C. Charu, J. L. Aggarwal, P. S. Wolf, C. Yu, J. S. Procopiuc et al., Fast algorithms for projected clustering, ACM SIGMOD Int. Conf. on Management of Data, pp.61-72, 1999.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, ACM SIGMOD Int. Conf. on Management of Data, pp.94-105, 1998.

P. Berkhin, A Survey of Clustering Data Mining Techniques, Accrue Software, 2002.
DOI : 10.1007/3-540-28349-8_2

C. L. Blake and C. J. Merz, UCI repository of machine learning databases, 1998.

P. Bradley, U. Fayyad, and C. Reina, Scaling EM (Expectation-Maximization) clustering to large databases, 1998.

C. H. Cheng, A. Wai-chee, Y. Fu, and . Zhang, Entropy-based subspace clustering for mining numerical data, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, pp.84-93, 1999.
DOI : 10.1145/312129.312199

C. Domeniconi, D. Papadopoulos, D. Gunopolos, and S. Ma, Subspace Clustering of High Dimensional Data, SIAM Int. Conf. on Data Mining, 2004.
DOI : 10.1137/1.9781611972740.58

K. Kailing, H. Kriegel, and P. Kröger, Density-Connected Subspace Clustering for High-Dimensional Data, SIAM Int. Conf. on Data Mining, pp.246-257, 2004.
DOI : 10.1137/1.9781611972740.23

H. Nagesh, S. Goil, and A. Choudhary, Mafia: Efficient and scalable subspace clustering for very large data sets, 1999.

L. Parsons, E. Haque, and H. Liu, Evaluating subspace clustering algorithms, Workshop on Clustering High Dimensional Data and its Applications, SIAM Int. Conf. on Data Mining, pp.48-56, 2004.

D. Pelleg and A. Moore, Mixtures of rectangles: Interpretable soft clustering, 18th Int. Conf. on Machine Learning, pp.401-408, 2001.

A. Ioannis, P. W. Sarafis, A. M. Trinder, and . Zalzala, Towards effective subspace clustering with an evolutionary algorithm, IEEE Congress on Evolutionary Computation, 2003.

. Kyoung-gu, J. Woo, and . Lee, FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting, 2002.

L. Ye and M. E. Spetsakis, Clustering on unobserved data using mixture of gaussians, 2003.

K. Y. Yip, D. W. Cheung, and M. K. Ng, A highly-usable projected clustering algorithm for gene expression profiles, 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics, pp.41-48, 2003.