree.

We write {ej,...,e,] for the multiset containing the
tree elements eq,...,e,. If ¢ is a multiset, then t(e) de-
notes the multiplicity (ie the number of occurrences) of the
element e in ¢. For any natural n and any tree element e, we

denote by n - e the tree {e, ..., e}.
——

n times
Below are depicted graphical representations of the trees

(in this order) ¢ = {a[{}], 0[{}]}. t" = { a[{a[{}, O[{}I}] }
and " = {a[{a[{}], b[{}]}], a[{}], b[{}]}. Note that ¢’ =

{a[t]} and t" =t W ¢'.
: PPN
AT N

Logical structure Let o be the signature {lab, | a €
A} U {<}, where the lab, are unary predicates and < is
a binary predicate. A tree 7 induces a finite o-structure
(E7,{lab] | a € A},<") where E7 is the finite set of
edges of 7, lab], (for a € A) is the labelling relation, that is
laby, (u) holds if the edge w in 7 is labelled with a and <"
is the predecessor relation, ie u <" u’ holds for the edges
u, v’ in 7 if the destination of the edge u and the source of
the edge u’ coincide.

There is a natural correspondence between trees as
nested multisets and (isomorphism-closed classes of) trees
as logical structures.

We consider here the spatial tree logic, denoted STL,
which is the quantifier-free fragment of the TQL logic [7].

Syntax Assume a countable set of recursion variables
ranged over by &, &’. STL formulae are defined by the fol-
lowing grammar (for « C A):

=0 | afg] | ¢l [T [=p [¢Ve || pis

To guarantee the existence of least fixed points (1 operator)
we impose a syntactic restriction for formulae p£.¢: occur-
rences of the recursion variable £ must occur under an even
number of negations (—) in ¢.

Some derived operators 0, @[], ¢ || ¢', & A ¢, v€.¢ can

be defined using negation as: 0 o, alo] &f (AN a)[d],

def def def

6l ¢ & ~(=¢|~¢). dA ¢ E (= V ~¢/) and vE.¢ £
—(p€.mp(€ — —E)), where ¢p{(§ «— —&) is the formula ¢
in which occurrences of the recursion variable £ have been
replaced with —¢.

The notions of free variables and closed formulae are de-
fined as usual. In the sequel of this paper, we assume that
in STL formulae, distinct occurrences of the binders p and
v bind distinct variables. We use « to denote either of the
symbols 4 or v. For some label a and some formula ¢, a[¢]
stands for the formula {a}[¢].

Semantics The semantics of STL is given by an interpre-
tation associating a set of trees with any formula. Let § be
a valuation associating a set of trees with any free recur-
sion variable. The interpretation of the formula ¢ under the
mapping ¢, denoted [¢]s, is recursively defined by:

[0]5 ={{}
[alglls = {{altl} | a € ot € [¢]5}

[o|¢'ls ={twt' |te[p]s.t' €[¢]s}
[Tls = Tree

[-¢ls = Tree \ [¢]5

[ove'ls =[8lsUlds

€15 =0(¢)

[n€.¢ls =N{S C Tree | S 2 [Blsje—s)}

where §[¢ — S| stands for the valuation J identical to §
except for the variable £ which is mapped to the set .S.

The syntax of STL can be enriched with the star operator:
if ¢ is a STL formula, then so is ¢*. The interpretation of
pxis [px]s = Upentti © ... W t, | Vi€ Lon.t; € [¢]s}
The star operator does not add expressive power to the logic
as, for any valuation ¢, [¢*]s = [u€.(4]€ V 0)]s.

A set of trees T' is said to be STL definable if there exists
some closed STL formula ¢ such that 7' = [4].

System of fixed point equations We present here an al-
ternative representation of the semantics of a closed STL
formula as the solution of a system of fixed point equations.

Following [1], a system of fixed point equations
Y over the variables &;,...,&, is a sequence & =
i€, 6n)s 5 én = fn(&1,. .., &) where the f; de-
note functionals that are intended to be interpreted as mono-
tonic mappings over some domain. The sequence of vari-
ables &1, . .., &, is denoted Vars(X) and &,,, the last variable
in Vars(X), is denoted last(X).

We interpret here equations over the complete lattice
structure induced by set inclusion (p(Tree), V, A), where
©(Tree) is the power set of Tree, V is set union and A is set
intersection. We consider the following monotonic opera-
tions over p(Tree): the constant O is interpreted as {{} }, 0
as Tree \ {{}} and T is the greatest element of p(Tree),
ie Tree; for T, T" € p(Tree) and @ C A, the unary oper-
ator [T is interpreted as the set {a[t] | a € a,t € T}

and @[T as the set {a[t] | @ & a,t € T}. Finally, the bi-
nary operator T'| T is interpreted as the set {t” | 3t,t'.t €
Tandt € T'andt” = ¢t W ¢} and T || T” as the set
(| vttt £twt ort€Tort €T}

The solution of X over the lattice (p(Tree), A,V) is a
mapping from {Vars(3)} into p(Tree), denoted Sy..

A closed STL formula ¢ is said to be in negation normal
form if it is a negation-free formula built over initial and
derived operators. Any closed STL formula can be put in
negation normal form by pushing negation deeper inside the
formula using derived operators and the fact that —«[¢] is
equivalentto 0|0V OV @[T] V a[-¢/].

Let ¢ be a closed STL formula in negation normal form.
Assume wlog that ¢ = u&.¢' for some formula ¢’. The sys-
tem of equations Eq(¢) is defined inductively on the struc-
ture of ¢ as: Eq(v) =

Eq(v'),&" = tr(v/)
Eq(y’), Eq(y") if = oy foro € {V, A, |}
Ea(y') if ¢ = afy]or ¢ =aly]

€ otherwise

if) = K€ A

where , composes sequentially two systems of equations, €
is the neutral element of this composition and tr(¢) is the
formula obtained from 1) by replacing in 1/ any recursion
sub-formula x&’.¢)’ by the variable £’. Note that, by con-
struction of Eq(¢), last(Eq(¢)) = &.

The semantics of STL formulae defined by systems of
equations is correct in the sense that

Proposition 1 For any closed STL formula ¢ in negation
normal form, Sgq(4)(last(Eq(¢))) = [¢].

Example 1 Let ¢ = /sz.(]ﬁz, ¢2 = a[—|,u£1.¢1] |§2 V 0 and
1 = &1 |€2V0. The formula ¢ is equivalent to the formula
¢’ in negation normal form defined as ¢’ = p&a.¢h, where

b= a[vé.¢)] &V 0 and ¢ = & || & A O. Therefore,
the system of equations Eq(¢) is

& E6]&6ND, &L Ealé]lékvo

Conversely, with any system of fixed point equations %
built over Boolean operations A, V and the operators 0, 0,
T,al],@[],]|and ||, one can associate a closed STL formula
denoted form(X) such that Sx(last(X)) = [form(X)]. The
formula form(X) can be effectively constructed: assume
Vars(X) = £1,...,&, and let for any i € 1.n, & = ¢;
be the i equation of . Iteratively, for any i from 1 to n,
and for any j < i, we replace occurrences of the recursion
variable &; in the formula ¢; by the formula ~;&;.¢;. Then
form(X) is equal to £,,&p, .G,

We recall the definition of monadic second-order logic
(MSO) for trees and we introduce, following [20], an ex-

tension of MSO called Presburger MSO (PMSO).

MSO Considering the signature o, MSO formulae are de-
fined by the following syntax:

Y= (labg(w))aen |u<v/ |ueU| | Y AY
| Jup | U

where u and U stand for first order and second order vari-
ables respectively.

Semantics of MSO is given by means of a satisfiabil-
ity relation. Let 7 be a tree given as the finite o-structure
(E7,{lab] | a € A},<7), and p be a valuation associating
elements of 7 with first order variables and subsets of £
with second order variables. Then satisfaction relation for
a tree 7 under valuation p and a MSO formula 1, denoted
T, p = 1, is recursively defined on the structure of ¢ as:

T,p Elabs(u) if lab](p(u)) holds in 7
pEu<u if p(u) <™ p(u')holds in 7
T,pEuwelU if p(u)belongsto p(U)

rpbw if TplEy
noEYAY if TpEYandTpEY

T,p E Ju if 7,plur—e] =1 forsomee e E7
T,pE3IUY if 7 plu— E] = forsome E C ET

PMSO The logic PMSO has been introduced in [20]. The
interpretation we give to this logic slightly differs from the
original one: Seidl et al. consider in [20] a vertex-based
MSO whereas we consider here an edge-based MSO.

Presburger arithmetic is the first order theory over the
structure (N, +, =) of natural numbers with addition and
equality. Let x be a numerical variable and n be a natural
number. Presburger formulae p are defined as:

pu=v=v|-p|pAp|Irp withv:=v+v|z|n

Let n be an assignment for the free variables occurring in
a Presburger formula p, extended canonically over numeri-
cal terms v. Satisfaction relation for a Presburger formula p
and an assignment 7 is inductively defined as:

nEv=2o"ifn(v) =)

nE-p ifnEp
nEpAp ifnEpandnE=p
nE3Jxp ifnz—n] | p for some natural n

PMSO is defined by extending MSO with a new
kind of atomic formulae u/p where p is a Presburger
formula constructed over the set of variables {#U |
U is a second order variable}. Satisfaction relation is ex-
tended to these atomic formulae: for some tree 7 with do-
main E” and some valuation p, let n be the valuation asso-
ciating the cardinality of the set p(U) N {e | p(u) <7 e})

with each variable #U occurring in the Presburger formula
p. Then 7 =, u/pif n = p.

A set of trees T is called MSO definable (resp. PMSO
definable) if there exists some MSO (resp. PMSO) sentence
Ysuchthat T Eyiff T € T.

3 Automata with arithmetical constraints

We present a class of automata, very close to Presburger
tree automata [20], but adapted to edge-labelled trees and
for which Presburger formulae are replaced by more gen-
eral arithmetical constraints. Our automata are also close to
sheaves automata [13, 12] and multitree automata [16]. We
also relate these automata to the logics PMSO and MSO.

In the following, for any sets S, 7 we denote T the set
of mappings from S into 7. Moreover, we freely identify
elements from N° with multisets over the set S.

Definition of automata An automaton with arithmetical
constraints (called simply automaton in the sequel) is a tu-
ple (A,Q, A, F) where A is a finite set of symbols, @ is
a finite set of states, A is a mapping associating with each
state ¢ in Q a pair from (p(N@), p(A)) and finally, F C N%
is the acceptance condition.

Let A = (A, Q, A, F) be an automaton. For any state ¢
in Q and for any set of mappings N C N?, we define the
sets £(q) C ETreeand L(N) C Tree. L(q) is the set of tree
elements accepted in the state g of the automaton and £(V)
is the set of trees accepted by the arithmetical condition N.
These two sets are recursively defined as follows:

e L(qg) is the set of tree elements o, [L(N,)], where oy
is the set of labels and N, is the set of mappings from
N such that A(q) = (N, a);

e L(N) is the set of trees t = {eq, ..
there exists a multiset of states {q', ...
thate; € L£(g*) foralli € 1..k.

Then the language accepted by the automaton A, written
L(A), is the set of trees L(F).

., e} for which
,¢"} in N such

Subclasses of automata We define first star-free and
semilinear sets of mappings by analogy with star-free and
semilinear sets of vectors.

For n,n’ € N? and A € N, we define the mappings
n+n’ and An as: (n+n’)(¢) = n(q)+n’(¢) and (An)(q) =
An(q) forall ¢ € Q. Let py, ..., p, and b be mappings in
N@. We denote Lin(b, py, ..., p,) the set of mappings

7p1") = b+ Z >\sz

iel..r,\;eN

Lin(b, p1,. ..

A set of mappings of the form Lin(b, p1,...,p,) is called
a linear set; the mapping b is its basis and p;, ..., p, are
its periods.

A set of mappings N C N@ is star-free if it can rep-
resented as a finite union of linear sets Lin(b, p1,...,p:,)
for which all the periods p; are unit mappings, ie J¢ €
Q,pi(q) = Land Vq' # ¢, pi(q') = 0.

A set of mappings N C N@ is semilinear if it can be
represented as a finite union of linear sets.

A star-free (resp. semilinear) constrained automaton is
an automaton for which all arithmetical conditions are star-
free (resp. semilinear) sets of mappings.

A semilinear (or a star-free) subset of N© is effectively
given when it is given as a finite union of linear sets, each
of which is represented by a basis and a finite number of
periods. A star-free (resp. semilinear) constrained automa-
ton is effectively given if all arithmetical constraints in the
automaton are effectively given star-free (resp. semilinear)
sets of mappings.

Determinisation and closure under Boolean operations
An automaton is deterministic if for any states ¢, ¢’, the set
L(q) N L(q") is empty. For any effectively given star-free
(resp. semilinear) constrained automaton, one can construct
a deterministic star-free (resp. semilinear) constrained au-
tomaton recognising the same language. These two classes
of automata are also closed under Boolean operations.

Deciding emptiness For an automaton A= (A, Q, A, F),
deciding emptiness of the set of trees £(A) can be done un-
der certain conditions. A state of the automaton ¢ € () is
reachable if L(q) is not empty; in the same way, a set N
of mappings from N is reachable if L(N) is not empty.
Hence, N is reachable iff it contains a mapping n such
that for all ¢ € @, n(g) # 0 implies that ¢ is reachable.
Note that if N contains the null mapping 0%, ie the map-
ping associating 0 with any ¢ € (@), then it is reachable,
as in that case {]} belongs to £(N). On the other hand,
a state ¢ is reachable if, for « C A and N C N€ such
that A(q) = (N, «), the set « is not empty and N is reach-
able. According to these remarks, Proposition 2 below gives
sufficient conditions to make emptiness decidable for au-
tomata.

Proposition2 Let A = (A, Q,A,F) be an automaton.
Emptiness is decidable if for any state q in Q with A(q) =
(N, «), and for any subset of states Q' C Q, one can decide
whether the set of mappings N contains some n such that

Sor any state q" in Q, n(q") # 0 implies ¢ € Q'.

Conditions from Proposition 2 are fulfilled by effectively
given star-free (resp. semilinear) constrained automata. So,

Corollary 3 Emptiness is decidable for effectively given
star-free and semilinear constrained automata.

Connection with the logics MSO and PMSO

Proposition 4 A set of trees is accepted by some semilinear
constrained automaton iff it is PMSO definable.

Proof Using the relationship between semilinear sets and
solutions of Presburger formulae, the result easily follows
from the equivalence of expressiveness of Presburger au-
tomata and PMSO logic sentences as established in [20]. O

Proposition 5 ([3]) A set of trees is accepted by some star-
free constrained automaton iff it is MSO definable.

4 Satisfiability of STL

The satisfiability problem is, given a closed STL formula
¢, decide whether [¢] is empty. We show here that this
problem is undecidable for STL and that STL is more ex-
pressive than the logic PMSO.

Theorem 6 Satisfiability is undecidable for STL.

Sketch of proof The proof is done using a reduction
of emptiness of two-counter machines inspired from the
proof of undecidability of emptiness for alternating two-
way AC-tree automata [15]. A two-counter machine [17]
M = (Q,q,qs,A) is a finite labelled transition system
where () is the set of states, g; is the initial state, gy is
the final state and A is a set of transitions of the form
(g,7,q"), where q,¢' € @Q and r belongs to the set Trans =
Ujco1{®5,©5,0;}. A configuration of the machine M is
a triple (g, no,n1), where ¢ is a state of the machine and
ng,n, are naturals called values of the counters. The set
of transitions A defines the step relation -, over config-
urations as follows: (g,m0,n1) Fa (¢, n,n}) if one of
the three statements is true for j, k € {0,1} and j # k: (i)
ny =n;+1,n, = ngand (¢,®;,¢') € A; (i) nj =n;—1,
n, = ng and (¢,6;,q') € A (i) n; = n; = 0, np = nj,
and (q,0;,¢") € A. As usual -}, denotes the transitive re-
flexive closure of 4. The language accepted by the two-
counter machine M, denoted £(M), is the set of naturals
n such that (g;,n,0) F3, (gf,mo,m1) for some naturals
mg, m1. Emptiness of £(M) is undecidable for an arbi-
trary two-counter machine [17], as any recursively enumer-
able set of naturals can be represented as the language of
some two-counter machine.

Consider an arbitrary two-counter machine M =
(Q, i,y qf, A). A tuple (ng,xo,n1,z1) of N* is said to be
correctif ng > xg and ny > x1. The set of correct tuples of
N* is denoted N2. For any r in Trans, we define the binary
relation R, A over the set Q) x N2 as (R A is used in infix
notation): (g, (no, zo,n1,21)) Rea (¢, (ng, zh, 04, x4))
if (¢g,7,¢') € A and for j,k € {0,1}, j # k, one has
ny, = ng, T, = < and one of the following holds: (7)

r:GBj,n; :nj,x; =z; —1, (ii)r:@j,n; =n; — 1,
2 = xjor (iii) r = 0, n; = nj = x; =).

Intuitively, the value of the first counter of M is obtained
as ng—xo and the second one as ny —x1. The binary relation
R is the union of the relations R, A for all 7 in Trans and
RA™ denotes its transitive and reflexive closure.

It holds that for any states ¢, ¢’ of the machine and for
any naturals ng,nq,ng,n}, (¢,n0,n1) Fiy (¢',ng,nh)
iff there exist naturals xg, 1, x(,) such that (g, (no +
Zo, Lo, N1 +x1,21)) Ra™ (¢, (nh + (), xh,) + 2, x))).
Therefore, £(M) is not empty iff there exist some naturals
x,y, mo, mg, my, my such that (¢;, (no + =, z,y,y)) Ra*
(qfﬂ (mo, mé)v my, mll))

Let ag[{}], bo[{}, a1[{}], b1[{}] be tree elements with
ag, bg, a1, by four distinct labels. For any tuple of naturals
(ng, xo,n1,21) we denote ((no, zo,n1,x1)) the tree ng -
ao[{}] W @o - bo[{}] & n1 - ax[{}] W @1 - by[{}]. For any
N C N%, (N) denotes the set of trees {(n) | n € N}.

For any state ¢ €), we define Acc(q) as

{s e N} |35’ € N, (¢,5) Ra™ (q1,5)}

We define a system of fixed point equations X over the

set Of variables {fokOa gokly Eoka gzero()v Ezeroh f}U{fq | q €
@} such that last(X) = £. This system will satisfy that for

any ¢ € @, Sx(§,;) = (Acc(q)). The first five equations of
Y are:

Eokj £ a;5[0]];[0] [€aks V (a;[0]) *
Eok = &oko | Eokt
gzeroj é aj [0} |b] [0} |§zernj V gokk

These equations ensure that Ss; (k) = {(s) | s € N2} and
that Ss;(&zero;) 18 the set of trees ((no+xo, 1o, N1 +1,11))
with ng, n1, 20,21 € Nand z; = 0.

For any state g € (), ¢ # ¢y, the equation for g in ¥ is

L&

[CRADISVAN

for jin {0,1}

=

for j,kin {0,1},k # j

Pred(&y, 1)

where for any 7 in Trans, Pred(¢’, r) is given by
Pred(¢’, &;) = (§'|b;[0]) A &ox
Pred(¢’, ©5) = (§']a;[0]) A€ok
Pred (g/a Oj) gl A gzeroj

—

The equation for §,, in 3 is §;, £ ¢« and the last equation
of L is £ £ &g A Leror-

Intuitively, for a set N C N2 of correct tuples and a
valuation associating (V) with &, Pred(,) represents the
set of trees (s) for s in N* such that there exist a tuple s’ €
N and states ¢, ¢" € @ for which (¢,s) Rya (¢,5)

Thus, £(M) is empty iff Sx(§) = @.

Corollary 7 For any recursively enumerable set of naturals
E there exists a formula ¢ such that n € E iff there exist
two naturals x,y such that the tree (n +) - ag[{}] W z -
bol{}] @y - ai[{}] @ y - ba[{}] belongs to [$i], where
ag, bo, a1, by are pairwise distinct labels.

Proposition 8 There exists a STL formula ¢ such that [§]
is not PMSO definable.

Sketch of proof By Proposition 4, it is enough to show
that there exists a STL formula ¢ such that [¢] can not be
represented as the language of some semilinear constraint
automaton. Let A’ be the set of labels {ag, bg, a1,b1}. By
Corollary 7, let ¢ be the formula associated with a recur-
sively enumerable set of naturals F, ie s.t. n € F iff the tree
(n+a)-ao[{}] W z-bo[{}] @ y-ar[{}] W y-b:[{}] belongs
to [¢] for some naturals z, y. Consider now the automaton
A=A QA F)withQ = {J,cp {g.} and forany c € A’,
A(g.) = (09,{c}). One can prove that [¢z] is equal to
the language of some semilinear constrained automaton iff
[¢E] is equal to L£(A) for some semilinear set of mappings
F'. Assume that such a set F’ exists, then by definition of
¢E, there exist =,y € N such that F’ is the set of mappings
{(dao = n+ 2,000 = 2,00, = Y., — y) | n € EL
Now, as semilinear sets are closed by projection and by
linear combinations of components, the set of mappings
{(gag — n) | n € E} from N{49a0} must be semilinear,
implying that any recursively enumerable set of naturals is
semilinear.

Theorem 9 STL is strictly more expressive than the logic
PMSO.

Proof Follows from Proposition 8 and Proposition 25 from
Section 6 stating that semilinear constrained automata are
equally expressive to a fragment of STL. O

5 Tree automata for STL

All through this section we consider a closed STL for-
mula ¢. We will define an automaton A, such that

L(Ag) = 9]

A system of equations is in normal form if the right-hand
side of each equation has one of the following forms:

T 0 0 &vg ng o] alg €l <lE

Equations of the form ¢ = a[¢/] or ¢ £ @[¢'] are called
elementary equations and EVars(X) is the set of variables of
3 occurring as left-hand side of some elementary equation.

Any system X with variables {&1, ..., ¢, } can be trans-
formed into a system X’ in normal form with some fresh
extra variables {&1,...,&., }; this transformation preserves
the solution in the sense that for all 1 € 1..n, the solutions
of the systems 3 and X’ for the variable &; coincide.

A system of equations X is strongly normalised if it is
normalised and for any equation & = ¢ [£” or & £ ¢ || ¢”
in 3, {} does not belong neither to Sx;(¢’) nor to Sx(¢”).

For any closed STL formula ¢, the system of equations
Eq(¢) can be transformed into a strongly normalised system
of equations denoted Eq(¢): we first put Eq(¢) in normal
form, thus obtaining a system of equations .. Let £ = ¢’ |
¢ be an equation in X and let {} belong to S (&) but not
to Ss:(¢’). Then one can introduce a new variable to 3, say

" with corresponding equation ¢/ £ ¢” A 0 and replace
in ¥ the equation for & by ¢ = ¢ | &/ Vv ¢. The newly
obtained system of equations ¥/ is equivalent to Eq(¢) over
the original variables. ¥’ can then be put in normal form to
obtain Eq(¢). This can effectively be done as:

Lemma 10 For any system of equations 3 and for any vari-
able & in Vars(X), one can decide whether {J} belongs to
Ss(§).

Example 2 A system of equations 3. in normal form for the
formula ¢ given in Example 1 is

1 =Gl&, &=0, & =&,
GEaldl, GEGIG, G50, HEGVE
It holds for ¥ that {}} belongs to Sx;(&2) and Sx (&) and

does not belong to Sx;(§) for any variable & in Vars(X) dif-
ferent from &5 and EL. The system of equations %' is:

fi égl‘lfé/vgla ééia gl égi /\gé?
[" [=

§=alll], =818V E, & =0A0,
[I = I

=0, & =&6&N0, L=6VE

Ay

States of the automaton For any £ € EVars(Eq(¢)), we
define the STL formulae Pos(&), Neg(&) and Compl(€) de-
pending on the equation for the variable £ in Eq(¢)

) Pos() = ale/

if § = af¢] Neg(§) = a[=¢]
Compl(¢) = @[T]
Pos(§) = a/¢']

if ¢ = al¢’] Neg (&) = a[~¢]

Compl(€§) = [T
We denote split(€) the set {Pos(&), Neg(&), Compl(£)}.
The set of states (), of the automaton A is defined as

Qo = lcervars(Eq(s)) SPIit(§) where [T denotes the Carte-
sian product. For any ¢ € EVars(Eq(¢)), and for any state

g € Q4, we denote with ¢(§) the component of ¢ corre-
sponding to &.

Transitions and acceptance condition of the automaton
We transform the system of equations Eq(¢) into the sys-
tem of equations Eqn(¢) over the same set of variables ob-
tained from Eq(¢) by replacing each elementary equation
EZal¢loré Zal¢|by ¢ = prje (the prjgs are constants
whose value will be given shortly.)

For two sets of mappings I, I’ C N (for some finite set
Q)), the sets of mappings I + I’ and I ++ I’ are defined by:

I+I'={d"|3d,d’.d" =d+d'andd € T andd’ € I'}
I+ 1I'={d"|vd,d.d"#d+d ordelord €I}

We interpret Eqn(¢) on the complete lattice
(p(N®@2), Vv, A): Boolean operators \/, A are interpreted as
union and intersection; 0 is the singleton set {0%¢}, 0 is the
set of mappings N?# ~ {0%¢} and T is N@¢; for any sets of
mappings I, I’ C N, the symbols |, || are interpreted as the
operators + and -H- respectively. Finally, for any variable &
in EVars(Eqn(¢)), prj is interpreted as the set of mappings
{n | n(q) = 1if ¢(§) = Pos(§) and n(q) = 0 otherwise}.
The solution of Eqn(¢) over the lattice (p(N%¢), v, A) for
the variable ¢ is denoted Rggn(4)(§)-

For any ¢ in EVars(Eq(¢)), the set of labels lab(¢) and
the variable var(¢) are given by: lab(§) = « and var(§) =
¢"if € £ a[¢’] is an equation in Eq(¢) and lab(¢) = A \ «
and var(§) = ¢ if € £ @[¢’] is an equation in Eq().

Now, for any state ¢ € Q4, let oy be the set of labels
and N, the set of mappings from N defined as (where
PosV(q) C Vars(Eqn(¢)) is the set of variables £ for which
q(§) = Pos(&) and the sets NegV(g) and ComplV(q) are
defined accordingly):

W= N

£€PosV(q)UNegV(q)

lab(&)n ()

£eComplV(q)

ﬂ 7?qun(qﬁ) (var({))

£€PosV(q)
m NQ¢ N REqn(d)) (var(f))
£€NegV(q)
Ny = N7 U N
Then for any g € Q4. Ay(q) is defined as (N, o).
Finally, F4, the acceptance condition of A, is the set of

mappings Reqn() (last(Eqn(¢))).
Note that the automaton A4 is deterministic by construc-
tion.

A~ lab(§)
N(;’os _

Neg __
Nq =

We show in this section that the construction of the au-
tomaton we gave is correct, that is, [¢] = L£(A). We start

by defining the notion of basis and give some of their prop-
erties needed for our proof.

5.3.1 Bases and their properties

Definition 11 (Bases) Let () be a finite set. A basis © over
Q is a mapping in p(ETree)Q verifying that ©(q)NO(q¢') =
@ forany q,q' € Q,q # ¢ andJ .o ©(q) = ETree.

Definition 12 (Bases product) Let Q)+, ..., Q, be some fi-
nite sets. For n bases ©1,...,0, over Q1,...,Q, respec-
tively, their product, denoted [];., ,, ©s, is the mapping

in NQ ¥ X@n defined by (Hiel..n 0:)((q1,- - -
Nic1..n ©Oilas) forall (qu, - . .

Lemma 13 Let Qq,...,Q, be some finite sets. If
©1,...,0, are bases over Q1,...,Q, respectively, then
the product [| O; is a basis over Q1 X + -+ X Q.

1 Qn)) =
) € Q1 X ... X Qn.

1€l..n

Definition 14 (Decomposition) Let Q) be a finite set and ©
be a basis over Q).

e For any tree t = {ey,...,e,}, the decomposition of
t on ©, written dcmp(t, ©), is the mapping in N? asso-
ciating with each q € Q the cardinality of the multiset
O(q) N {e1,. .., eq}

e For any set of trees T, the decomposition of T on ©, writ-
ten demp(T, ©), is the set of mappings {dcmp(¢,0) | t €
T}.

In other words, demp(¢, ©)(q) is the number of tree ele-
ments among e, . . ., e, that belong to the set O(q).

Definition 15 (Interpretation) Let Q) be a finite set and ©
be a basis over Q). For any mapping d € N, the inter-
pretation of d on ©, written [d, ©], is the set of trees t
such that for all ¢ € Q, (demp(t,0))(q) = d(q) when-
ever ©(q) # @. Interpretation is extended to subsets of N@
as follows: for any D C N?, [D,0] = Uy pld, O]

Note that the decomposition of a tree ¢ on a basis © over
@ is unique, whereas there may be several mappings d €
N@ such that [d, ®] = t. More precisely, for any ¢ such
that ©(q) = @, the value of d(q) does not contribute for
[d, ©] and thus may be arbitrary.

Definition 16 (Discrimination) A basis © is discriminat-
ing for a set of trees T if [demp(T, ©),0] = T.

Informally, discrimination expresses that for any mapping d
in D either all trees whose decomposition on © is d belong
to T or no such tree belongs to 7.

We terminate with some properties of bases and discrim-
ination.

Proposition 17 Let @ be a finite set and © a basis over Q.

1. © is discriminating for the set of trees T iff it is

discriminating for Tree \. T. Moreover in this case
[N® <\ demp(T,0),0] = Tree \. T.

2. Tree = [N%, O] and {{}} = [02, 0].

3. Forany sets of trees T, T s.t. © is discriminating for T
and T', © is discriminating for the sets of trees T UT",
TN, T|T" and T || T'. Moreover, if T = [D, ©] and
T =[D',0], then TVT =[DVvD,0], TANT =
[DAD,O], T|T =[D+D',0]and T || T =
[D + D', 0].

5.3.2 Proof of correctness

Now, with any ¢ in EVars(Eq(¢)) we associate the mapping
basis(¢) in p(ETree)*™™) defined as:

basis(¢) (Pos(&)) = 1ab(&) [Sgys (var(9))]
basis(¢) (Neg(£)) = lab(&)[Tree . Sy (var())]
basis(¢)(Compl(£)) = (A . {lab(¢)})[Tree]

It is easy to see that basis(&) is a basis over split(§).

Consider now the basis O defined as the product of
the bases basis(¢) for any ¢ € EVars(Eq(¢)), that is,
O = Tl¢cevars(Eq()) Pasis(§). Remind now that the set
Qy is defined as J[;cpyars(gq(s)) SPIit(E); so, by defini-
tion of basis(§) and bases product, we conclude that ©4
is a basis over (Qy. We will show that for any ¢ € Qg,
L(q) = O4(g). This proof requires auxiliary results we
give first.

Proposition 18 For any & variable in Eq(q&), Oy is discrim-
inating for Sg, 4 &).

Sketch of proof Towards contradiction: let d be a minimal
(for a well-founded partial ordering over mappings) map-
ping and £ be a variable in Vars(Eq(¢)) such that there ex-
ist trees ¢, ¢’ for which demp(t,©4) = demp(t',04) = d
and t € Sg (&) and t' & Sg,)(§) (that is, Oy is
not discriminating for Sg,) (£)). One can show that the
right-hand side of this equation is of the form &’ | £ or
€| €. As Eq(¢) is strongly normalised system of equa-
tions and so {} does not belong to Sg ¢)(§’) neither to
Sta(s) (&), there exists a mapping d’ strictly smaller than
d, a variable &, € Vars(Eq(¢)) and trees t1,t, such that
demp(t1,04) = demp(ts, Oy) = d’ and 11 € Sgy(4) (1)
and 2 & Sgy,)(€1). This contradicts the minimality of
d and allows to conclude that ©4 is discriminating for

Sgq(4) (&) for any variable £ in Vars(Eq(¢)).

Proposition 19 For any ¢ variable in Eq(¢), Seqy (&) =
[Reqn(s)(€), Og]-

Sketch of proof For any & € EVars(Eq(gb)), one has
S(&) = [prig, ©4] by definition of © 4 and prj¢; so the prop-
erty holds in this case. For the other variables, using Propo-
sition 17 and definition of the system of equations Eq(¢)
we can conclude that the solution of Eq(¢) over the lattice
(p(Tree), V, A) is exactly the solution of Eq(¢) over the lat-
tice (p(N®¢),V, A) but using an alternative representation
of sets of trees as their decomposition on the basis ©4.

Proposition 20 For any state q in Q4, L£(q) = O4(q). For
any set of mappings N included in N%¢, L(N) = [N, O4].

Sketch of proof The proof goes by induction on the height
of trees; denoting Tree,, (resp. ETree,) the set of trees
(resp. of tree elements) of height at most n, we show that
for any natural n, £(q) N ETree,, = ©4(q) N ETree,, and
L(N) N Tree, = [N,O4] N Treey.

Theorem 21 [¢] = L(Ay).

Proof From Proposition 20 as L£(Ag) = L(F}y). O
Using Proposition 2 and the construction of Ay, one

can give sufficient conditions on the system of equations

Eqn(¢) that guarantee decidability of emptiness for A.

Proposition 22 If for any two disjoint sets W,W' C
Vars(Eqn(¢)) and for Q' C Qg, one can decide whether
there exists n in ey Rean(e)(§) N Necwr N@s
Rean(e) (§) such that n(q) # 0 implies q € Q', then empti-
ness is decidable for the automaton A.

6 Fragments of STL with limited recursion

We define here two syntactic fragments of STL, namely
¢STL and pgSTL; we show that the former is equivalent to
star-free constrained automata and the latter to semilinear
constrained automata. This implies their equivalence with
MSO and PMSO respectively.

We assume in this section that STL formulae are given
using the initial syntax of the logic (no derived operators)
but allowing the star operator. An occurrence of a variable
¢ is guarded in some closed formula ¢ if it appears under
some nesting operator «[| in the sub-formula p.¢" of ¢.
A STL formula ¢ is said to be guarded (for recursion), if
all occurrences of recursion variables are guarded in ¢. A
STL formula is said to be positively guarded (for recursion),
if for any pu&.¢" sub-formula of ¢, any occurrence of the
recursion variable £ in ¢’ is either guarded or not preceded
by any negation in ¢’.

Definition 23 (gSTL and pgSTL logics) The logic gSTL
(resp. pgSTL) is the restriction of STL to guarded formu-
lae (resp. to positively guarded formulae) for recursion.

Note that the gSTL fragment is included in the pgSTL frag-
ment. Remark also that the star operator can be used in
pgSTL (as it can be defined in it) but not in gSTL.

Example 3 Let ¢1 = a[B[¢] [~(=¢ [~c[0])] V O, ¢ =
pé.afé]x| (B[0]VE) VO and g5 = pu&.~(B[0]| ~(af0][£)) V
0. The formula ¢4 is a gSTL formula, as all occurrences of
& are guarded by the nesting operator «; the formula ¢ is
a pgSTL formula, as the first occurrence of & is guarded by
the nesting operator o and the second one is not preceded
by any negation; the formula ¢s is neither a gSTL formula
nor a pgSTL formula, as the third occurrence of the variable
& is not guarded and is preceded by negations.

Intuitively, gSTL restricts recursion to vertical traversing
of trees, whereas pgSTL allows vertical and (a restricted
form of) horizontal recursion. It has to be noticed that most
reasonable properties on trees can be expressed in pgSTL.

We establish the equivalences between the gSTL frag-
ment of the logic and star-free constrained automata on one
hand and the pgSTL fragment and semilinear constrained
automata on the other hand.

Proposition 24 If ¢ is a formula from gSTL (resp. from
pgSTL), then for any variable § from Ifq(qﬁ), Reqn(s)(§) is
a star-free (resp. a semilinear) set of mappings that can be
given effectively.

Theorem 25 For any set of trees T, T is gSTL definable iff
it is accepted by some star-free constrained automata.

For any set of trees T, T is pgSTL definable iff it is ac-
cepted by some semilinear constrained automaton.

Corollary 26 Satisfiability is decidable for the logics gSTL
and pgSTL.

Proof Testing satisfiability for a formula ¢ reduces to test-
ing emptiness for the corresponding automaton A,4. Con-
clusion follows from Proposition 24 and Corollary 3. a

Moreover, it can be shown that the pgSTL fragment of
the logic collapses in the fragment of guarded and negation-
free STL formulae enriched with the star operator.

From the encoding of two-counter machines used in The-
orem 6 to show undecidability of the full STL and from
decidability result for pgSTL, it seems that the source of
undecidability of the full logic is the possibility of mixing
horizontal recursion and conjunction in full STL.

Theorem 27 For any set of trees T, T' is MSO definable iff
T is gSTL definable and T' is PMSO definable iff T' is pgSTL
definable.

7 Final Remarks

From any pgSTL formula, we have shown that an equiv-
alent PMSO formula can be built. Therefore, using results
on model-checking from [20], we have that the data com-
plexity for the model-checking problem for pgSTL is linear
in the size of the tree. Using our tree automata approach,
one can show that data complexity of model checking for
the full STL logic is polynomial time.

Decidability results for the STL logic presented in this
paper still hold when the set of labels A is countable, as it is
the case for the logic TL presented in [12, 13].

We strongly believe that the satisfiability for pgSTL can
be decided in elementary time. This would imply that the
construction of a pgSTL formula from a given PMSO for-
mula is non-elementary.

Acknowledgements The authors thank G. Ghelli and
D. Colazzo for their valuable comments on a preliminary
version of this work.

References

[1] A. Arnold and D. Wink. Rudiments of p-Calculus. North-
Holland, 2001.

I. Boneva and J.-M. Talbot. On Complexity of Model-
Checking for the TQL Logic. In 3rd IFIP Int. Conf. on
Theoretical Computer Science (TCS2004), pages 381-394,
2004.

I. Boneva and J-M. Talbot. Automata and Logics for Un-
ranked and Unordered Trees. In 16th Int. Conf. on Rewriting
Techniques and Applications (RTA), volume 3467 of LNCS,
pages 500-515, Springer, 2005.

L. Caires and L. Cardelli. A Spatial Logic for Concurrency
(part 1). Information and Computation, 186(2):194-235,
2003.

C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding Va-
lidity in Spatial Logic for Trees. In ACM SIGPLAN int.
workshop on Types in languages design and implementation,
pages 62-73, 2003.

L. Cardelli, P. Gardner, and G. Ghelli. A Spatial Logic for
Querying Graphs. In 29th Int. Colloquium on Automata,
Languages and Programming (ICALP), volume 2380 of
LNCS, pages 597-610. Springer, 2002.

L. Cardelli and G. Ghelli. A Query Language Based on
the Ambient Logic. In European Symp. on Programming
(ESOP), volume 2028 of LNCS, pages 1-22. Springer, 2001.
L. Cardelli and G. Ghelli. TQL: A Query Language for
Semistructured Data Based on the Ambient Logic. Mathe-
matical Structures in Computer Science, 14:285-327, 2004.
L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal
Logics for Mobile Ambients. In 27th ACM Symp. on Prin-
ciples of Programming Languages (POPL’00), pages 365—
377. ACM, 2000.

L. Cardelli and A. D. Gordon.
240:177-213, 2000.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10] Mobile Ambients. TCS,

10

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopad-
hyayd, and J.-M. Talbot. Model Checking Mobile Ambients.
TCS, 308(3):277-331, 2003.

S. Dal Zilio and D. Lugiez. XML Schema, Tree Logic and
Sheaves Automata. In Rewriting Techniques and Applica-
tions, 14th Int. Conf. (RTA), volume 2706 of LNCS, pages
246-263. Springer, 2003.

S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A Logic
You Can Count on. In 31st ACM SIGPLAN-SIGACT symp.
on Principles of programming languages, pages 135-146.
ACM, 2004.

A. Dawar, P. Gardner, and G. Ghelli. Expressiveness and
Complexity of Graph Logic. Technical report, Imperial Col-
lege, 2004.

J. Goubault-Larrecq and K. N. Verma. Alternating Two-
way AC-Tree Automata. Research Report, Laboratoire
Spécification et Vérification, November 2002.

D. Lugiez. Counting and Equality Constraints for Multitree
Automata. In Foundations of Software Science and Compu-
tational Structures: 6th Int. Conf., FOSSACS, volume 2620
of LNCS, pages 328 — 342. Springer, 2003.

M. L. Minsky. Recursive insolvability of Post’s problem of
”tag” ard other topics in the theory of turing machines. In
Annals of Mathematics, Second Series, volume 74, pages
437-455, 1961.

P. W. O’Hearn, J. C. Reynolds, and H. Yang:. Local Reason-
ing about Programs that Alter Data Structures. In Computer
Science Logic (CSL), volume 2142 of LNCS, pages 1-19.
Springer, 2001.

J C. Reynolds. Separation Logic: A Logic for Shared Muta-
ble Data Structures. In /7th IEEE Symp. on Logic in Com-
puter Science (LICS), pages 55-74. IEEE Computer Society,
2002.

H. Seidl, T. Schwentick, and A. Muscholl. Numerical Doc-
ument Queries. In 22nd ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems, pages 155-166.
ACM, 2003.

