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ABSTRACT: The constraint language for lambda structures (CLLS) is an expressive language of tree de-
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1 Introduction
The constraint language for lambda structures (CLLS) is an expressive language of
tree descriptions that was proposed recently as a uniform framework for semantic
underspecification [18, 17]. The models of CLLS are so-called λ-structures. They
are first-order tree structures that uniquely model a λ-term modulo renaming of bound
variables. CLLS lets us conjoin dominance constraints [34, 8, 51, 2] with powerful
parallelism [19] and binding constraints.
The idea of semantic underspecification [50, 45] is to postpone the enumeration of

meanings of a semantically ambiguous sentence. Instead, one represents the set of
all meanings in a compact manner and provides an algorithm that can enumerate the
individual meanings by need. CLLS combines the descriptive idea of underspecifi-
cation with the classical λ-calculus approach to formal semantics [37]: a formula of
CLLS serves as an underspecified semantic representation that compactly describes a
set of λ-terms, each of which models an individual meaning in the traditional sense. It
provides dominance and λ-binding constraints (to represent scope), parallelism con-
straints (to represent VP ellipsis), and anaphoric binding constraint (to represent in-
trasentential anaphora). These analyses integrate smoothly with an underspecified
treatment of reinterpretation [28, 15].
This paper is a comprehensive investigation of the computational aspects of CLLS.

Its main contribution is a presentation of saturation-based procedures for processing
underspecified representations in CLLS. These procedures test the satisfiability of an
arbitrary CLLS formula and can be used to enumerate the set of its solved forms. Our
procedures always terminate for dominance and binding constraints, but not neces-
sarily for parallelism constraints. Termination for unrestricted parallelism constraints
cannot be expected, as this would solve the prominent open problem of whether con-
text unification is decidable [41, 6, 48]. Furthermore, we review earlier results on the
complexity of CLLS and of dominance constraints, its most important sublanguage.
The article complements [17], which presented the application of CLLS to natural

language semantics. It draws heavily on the algorithms for dominance and parallelism
constraints proposed in [13, 19] and on complexity results in [29, 41, 26]; many tech-
nical results that we can only mention here are proved in these papers. However,
the algorithmic treatment of binding constraints (and hence, of CLLS as a whole) is
new, as is the discussion of how VP-ellipses can be resolved by saturating parallelism
constraints.
There is a large number of other formalisms that serve similar purposes as CLLS.

For instance, scope underspecification is also handled in [1, 47, 38, 5, 7]; but the
processing of these formalisms is typically not discussed in the literature. Dominance
constraints have many applications besides scope ambiguities [34, 51, 46, 21], and
computational aspects of some of these applications have been analyzed before [52,
12]. Furthermore, there are several related approaches to modeling VP-ellipses based
on higher-order unification [10, 9, 20] or the more restricted context unification [40],
which is second-order linear unification [44, 31, 32]. The analysis of strict-sloppy
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ambiguities in CLLS uses anaphoric link chains as proposed by [23].

Plan of the article
The paper is divided into two large parts. The first part (Sections 2 through 5) deals
with the fragment of CLLS without parallelism, the language of dominance and bind-
ing constraints. This fragment is sufficient to represent scope ambiguities. The models
of this fragments are λ-structures without parallelism (Section 2). The language itself
is introduced in Section 3. Sections 4 and 5 are concerned with processing. Section 4
investigates the complexity of the fragment (satisfiability is NP-complete) and shows
how to deal with a large sublanguage (normal dominance and binding constraints)
with polynomial-time satisfiability. Section 5 uses a different approach to process the
whole fragment, an approach that is re-used and extended in the second part of the
paper.
The second part (Sections 6 through 10) deals with CLLS in general, i.e with par-

allelism. Section 6 introduces the idea of parallelism and gives a definition. Section 7
presents the core of a procedure for CLLS, but yet without lambda and anaphoric bind-
ing. Section 8 gives an axiomatic semantics of parallelism constraints which captures
the interaction of parallelism with lambda and anaphoric binding; these axioms are
turned into a saturation procedure for CLLS in a second step. This procedure reuses
the saturation rules for dominance and binding constraints specified in the first part.
The expressiveness of parallelism constraints is discussed in Section 10 by relating it
to context unification.
We give a brief overview of implementations in Section 11. Finally, we conclude

and collect all saturation rules for CLLS in the appendix.

2 Lambda structures
The models of formulas in the constraint language for λ-structures (CLLS) are λ-
structures [14]. These are first-order tree structures representing λ-terms uniquely
modulo renaming of bound variables. In this section, we recall the definition of λ-
structures. We leave out parallelism, which will be added in Section 6. We start with
trees and tree structures and then turn to λ-terms and λ-structures.
In defining λ-structures, we have a choice of how to represent trees: we can see

them as labeled graphs, or as ground terms, or as sets of node addresses plus labeling
functions. In the literature, the third alternative has often been adopted [14, 29]; here
we take the graph view. However, this distinction is purely cosmetic, as all three
concepts are only tools to induce the logical tree structures we are really interested in
(Def. 2.2), so there is no danger in choosing the most convenient perspective.
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2.1 Trees and tree structures
We let f, g range over the function symbols of a signature Σ, each function symbol f
being equipped with an arity ar(f) ≥ 0. We write a, b for constants.

f

g
a b

FIG. 1. f(g(a, b))

We first define (finite) constructor trees built from function
symbols in Σ. Constructor trees are ground terms over Σ,
such as f(g(a, b)). Equivalently, we can view them as labeled
directed graphs in the usual way; for instance, the graph cor-
responding to f(g(a, b)) is shown in Fig. 1.
We define an (unlabeled) tree to be a finite directed graph

(V, E). The set V is a finite set of nodes ranged over by
u, v, w, and the set E ⊆ V × V is a finite set of edges. The in-degree of each node
is at most 1; each tree has exactly one root, i.e. a node with in-degree 0. We call the
nodes with out-degree 0 the leaves of the tree.

DEFINITION 2.1
A (finite) constructor tree over Σ is a triple (V, E, L) where (V, E) is a tree, L : V →
Σ a node labeling and L : E → N an edge labeling, such that for each node u ∈ V
and each 1 ≤ k ≤ ar(L(u)), there is exactly one edge (u, v) ∈ E with L(u, v) = k.

The symbol L is overloaded to serve both as a node and an edge labeling; there is
no danger of confusion. We draw constructor trees as in Fig. 1, by annotating nodes
with their labels and ordering the edges along their labels from left to right.

DEFINITION 2.2
The tree structure of a constructor tree (V, E, L) is a first-order structure with domain
V . It provides the dominance relation !∗ ⊆ V × V and a labeling relation for each
function symbol f ∈ Σ, which is defined as follows (for all u, v, v1, . . . vn ∈ V ):

u!∗v iff there is a path from u to v in (V, E);
u:f(v1, . . . , vn) iff L(u) = f, ar(f) = n, and L(u, vi) = i for all 1 ≤ i ≤ n.

Below, we freely identify a constructor tree with its tree structure. In passing, note
that the dominance relation of a tree structure is fully determined by its labeling rela-
tions: if we consider an immediate dominance relation! such that u!v holds in a tree
structure iff some labeling u:f(. . . , v, . . .) is valid in it, then dominance !∗ becomes
the reflexive and transitive closure of immediate dominance !.

2.2 Lambda terms and lambda structures
We want to represent not only ground terms but also λ-terms by tree structures. In
order to do so, we assume from now on that our signature Σ contains constants (i.e.
nullary function symbols) for the words of natural language, e.g. mary, john, run,
drive, car. In addition, we use the symbol lam of arity 1 for lambda abstraction,
the symbol @ arity 2 for application, the constant var for representing occurrences of
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bound variables in a λ-term, and the constant ana for representing anaphoric reference.
Note that we only consider intrasentential anaphora here; for an integration of CLLS
with dynamic semantics, see [27].
A λ-term can be represented by a λ-structure much in the same way as a ground

term can be represented by a tree structure. For instance, consider the λ-term in (2.2),
which incidentally represents the meaning of sentence (2.1).

(2.1) Mary1 drives her1 car
(2.2) (car-of ana1) (λx ((drive x) mary1))

@ •
@ •

car-of • ana •
lam •

@ •
@ •

drives • var •
mary •

FIG. 2. Mary1 drives her1 car.

The λ-structure for (2.2) is shown in Fig. 2. Its internal nodes represent applications
and abstractions. Variable binding is represented by an explicit λ-binding function,
drawn using curved arrows, which maps bound-variable nodes to binder nodes. Simi-
larly, we represent anaphora by mapping anaphoric nodes to antecedent nodes with an
anaphoric linking function, drawn as angled arrows.

DEFINITION 2.3
A (total) λ-structure is a quintuple (V, E, L, λ, ante) consisting of a tree structure
(V, E, L) over Σ, a total function λ : L−1(var) → L−1(lam) mapping variable nodes
to their lambda binders, and a total function ante : L−1(ana)→ V relating anaphoric
nodes to their antecedents. Additionally, each var-node must be situated below its
λ-binder, i.e. the function λ must have the property that λ(v)!∗v is satisfied for all
nodes v in the domain of λ.

It will sometimes be useful (e.g. in the proofs of Theorem 4.3 and Proposition
5.1) to also have partial lambda structures, where the functions λ and ante are partial
instead of total. But this particular choice is irrelevant with respect to the question of
constraint satisfiability that we will investigate.

3 Dominance and binding constraints in CLLS
We now introduce dominance and binding constraints, or DB constraints for short.
This is the fragment of CLLS which leaves out parallelism constraints. DB constraints
are tree descriptions whose models are λ-structures. DB constraints can be drawn
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perspicuously as constraint graphs. We also briefly discuss the applications of this
fragment to scope underspecification.

3.1 The constraint language
Let X, Y, Z range over an infinite set of variables Vars for nodes in a tree structure.
A dominance and binding constraint ϕ (DB constraint for short) is a conjunction of
atomic constraints that we also call literals. There are literals for dominance, labeling,
inequality, lambda and anaphoric binding:

ϕ ::= X!∗Y | X:f(X1, . . . , Xn) | X '=Y | λ(X)=Y | ante(X)=Y | ϕ ∧ ϕ′

Dominance constraints, as studied in [41, 29, 13, 26], are the sublanguage of DB
constraints that does not contain binding literals.
Constraints ϕ of CLLS are interpreted in the class of λ-structures in the classical

Tarskian way. Note that the relation symbols in our constraints are the same as the
matching λ-structure relations. There should be no danger of confusion, as relation
symbols are always applied to node variables, whereas relations can only be applied
to the nodes of a λ-structure.
The constraints of CLLS do not support other first-order connectives beside con-

junction. Richer descriptions would require more powerful algorithms for dealing
with the additional computational complexity (see Section 4.1). Even simple proposi-
tional connectives – in particular negation – would impose an additional computational
burden. This might be less critical without parallelism [11] but becomes awkward oth-
erwise.
We will nevertheless make use of first-order formulas Φ over CLLS constraints

later on. Their function will be to facilitate reasoning about algorithms dealing with
underspecified semantic representations in CLLS; they will not serve as underspecified
representations themselves.

3.2 Solutions of a constraint
The set of (free) node variables of a first-order formula Φ over CLLS-constraints is
denoted by Vars(Φ). A variable assignment into a λ-structure (V, E, L, λ, ante) is a
partial function α : Vars ! V . We write Dom(α) for the domain of α. A solution
of a formula Φ consists of a λ-structure τ and a variable assignment α into τ with
Vars(Φ) ⊆ Dom(α) under which Φ evaluates to true. In this case, we call τ a model
of Φ. We also say that (τ, α) satisfies Φ and write τ, α |= Φ if (τ, α) is a solution of
Φ. We write Φ |= Φ′ and say that Φ entails Φ′ if every solution of Φ interpreting all
variables in Vars(Φ′) is a solution of Φ′.
The constraint on the left of Fig. 3 has an obvious solution: the λ-structure depicted

next to it with the assignment α1. However, this solution is not the only one; there are
satisfying λ-structures that are much larger. For example, the rightmost λ-structure
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X:f(Y )∧
Y %∗Z∧
Z:a

f u

a v

α1(X)=u
α1(Y )=v
α1(Z)=v

u2

u3

u4a
u5var

u 1lam

f

@

α2(X)=u2

α2(Y )=u3

α2(Z)=u4

FIG. 3. A constraint and two of its solutions

in Fig. 3 together with the assignment α2 is another solution of the constraint. This
λ-structure contains nodes that are not referred to by any variable of ϕ. Note that
CLLS differs from most other underspecification formalisms [1, 47, 5] in this respect.
The existence of these larger models is essential for an underspecified approach to
reinterpretation in CLLS [28, 16, 15]. Also, our treatment of parallelism relies on
models where some nodes are not referred to in the constraint.

3.3 Constraint graphs
We often draw CLLS constraints as graphs (they are much easier to read that way).
The nodes of these graphs stand for the variables of a constraint, and the edges repre-
sent literals. By way of example, an (unsatisfiable) constraint and its constraint graph
are shown in Fig. 4. We represent the labeling constraintX:f(X1, X2) by drawing the

X:f(X1, X2)∧
X1%∗Y ∧X2%∗Y

X1 X2

Y

Xf

FIG. 4. An unsatisfiable constraint and its graph

node label f next to the variableX and by connectingX to its childrenX1, X2, which
are ordered from left to right, by solid lines. The dominance constraints X1!

∗Y and
X2!

∗Y are drawn as dotted lines, with X1, X2 situated above Y . The complete con-
straint is unsatisfiable because trees do not branch upwards.
Binding constraints can also be represented naturally in constraint graphs: we draw

literals for λ-binding as curved and for anaphoric binding as angled arrows. An ex-
ample is given in Fig. 5.
Constraint graphs look very similar to our pictures of λ-structures. While this sug-

gestive similarity is intended, it is important to keep the two apart. The nodes of a
constraint graph are variables; constraint graphs are simply an alternative syntax for
DB constraints. These variables denote the nodes in a λ-structure; λ-structures are
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X0:@(X1, X4)∧
X1:@(X2, X3) ∧X2:car of∧
X3:ana ∧ ante(X3)=Y4∧
X4:lam(X5) ∧X5!

∗Y0∧
Y0:@(Y1, Y4) ∧ Y4:mary
Y1:@(Y2, Y3) ∧ Y2:drives
Y3:var ∧ λ(Y3)=X4

@ • X0

@ • X1

car of • X2 ana • X3

lam • X4

• X5

@ • Y0

@ • Y1

drives • Y2 var • Y3

mary • Y4

FIG. 5. Drawing binding constraints

semantic entities for CLLS.
One important concept related to constraint graphs is that of a (tree) fragment – a

tree-shaped subgraph whose nodes are connected by solid lines. Fragments have roots
and leaves; unlabeled leaves are called holes. For instance, the constraint graph in
Fig. 5 consists of two fragments, the upper fragment with variables X0, . . . , X6 and
the lower fragment with variables Y0, . . . , Y4.
The one type of literal that is not easily representable in a constraint graph is in-

equality X '=Y . One way of representing them would be to annotate graphs with
explicit inequality literals. Here we choose another alternative: we leave inequalities
implicit if they just prevent overlap of fragments; that is, labeled variables in two dif-
ferent fragments should never be mapped to the same node. This is made precise in
the following definition.

DEFINITION 3.1
We call a constraint ϕ overlap-free if for each pair X:f(. . .), Y :g(. . .) of distinct
labeling literals in ϕ (where f, g need not be different),X '=Y belongs to ϕ.

Drawing convention. For easier readability, we keep with some simplifying con-
ventions in drawing constraint graphs. First of all, we omit the name of the variable
represented by a graph node wherever convenient. Second, we leave out inequalities
as mentioned above. In order to fix the set of implicit inequalities, we assume from
now on that all constraint graphs represent overlap-free constraints. Finally, we omit
some literals that are entailed by the represented constraints. For instance, we never
draw edges for literalsX%∗X; also, if a constraint graph contains dominance edges for
X%∗Y and Y !∗Z then we may freely suppress the dominance edge for the (entailed)
literal X%∗Z.
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3.4 Scope underspecification
Now we take a look at some examples from scope underspecification that illustrate
how the formalism relates to natural language semantics. First, consider the sentence
(3.1). It contains a prototypical scope ambiguity with two readings.

(3.1) Every plan has a catch.

It can either mean that there is one specific drawback that all plans suffer from; we get
this meaning if we continue (3.1) by . . . namely the big watchdog in the prison yard.
Or it can mean that each plan is flawed in a different way, e.g. plan A fails because
we do not possess the key to the prison door, and plan B will not work because we
are too lazy to dig our way out. The two readings only differ in the order of the two
quantifiers: the first reading is represented by the λ-term in (3.2) and the second by
the λ-term in (3.3).

(3.2)
(a catch)(λx

(every plan)(λy
(have x) y))

(3.3)
(every plan)(λx

(a catch)(λy
(have x) y))

Accordingly, the λ-structures for the two readings only differ in one point: in the
λ-structure for (3.2), the tree fragment for a catch dominates the fragment for every
plan, and in the λ-structure for (3.3), it is the other way round.

@ •
@ •

ev • plan •
lam •

•

@ •
@ •

a • catch •
lam •

•

@ •
@ •

have • var •
var •

FIG. 6. Constraint for Every plan has a catch.

We can represent both λ-structures by one constraint, which models the underspec-
ified semantics of (3.1); it is the constraint in Fig. 6. This constraint does not specify
whether the fragment for a catch dominates that for every plan or vice versa. But it
does state that one of these two cases must hold: the two fragments both dominate
the fragment for have. But constraints describe trees, and trees do not branch up-
wards. Note, by the way, that each quantifier of the sentence is modeled by a separate
fragment in the constraint.
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@ •
@ •

says • •
peter •

@ •
@ •

ev • ling •
lam •

•

@ •
@ •

a • sent •
lam •

•

@ •
@ •

ev • lang •
lam •

•

@ •
@ •

know • var •
var •

@ •
@ •

of • var •
var •

FIG. 7. Constraint for Peter says every linguist knows a sentence of every language.

In general, constraints representing the underspecified semantics of a sentence can
be somewhat more intricate than the simple one in Fig. 6, though. For example, Fig.
7 models the meaning of the sentence

(3.4) Peter says every linguist knows a sentence of every language.

Here, the fragments for every linguist, know, a sentence, of, every language form
a chain, an alternating sequence of “upper” and “lower” fragments. See [28] for a
treatment of chains as well as an analysis of the general shape of constraints that
represent the meaning of sentences.

4 Normal Dominance and Binding Constraints
Now we are ready to begin discussing processing issues. There are two questions we
are interested in: first, to test the satisfiability of a constraint, and second, to enumerate
its solutions. In this section, we recall the result that the satisfiability problem of DB
constraints in general is NP-complete [29]. Then we define normal DB constraints, a
fragment with polynomial satisfiability [26]. Finally, we show how to enumerate the
solutions of a normal constraint by enumerating its solved forms in the sense defined
below (Def. 4.4).

4.1 Complexity of DB constraints
Although dominance constraints are a very simple language, their satisfiability prob-
lem is surprisingly hard [29]:
THEOREM 4.1
Satisfiability of dominance constraints is NP-complete.
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Y1X2

f

X1

X f

Y2

Y

FIG. 8. Overlap

NP-hardness is shown by encoding the Boolean Satisfiabil-
ity problem. The main idea of the encoding is to force frag-
ments to overlap, thereby expressing disjunction. An example
of how to do this is shown in Fig. 8; deviating from our draw-
ing convention for constraint graphs, this graph is intended
to represent a constraint that is not overlap-free (and does not
contain any inequality literals). This constraint entailsX=Y ∨X=Y1; that is,X must
overlap either with Y or with Y1.
Satisfiability of first-order formulas over dominance constraints is strictly more

complex than of dominance constraints, but still decidable. This problem is non-
elementary, i.e. it is not in d-times exponential time for any d [29].

4.2 Normal constraints
When restricted to overlap-free constraints, the proof of Theorem 4.1 breaks down;
and indeed, if we require a slightly stronger restriction than overlap-freeness, we get
polynomial satisfiability.
To describe it, we need a notion of reachabilitywithin a constraint, which we define

inductively. Given a constraint ϕ and variables X, Y ∈ Vars(ϕ), Y is reachable from
X in ϕ iff

• X:f(. . . Y . . .) is in ϕ for some f , or
• X%∗Y is in ϕ, or
• there exists a Z such that Z is reachable from X , and Y is reachable from Z.

DEFINITION 4.2
A DB constraint ϕ is called normal iff for all variablesX, Y, Z ∈ Vars(ϕ),

1. ϕ is overlap-free;
2. labeling constraints form tree-like fragments: each variable occurs at most once in
a mother and once in a child position of a labeling literal in ϕ;

3. dominance edges only go from holes to roots of fragments: ifX!∗Y is in ϕ, then
for all Z, f , neither X:f(. . .) nor Z:f(. . . Y . . .) is in ϕ;

4. there are no empty fragments: if X!∗Y in ϕ, then there are Z and f such that
Z:f(. . .X . . .) in ϕ;

5. no node variable caries two binding requirements in ϕ: for all variables X there
exists at most one lambda binding literal λ(X) = Y and most one anaphoric
binding literal ante(X) = Y in ϕ.

6. lambda binders can always be satisfied: if λ(X) = Y inϕ thenX:var ∧ Y :lam(Y ′)
in ϕ for some Y ′, andX is reachable from Y in ϕ.

7. anaphoric binders can always be satisfied: if ante(X) = Y in ϕ then X:ana in ϕ.
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Basically, a normal DB constraint is a graph of tree-shaped fragments, connected
by dominance edges. The constraints in Fig. 6 and Fig. 7 are both normal, and indeed,
all constraints needed to model scope (not parallelism) fall into this class.
THEOREM 4.3
Satisfiability of normal DB constraints is in deterministic polynomial time.

PROOF. For pure dominance constraints satisfying properties 1–4, this theorem is
proved in [26]. The idea behind the non-trivial proof is to check satisfiability by
testing for the existence of hypernomal cycles in the constraint graph. This cycle test
can then be reduced to a weighted matching problem.
Now let ϕ be a normal DB constraint such that its dominance part ϕ′ is satisfiable.

Let (τ ′, α) be a solution of ϕ′ with τ ′ = (V, E, L, . . .). We define partial functions
λ, ante : V ! V by λ(α(X)) = α(Y ) iff λ(X)=Y in ϕ and ante(α(X)) = α(Y )
iff ante(X)=Y in ϕ. We have to show that both functions are well-defined. For
λ-binding, this means that for each node v ∈ V , if ϕ contains λ-binding literals
λ(X)=Y and λ(X ′)=Y ′ with α(X) = α(X ′) = v, then α(Y ) must be equal to
α(Y ′). So suppose we have two such λ-binding literals. By condition 6, X and X ′

must be var-labeled in ϕ. But then the overlap-freeness of ϕ (condition 1) implies
thatX andX ′ must be the same variable. (Otherwise,X '=X ′ in ϕ such that α(X) '=
α(X ′), which contradicts our assumption.) Now by condition 5, there is at most one
lambda binding requirement per variable. So the literals λ(X)=Y and λ(X ′)=Y ′

must thus be the same. The well-definedness of ante can be shown the same way.
We now check that τ = (V, E, L, λ, ante) is a partial lambda structure. It then

clearly follows that (τ, α) satisfies ϕ except that τ is partial. But a constraint that
can be satisfied by a partial lambda structure can also be satisfied by a total one. It is
sufficient to add a lam-labeled node at the root of the partial lambda structure, whose
purpose is to bind all previously unbound nodes labeled by var and ana.
We now check all conditions of Def. 2.3 for τ , except for totality of λ and ante.

The domain of λ is a subset of L−1(var), and its range is a subset of L−1(lam), by
condition 6. The domain of ante is a subset of L−1(ana) by condition 7. Finally, each
var-labeled node is situated below its binder by the reachability demanded in condition
6. It is easy to show by structural induction (using the definition of reachability) that
whenever Y is reachable from X in ϕ, α(X) dominates α(Y ) in τ ′ and in τ .

4.3 Enumeration of solved forms
Now that we know how to check whether a normal constraint has a solution, we would
like to enumerate all solutions. Unfortunately, this is impossible, as every satisfiable
DB constraint has an infinite number of solutions: There may be any number of ad-
ditional nodes between the ends of a dominance edge, and there may be additional
nodes above the “root” of the constraint graph as well.
This is why we will consider a slightly revised enumeration problem: that of enu-

merating all (finitely many) solved forms of the normal constraint. Intuitively, a con-
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straint is in solved form if it is easy to read off its solutions. Solved forms may have
more than one solution, but the differences between these solutions should be “irrele-
vant”.
DEFINITION 4.4
We say that a normal constraint is in solved form if its constraint graph is “tree
shaped”, i.e. it is acyclic and does not contain any nodes with two dominance par-
ents (called “triangles” below).

For example, the two right-hand constraints schematically drawn in Fig. 9 and, more
concretely, the constraint in Fig. 5 are in solved form; the leftmost constraint in Fig. 9
and the constraint in Fig. 6 are not. A satisfying λ-structure for a constraint in solved
form can be obtained by identifying the end nodes of any remaining dominance edge;
but as we have seen in Section 3.2, these dominance literals can also be satisfied with
an arbitrary number of nodes between the ends. Solved forms abstract away from this
effect, which is not interesting for the application to scope.
A different formalization of solved forms (with respect to a saturation system) will

be defined in Section 5.3. Although it is completely different on the surface, the
underlying intuition of capturing the relevant aspects of a solution will be the same.

III

II

I

2a

II

III

I
III

III

1 2b

FIG. 9. Solving “triangles”

II

III

I

FIG. 10: Re-
dundant edge

Given that a constraint is satisfiable (in particular, has a cycle-free
graph), we can eliminate all triangles – and hence, obtain solved
forms – by successive applications of the triangle rule illustrated in
Fig. 9. This rule requires a choice: Either the hole of fragment I is
moved above the root of fragment II, or the hole of fragment II is
moved above the root of fragment I.
After each choice, we can apply the above satisfiability test to

check if the branch is worth pursuing. Thus we eventually arrive at
solved forms, and we only need polynomial time for each solved
form, as the search tree spanned by the choices has polynomial
depth. All the solved forms we find are different, and each solution
of the original constraint satisfies one of them.
A final complication is that we must take care not to apply the

triangle rule to redundant dominance edges. If we applied the choice rule to a trivial
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triangle as in Fig. 10, we would not make any progress. Fortunately, constraint graphs
can be made irredundant very cheaply, so we can add this as a preprocessing step
before each application of the choice rule.

5 A solver for CLLS without parallelism
We now present an algorithm that tests the satisfiability of unrestricted DB constraints
in non-deterministic polynomial time. The same algorithm can also be used to enu-
merate the solved forms of a DB constraint. While it performs worse on normal con-
straints than the graph-based algorithm from Section 4.2, it has the advantage that it is
more general and can be extended to a satisfiability test for CLLS as a whole, which
we will do in the second part of the paper.
Our algorithm saturates a given constraint with respect to a set of propagation and

distribution rules. The idea is to delay case distinctions (distribution) for as long as
deterministic inferences (propagation) can make progress. This setup is known as the
computational paradigm of constraint programming [35]. In practice, it often helps
avoid the worst case complexity when solving combinatoric problems.
We proceed as follows. First, we extend CLLS by set operators adding a restricted

form of negation and disjunction in Sections 5.1 and 5.2. After discussing saturation
in general (Section 5.3), we present a saturation algorithm for dominance constraints
with set operators in Section 5.4. Finally, in Section 5.5, we extend this saturation
algorithm to also take binding constraints into account.

5.1 Set operators
For the sake of generality and to permit more powerful propagation, we formulate our
saturation rules for an extension of CLLS which allows for set operators in dominance
constraints. This language subsumes several variants of dominance constraints in the
literature [29, 12], whose special-purpose literals are simply special cases of the set-
operator literals. Dominance constraints with set operators were first proposed by
Cornell [8], who however did not consider labeling constraints. Recently, they were
rediscovered independently and investigated without further restrictions [13].
In the fragment of CLLS considered so far, we can talk about the following rela-

tions beside labeling: dominance %∗, inverse dominance &∗, equality =, inequality '=,
proper dominance %+, and inverse proper dominance &+.
In our extension, we are interested in all relations that can be generated from the

dominance relation and set operators: union ∪, intersection ∩, complementation ¬,
and inversion −1. We can generate non-dominance ¬%∗ and inverse non-dominance
¬&∗ but also the important disjointness relation⊥, which holds whenever neither dom-
inance nor inverse dominance holds: ⊥ means ¬%∗ ∩ ¬&∗. Between two arbitrary
nodes of a tree structure, exactly one of the relations %+, &+, =,⊥ holds. We get the
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following partition:
V × V = (%+ ∪ &+ ∪= ∪ ⊥)

As a consequence, there are exactly 16 relations that set operators can generate from
dominance constraints; each of these relations is a finite union ∪R whereR is a subset
of {%+, &+, =,⊥}.

5.2 Constraint language with set operators
A dominance and binding constraint with set operators (for short, DB constraint with
set operators) ϕ has the following abstract syntax, where R is a subset of relation
symbols in {=, %+, &+,⊥}.

ϕ ::= X R Y | X:f(X1 . . . Xn) | λ(X)=Y | ante(X) = Y | ϕ ∧ ϕ′ | false

The interpretation of a set R in a tree structure is the union of the interpretations of
the relations symbols in R. For instance, a constraint X {=,⊥} Y states that the
values of X and Y are either equal or disjoint. For convenience, we admit false as
a constraint. To accommodate explicit set operators, we allow for syntactic sugar,
writing constraints of the form XSY where S is a set expression:

S ::= %∗ | &∗ | = | '= | %+ | &+ | ⊥ | ¬S | S1 ∪ S2 | S1 ∩ S2 | S−1

Set operators permit us to express a controlled form of negation and disjunction. For
instance, the constraintX¬SY is equivalent to the negated formula ¬XSY , whereas
X S1 ∪ S2 Y is equivalent to the disjunctionX S1 Y ∨X S2 Y . However, there is no
way to expressX!∗Y ∨X!∗Z using set operators.

5.3 Saturation and Solved Forms
The basic idea of saturation is to interpret a rule system as an accumulation procedure.
Starting with a set of literals (or other items), more and more literals are added to the
set according to some saturation rules. Slightly abusing notation, we freely identify a
constraint with the set of its literals. This way, subset inclusion defines a partial order
⊆ on constraints.
The saturation rules we work with are implications of the following form:

ϕ0 → ∨n
i=1∃Viϕi

where n ≥ 1 and Vars(ϕi) − Vars(ϕ0) ⊆ Vi for all 1 ≤ i ≤ n. A rule is called a
propagation rule if n = 1 and a distribution rule otherwise. A rule ϕ → Φ is sound
if ϕ |= Φ. The critical rules with respect to termination are those with local variables
on their right hand side, that is, those where at least one of the sets Vi is non-empty.
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Given a set V of variables and a constraint ϕ, we call a constraint θϕ a V -variant
of ϕ if θ : V → Vars is some substitution of the variables in V . We call this variant
fresh if θ(V ) is disjoint from Vars(ϕ).
A saturation algorithm repeatedly applies saturation rules to an input constraint,

which is extended by each rule application. A rule ϕ0 → ∨n
i=1∃Viϕi is applied to

a constraint ϕ by selecting a disjunct ∃Viϕi on the right hand side, selecting a fresh
Vi-variant of ϕi say ϕ′

i, and returning ϕ ∧ ϕ′
i. A saturation step can be applied only

if the following two conditions are satisfied:

1. inferences must be valid: the left-hand side ϕ0 is contained in ϕ, i.e. ϕ0 ⊆ ϕ.
2. inference must add new information: no variant of any disjunct on the right hand
side belongs to ϕ, i.e. for all 1 ≤ i ≤ n and for all Vi-variants ϕ′

i of ϕi: ϕ′
i '⊆ ϕ0.

Let S be a set of saturation rules. We call a constraint saturated (under S) if no
further rule of S applies to it. We say that a constraint is in S-solved form if it is
saturated under S and clash-free (i.e. it does not contain false). If the set S is clear from
the context, we also write solved form instead of S-solved form. Finally, a constraint
ϕ′ is a solved form of the constraint ϕ iff it is in solved form, and ϕ ⊆ ϕ′ in the above
sense.
This is the second definition of a solved form after that in Section 4.3. We will con-

tinue to use this second definition for the rest of the paper, as it works more generally
than the first one. Although this second definition looks very different from the first
one, it will prove to be quite similar for the concrete saturation rules that we present
next: these saturation rules will also generate ”tree-shaped” solved forms in a way.

5.4 Saturation of dominance constraints
We now present a saturation algorithm for dominance constraints, which we extend in
Section 5.5 such that it also deals with binding constraints. This algorithm consists of
a set D of saturation rules which decides the satisfiability of a dominance constraint
and also enumerates its D-solved forms.
We proceed in three steps. First we present a subset of saturation rules from D

that, given a satisfiable, normal dominance constraint, can enumerate possible solved
forms, but does not check for satisfiability (Fig. 12). In the second step, we add rules
that detect unsatisfiability (Fig. 15). Finally, we introduce rules that can deal with
unrestricted dominance constraints (Fig. 17).

5.4.1 Enumerating solved forms
The core rules of algorithm D are shown in Fig. 12. These rules can enumerate the
solved forms of a satisfiable normal constraint. Consider for instance the leftmost
constraint in Fig. 11. Its graph has the same shape as the underspecified representation
of the simple scope ambiguity in Fig. 6.
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X1 '=X2 ∧
X1:f(X2) ∧X2%∗Z ∧
Y1:g(Y2) ∧ Y2%∗Z ∧
Z:a

X 1f

X 2 Y 2

Y 1g

Za

X 1f

X 2

Y 1

Y 2

g

a Z

Y 2

Y 1g

X 1f

X 2

a Z

FIG. 11. The shape of a simple scope ambiguity

This constraint contains 2 upper fragments with variables X1, X2 and Y1, Y2, re-
spectively, and a lower fragment, consisting of the variable Z. The constraint should
have the two solved forms drawn to the right in Fig. 11.

(D.NegDisj) X!∗Z ∧ Y !∗Z →X¬⊥Y

(D.Distr.NegDisj) X¬⊥Y →X!∗Y ∨ Y !∗X

(D.Inter) XR1Y ∧XR2Y →XRY if R1 ∩R2 ⊆ R

(D.Child.Ineq) X '=Y ∧X:f(. . . , X′, . . .) ∧ Y :g(. . . , Y ′, . . .)→X′ '=Y ′

(D.Parent.Ineq) X!+Z ∧ Y :f(. . . , Z, . . .)→X!∗Y

FIG. 12. Main rules

This is indeed the case, as we can see by going through the necessary rule appli-
cations. X2 and Y2 dominate a common variable Z; so they cannot be in disjoint
positions. This inference is performed by the rule (D.NegDisj), which adds the lit-
eral X2¬⊥Y2. Non-disjointness implies dominance or inverse dominance. This case
distinction is made by saturation with (D.Distr.NegDisj). Applied to the example con-
straint, it can add either X2%∗Y2 or Y2%∗X2. We only consider the case of X2%∗Y2,
the other case is symmetric.
What remains to do is to infer X2!

∗Y1. We use (D.Child.Ineq), which states that
children of distinct nodes are distinct, and the fact that X1 '=Y1, to infer X2 '=Y2. We
now use rule (D.Inter) to intersect X2 '=Y2 with X2%∗Y2, which gives us X2%+Y2.
To see this, we resolve the syntactic sugar behind set expressions: %∗ stands for
{%+, =} whereas '= abbreviates {%+, &+,⊥}; the intersection of both sets is {%+}.
Rule (D.Parent.Ineq) states that a node that strictly dominates another also dominates
its mother. A saturation step with this rules yieldsX2%∗Y1, as expected.

5.4.2 Detecting Unsatisfiability
The rules we have seen so far cannot test even normal constraints for satisfiability. For
this purpose, we need the additional rules in Figure 13.
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(D.Clash) X∅Y → false

(D.Lab.Disj) X:f(. . . , Xi, . . . , Xj , . . .)→Xi⊥Xj where 1 ≤ i < j ≤ n

(D.Dom.Refl) ϕ→X!∗X X occurs in ϕ

(D.Inv) XRY → Y R−1X

(D.Dom.Trans) X!∗Y ∧ Y !∗Z →X!∗Z

(D.Lab.Dom) X:f(. . . , Y, . . .)→X!+Y

FIG. 13. Testing satisfiability of normal constraints

To illustrate the rules, we go through two simple examples of unsatisfiable normal
constraints.
First, we have to deal with cycles Consider the constraint in Fig. 14.

X:f(Y ) ∧ Y %∗Z ∧ Z:f(X)

f X

Y

Zf

FIG. 14. An unsatisfiable constraint

With rule (D.Lab.Dom) we can deriveX%+Y . The weaker constraintX%∗Y can be
added by the intersection rule (D.Inter) – the capability of weakening is built into the
rule. Transitivity of dominance (D.Dom.Trans) gives us X%∗Z. On the other hand,
we can derive Z%+X from Z:f(X) with (D.Lab.Dom). By inversion (D.Inv), we get
X&+Z. Finally, we use (D.Inter) to intersect X&+Z and X%+Z and obtain X∅Z,
which clashes by (D.Clash).
The second example is the unsatisfiable normal constraint in the left picture of Fig.

15. Here, we need case distinction to detect unsatisfiability. We sketch one of the
four cases – the one depicted in the right picture of Fig. 15. As X2 and X5 both
dominateX7, we apply (D.NegDisj) and (D.Distr.NegDisj) to find that eitherX2%∗X5

or X5%∗X2 must hold. Suppose we choose X2%∗X5. Then by (D.Child.Ineq) and
(D.Parent.Ineq) we deriveX2%∗X4 and henceX2%∗X6 andX2%∗X8 by (D.Lab.Dom)
and (D.Dom.Trans). But then we get X2¬⊥X3 by (D.NegDisj), which together with
the fact that X2⊥X3 – (D.Lab.Disj) – results in a clash.

5.4.3 Non-normal constraints
In non-normal constraints, we need to deal with two further phenomena: fragments
that are not tree shaped, and fragments that overlap. If a constraint contains a frag-
ment that is not tree-shaped, it is not satisfiable. As a simple example, consider the
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X1 '=X2 ∧
X1:f(X2) ∧X2%∗Z
Y1:g(Y2) ∧ Y2%∗Z
Z:a

X 1f

X 2 X 3

X 4

X 6

X 8b

X 5

X 7

g

a

X 1

X 4

X 6X 5

g

f

X 2 X 3

X 8bX 7a

FIG. 15. An unsatisfiable normal constraint

constraint in Fig. 16.

X:f(Y, Y )
f X

Y

FIG. 16. A constraint with a fragment that is not tree-shaped

This constraint can already be dealt with by the rules of Fig. 13. As Y is the first
as well as the second child of X , we derive Y⊥Y by (D.Lab.Disj). Reflexivity of
dominance (D.Dom.Refl) yields Y !∗Y . We can intersect both relations with (D.Inter)
and obtain Y ∅Y , which clashes by (D.Clash).
The more interesting case is that of overlapping fragments, as in Fig. 8. To handle

cases like this, we need the additional saturation rules in Fig. 17. With these rules,
we can first apply (D.Distr.Children), as we have both Y :f(Y1, Y2) and Y %∗X . This
yields four cases. Two of them result in unsatisfiable constraints. The remaining cases
are on the one hand Y1%∗X ∧ Y2¬%∗X , and on the other hand Y1¬%∗X ∧ Y2¬%∗X .
In the first case, we now have X=Y2. In the second case, (D.Children.Up) gives us
Y =X .

5.4.4 Soundness and Completeness
Procedure D is the collection of saturation rules in Fig. 12, 13, and 17. They are also
repeated in a complete list of all saturation rules in the appendix. The procedure is
sound and complete. We call a saturation procedure S sound if each rule of S is sound
and each S-solved form of a constraint is satisfiable. We call it complete if for each
solution (τ, α) of a constraint ϕ, S computes an S-solved form of ϕ of which (τ, α) is
a solution.
Completeness is rather easy to prove: Saturation always terminates, and whenever

we make a choice, we can easily pick one of the two options by inspecting the solution.
Soundness is somewhat harder, the main lemma being the following.
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(D.Eq.Decom) X:f(X1, . . . , Xn) ∧ Y :f(Y1, . . . , Yn) ∧X=Y →
∧n

i=1 Xi=Yi

(D.Children.Up) X!∗Y ∧X:f(X1, . . . , Xn) ∧
∧n

i=1 Xi¬!∗Y → Y =X

(D.Distr.Children) X!∗Y ∧X:f(X1, . . . , Xn)→Xi!∗Y ∨Xi¬!∗Y (1 ≤ i ≤ n)

(D.Disj) X⊥Y ∧ Y !∗Z →X⊥Z

FIG. 17. Dealing with overlaps

PROPOSITION 5.1
Every dominance constraint ϕ in D-solved form is satisfiable. Moreover, if ϕ contains
two variablesX and Y , ϕ |= X=Y if and only if X=Y belongs to ϕ.
The proposition is shown in [13] by constructing a concrete solution (τ, α) for a

constraint ϕ in D-solved form. A special property of the construction is that if the
literalX=Y does not belong to ϕ, the solution always satisfies α(X) '= α(Y ), which
proves the second claim.
THEOREM 5.2 (Soundness and completeness)
Algorithm D is sound and complete for dominance constraints.
A particularly nice property of the solved forms enumerated by the algorithm is

that they are minimal with respect to the inclusion order; that is, we cannot remove
any literals without becoming non-solved.

5.5 Saturation of binding constraints
Finally, we have to deal with binding constraints. This can be done by adding the set
B of saturation rules in Fig. 18 to the set D from above. The algorithm that is the
union of the rules D and B is called DB.

(B.λ.Func) λ(X)=Y ∧ λ(U)=V ∧ X=U → Y =V

(B.λ.Dom) λ(X)=Y → Y !∗X

(B.λ.var) λ(X)=Y →X:var

(B.λ.lam) λ(X)=Y →∃Z (Y :lam(Z))

(B.ante.Func) ante(X)=Y ∧ ante(U)=V ∧ X=U → Y =V

(B.ante.ana) ante(X)=Y →X:ana

FIG. 18. Rules for lambda and anaphoric binding

Rules (B.λ.Func) and (B.ante.Func) make sure that λ and ante are partial functions.
(B.λ.Dom) expresses the fact that a var-labeled node must be bound by one of its
ancestors. The three remaing rules check that variable, anaphoric, and lambda nodes
bear the appropriate labels.
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The rule (B.λ.lam) is the first rule we propose that introduces a new variable. This
variable represents the root of the body of a λ-abstraction.
PROPOSITION 5.3
Every DB constraint in DB-solved form is satisfiable.

PROOF. Let ϕ be a DB constraint in DB-solved form. Let ϕ′ be the pure domi-
nance part of ϕ, which is clearly D-solved. By Prop. 5.1, there exists a solution
((V, E, L, . . .), α) of ϕ′ such that whenever X=Y is not in ϕ, then α(X)'=α(Y ).
As in the proof of Theorem 4.3, we define partial functions λ, ante : V ! V

as follows: for all X, Y ∈ Vars(ϕ), λ(α(X)) = α(Y ) iff λ(X)=Y in ϕ, and
ante(α(X)) = α(Y ) iff ante(X)=Y in ϕ. These functions are well-defined because
ϕ is saturated under (B.λ.Func) and (B.ante.Func), and because we have chosen the
model τ ′ such that whenever X=Y is not in ϕ, then α(X)'=α(Y ).
Again, we check that τ = (V, E, L, λ, ante) is a partial lambda structure. It then

clearly follows that (τ, α) satisfies ϕ except that τ is partial, which is irrelevant (as
argued in the proof of Theorem 4.3). The domain of λ is a subset of L−1(var) by the
saturation of ϕ under (B.λ.var), and its range is a subset of L−1(lam) by (B.λ.lam).
The domain of ante is a subset of L−1(ana) by (B.ante.ana). Finally, each var-labeled
node is situated below its binder by the saturation of ϕ under (B.λ.Dom).

DB-saturation terminates for all DB constraints, since the only rule introducing ad-
ditional variables, (B.λ.lam), can be applied only a finite number of times. The reason
for this is that DB-saturation never adds any λ-binding literals. Hence completeness
follows as above.
COROLLARY 5.4
Algorithm DB is sound and complete for DB constraints.

The solved forms that DB enumerates are again minimal, but not simply with re-
spect to the set inclusion order. Instead, we need a notion of minimality that is set
inclusion modulo some operations on new, existentially quantified variables. The ex-
act definition is technically somewhat involved and thus exceeds the scope of this
paper; it can be found in [19].
This concludes the first part of the article. The second part explains how to extend

the system of saturation rules for dominance and binding to parallelism constraints.

6 The constraint language for lambda structures
Now that we have shown how to process dominance and binding constraints, we can
discuss the full constraint language for lambda structures (CLLS), which extends DB
constraints by parallelism constraints, and present a complete solver. Parallelism con-
straints are used in [14, 17] to model the meaning of VP ellipsis and its interaction with
scope and anaphora. A more recent application is underspecified beta reduction[3, 4].
The definition of parallelism constraints consists of two parts: a fairly straightfor-

ward condition on the tree part of a lambda structure, and a slightly more involved
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condition on the binding functions. We will define the two parts separately. In this
section, we present some basic intuitions and then define the syntax and semantics of
parallelism without binding. Then we present the four core rules of the solution proce-
dure in Section 7. We add the axioms for the binding part of parallelism in Section 8;
these axioms will also serve as further rules in the solution procedure. In Section 9,
we add a final group of rules and state completeness results.

6.1 The Constraint Language over Lambda Structures
The constraint language over lambda structures, CLLS, is obtained by extending dom-
inance and binding constraints with parallelism literals:1

ϕ ::= X R Y | X:f(X1 . . . Xn) | λ(X)=Y | ante(X) = Y | ϕ ∧ ϕ′ | false
| X1/X2∼Y1/Y2

The constraints in the first line are those we have discussed in the first part of this
article. The second line adds parallelism literals of the form X1/X2∼Y1/Y2.

v 1

2u 2v

u 1

FIG. 19. Parallel tree segments: u1/u2∼v1/v2

We interpret CLLS in λ-structures that are conservatively extended by a parallelism
relation. The semantics of parallelism literals will be defined more precisely in Sec-
tion 6.1, but the intuition is that parallelism relations hold between structurally iso-
morphic segments of the lambda structure. In Fig. 19, the ui and vi are nodes in a
lambda structure. The shaded areas are the segments u1/u2 and v1/v2, respectively.
We will state the isomorphism between the two segments by mapping the nodes of
the two segments to each other. This correspondence is indicated in the picture by the
dotted lines.

6.2 Application to VP Ellipis
The primary application of parallelism constraints to natural language semantics is the
analysis of ellipsis, of which the following is a very simple example:

1It might be more precise to call this language “CLLS with set operators”, as set operators were not part of the original definition [17].
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(6.1) Every man sleeps, and so does Mary.

The target sentence so does MarymeansMary sleeps. So the meaning of this sentence
can be represented as the λ-structure in Fig. 20.

and •
@ • u1

@ • u2

every • man •
lam • u3

@ • u4

sleeps • u5 var • u6

@ • v1

mary • v2 lam • v3

@ • v4

sleeps • v5 var • v6

FIG. 20. λ-structure for Every man sleeps, and so does Mary.

The segments u1/u2 and v1/v2 of this λ-structure are structurally isomorphic: for
each 1 ≤ i ≤ n, ui corresponds to vi. Without having defined this, it should be
intuitively clear that the binding structure is parallel in both segments.

and •
• U ′

1

@ • U1

@ • U2

every • man •
lam • U3

• U ′
4

@ • U4

sleeps • U5 var • U6

• V ′
1

mary • V2

U ′
1/U2∼V ′

1/V2

FIG. 21. Constraint for Every man sleeps, and so does Mary.

This λ-structure, call it τ for short, can be described canonically by the constraint in
Fig. 21. With the variable assignment α given by α(Ui) = α(U ′

i) = ui and α(Vi) =
α(V ′

i ) = vi for all 1 ≤ i ≤ 6, the pair (τ, α) is a solution of the constraint. The
subgraph below U ′

1 represents the source sentence every man sleeps, while the target
sentence is described by the subgraph below V ′

1 . These are all the constraints we
need to describe the meaning of sentence (6.1). The parallelism literal U ′

1/U2∼V ′
1/V2

asserts that the source context between U ′
1 and U2 has the same structure as the target

context between V ′
1 and V2. So for the target, we only need to specify the exception,

mary.
In the application to semantics, the syntax-semantics interface would derive the con-

straint in Fig. 21. Then this constraint would have to be solved in order to reconstruct
the meaning of the target sentence.
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6.3 Parallelism relations
In the previous paragraph, we have introduced the notions of segments and correspon-
dence functions. We now make them precise.

DEFINITION 6.1
A (tree) segment u/u′ in a lambda-structure τ consists of two nodes u and u′ of τ
satisfying u!∗u′. The upper node u is called the root of the segment and the lower
node u′ its hole. The nodes in the tree segment are those nodes of the lambda structure
that lie below the root but not properly below the hole.

b(u/u′) := {w ∈ Vτ | u%∗w and w(%∗∪⊥)u′}.

The set of nodes that properly belong to a segment are all these nodes except the hole:

b−(u/u′) := b(u/u′)− {u′}

In some applications, it is useful to have tree segments with more than one hole [3].

DEFINITION 6.2
A correspondence function between two tree segments u/u′ and v/v′ is a bijective
mapping c : b(u/u′) → b(v/v′) such that for all nodes w ∈ b−(u/u′) and every label
f of arity n in Σ it holds that:

w:f(w1, . . . , wn) ⇔ c(w):f(c(w1), . . . c(wn)).

Correspondence functions map roots to roots and holes to holes; but the two cor-
responding holes may carry different labels. Whenever it exists, the correspondence
function between u/u′ and v/v′ is unique; we write co( u

u′
v
v′ ) for it.

Using the notions of segments and correspondence, we can now define parallelism
relations.

DEFINITION 6.3
Parallelism in a λ-structure is the four-place relation u1/u2∼v1/v2 which holds on
a tuple of nodes iff the segments u1/u2 and v1/v2 have the same tree structure and
parallel binding structures.
Two tree segments in a lambda structure have the same tree structure iff there exists

a correspondence function between them.

The definition of “parallel binding structure” is somewhat more complex; it is pre-
sented in Section 8.1. Note that it would be sufficient to require that every tuple in
the parallelism relation satisfies the two conditions; this would allow “parallelism re-
lations” that are arbitrary subsets of the above relation. Choosing this more liberal
definition makes no difference to satisfiability, but is sometimes useful in proofs.
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7 Saturation for Parallelism Without Binding
In this section, we present the core saturation rules for solving parallelism literals,
which spell out the equality of the tree structures on both sides, and we go through an
example in more depth than above. The rules in this section form part of the sound
and complete procedure in Section 9.

7.1 Abbreviations and auxiliary constraints
To be able to talk about nodes being inside, or properly inside, a segment, we de-
fine two constraint abbreviations. These are just shortcuts for conjunctions of CLLS
constraints, so they do not add to our language.

Z∈b(X1/X2) =def X1%∗Z ∧ Z(%∗ ∪ ⊥)X2

Z∈b−(X1/X2) =def X1%∗Z ∧ Z(%+ ∪ ⊥)X2

So a pair (τ, α) satisfies Y ∈b(X1/X2) iff the node α(Y ) is an element of the set
b(α(X1)/α(X2)) for τ . Note that we do not give meaning to the term b(X1/X2) as
such.
We extend our constraint language by an auxiliary type of literals, correspondence

literals, for speaking about correspondence functions.

ϕ ::= . . . | co(X1
X2

Y1
Y2

)(U)=V

Such a literal states that X1/X2∼Y1/Y2 holds as well as X2∈b(U/X1) and
Y2∈b(V/Y1), and that U corresponds to V with respect to the correspondence func-
tion for X1/X2∼Y1/Y2.
We also define symmetric variants of the parallelism, again as constraint abbrevia-

tions:

X1/X2
s∼Y1/Y2 =def X1/X2∼Y1/Y2 ∨ Y1/Y2∼X1/X2

cos(X1
X2

Y1
Y2

)(U) = V =def co(X1
X2

Y1
Y2

)(U) = V ∨ co(X1
X2

Y1
Y2

)(V ) = U

Note that we do not consider correspondence literals as part of CLLS as such; they
are more of a calculus-internal bookkeeping mechanism. The saturation procedures
we present below will only be complete for CLLS as defined in Section 6.1, not for
arbitrary conjunctions of CLLS with auxiliary literals.

7.2 The Core Rules
Now we are ready to introduce the four core rules of the saturation procedure. First,
the roots and holes of parallel segments correspond:

(P.Root) X1/X2∼Y1/Y2 → co(X1
X2

Y1
Y2

)(X1)=Y1 ∧ co(X1
X2

Y1
Y2

)(X2)=Y2
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Second, each node in a segment corresponds to some node in the parallel segment:

(P.New) X1/X2
s∼Y1/Y2 ∧ U∈b(X1/X2)→ ∃V co(X1

X2
Y1
Y2

)(U)=V

The function of (P.New) is to introduce new variables: Applied exhaustively to a
constraint which contains a parallelism literal X1/X2∼Y1/Y2, it creates correspond-
ing variables for all variables U that satisfy either U∈b(X1/X2) or U∈b(Y1/Y2).
Note that by 5.3, (P.New) is applied only to variables that do not yet possess a corre-
spondent with respect to this correspondence function, i.e. if there is no V ′ such that
the constraint already contains co(X1

X2

Y1
Y2

)(U)=V ′.
Third, correspondence and inverse correspondence are homomorphisms: Corre-

sponding nodes that properly lie in parallel segments carry the same labels and have
corresponding children.

(P.Copy.Label)
∧n

i=0 co
s( X1

X2
Y1
Y2

)(Ui)=Vi ∧ U0:f(U1, . . . , Un) ∧ U0∈b−(X1/X2) →
V0:f(V1, . . . , Vn)

Fourth, the relation between two variables in a segment carries over to the corre-
sponding variables in parallel segments.

(P.Copy.Dom) U1RU2 ∧
∧2

i=1 cos(
X1
X2

Y1
Y2

)(Ui)=Vi → V1RV2

These last two axioms copy labeling, dominance, inequality and disjointness literals
between corresponding variables.

7.3 Example: Solving parallelism without binding
We illustrate the four core rules by solving a case of quantifier parallelism. We use the
a Hirschbhler sentence [22], in which scope and ellipsis interact:

(7.1) Every linguist attends a workshop, and every computer scientist does, too.

The sentence has three distinct readings: Either one single workshop is attended by
everybody; or all linguists attend one common workshop, and all computer scientists
visit a (potentially different) common workshop; or each linguist, and also each com-
puter scientist, has some workshop of their own that they are travelling to. There are
no “mixed” readings in which, e.g., all linguists gather at one workshop, while the
computer scientists disperse to different workshops.
Fig. 22 shows a simplified version of a constraint describing the meaning of (7.1);

we have compressed some fragments into single nodes, and we have omitted all bind-
ing literals.
Now let us apply our preliminary algorithm to solve this constraint. Throughout the

example, we write co as a shortcut for co(X1
X2

Y1
Y2

), as this is the only correspondence
function that appears here.
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and •
• X1

@ • U1

a ws • U2 • U3

@ • U4

ev ling • X2 • U5

• Y1

ev cs • Y2

X1/X2∼Y1/Y2

attend • U6

FIG. 22: Simplified constraint for Every linguist attends a workshop, and every com-
puter scientist does, too.

First, let us work with the variables that we know (through saturation with the DB
algorithm) to take values in one of the two parallel segments: X1, X2, U4, U5, U6. We
apply (P.Root) to record co(X1)=Y1, and co(X2)=Y2. Then, we make up new vari-
ables for the remaining correspondents. By applying (P.New) three times, we obtain
new variables V4, V5, V6 constrained by

∧6
i=4 co(Ui)=Vi. Now we copy constraints

from the source to the target sentence. For example, knowing that U4:@(X2, U5) and
that co(U4)=V4, co(X2)=Y2, and co(U5)=V5, we get V4:@(Y2, V5) by (P.Copy.Label).
Continuing in this manner, we arrive at the constraint pictured in Fig. 23.

and •
• X1

@ • U1

a ws • U2 • U3

@ • U4

ev ling • X2 • U5

• Y1

@ • V4

ev cs • Y2 • V5

attend • U6 attend • V6

X1/X2∼Y1/Y2

FIG. 23. Partial saturation of the constraint in Fig. 22

Now the parallelism procedure is stuck. The variables U1, U2, U3 could end up
either inside the source sentence (below X1) or outside the ellipsis (above the con-
junction), so we do not know whether we can apply (P.New) to these variables. To
solve the constraint, we must now apply (D.NegDisj) and (D.Distr.NegDisj), e.g. to
U1 and U4, which both dominate U6.
We continue with the branch where we add U4!

∗U1; the opposite case is similar.
With U4%∗U1, the DB algorithm can derive Ui∈b(X1/X2) for 1 ≤ i ≤ 3. That is,
the three variables denote nodes inside the left parallel segment, and we can proceed
as above, copying the variables with (P.New), and the literals that mention them with
(P.Copy.Label) and (P.Copy.Dom). The result is shown in Fig. 24.
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and •
• X1

@ • U4

ev ling • X2 • U5

@ • U1

a ws • U2 • U3

attends • U6

• Y1

@ • V4

ev cs • Y2 • V5

@ • V1

a ws • V2 • V3

attends • V6

FIG. 24. A solved form for the constraint in Fig. 22

Note in particular that the algorithm does not allow mixed readings. In Fig. 24, V1

corresponds to U1, and we have U5!
∗U1. But in that case we can immediately derive

V5!
∗V1 by (P.Copy.Dom). That is, because “a workshop” has received narrow scope

in the source sentence, it is forced to get narrow scope in the target sentence as well.

8 Axioms and Saturation for Parallelism With Binding
Now we complete the definition of parallelism relations by specifying what “parallel
binding structure” means. This time, we give the definition in the form of a set of
axioms that parallelism relations must satisfy. The variables in the axioms range over
all nodes of the λ-structure concerned. The advantage of that is that we can, by a slight
abuse of notation, reuse these axioms as saturation rules for our solution procedure.
After stating the axioms/saturation rules, we go through an example for illustration.

8.1 Parallel binding structure
DEFINITION 8.1
We say that two segments in a lambda have parallel binding structures if their corre-
spondence function satisfies the following set of axioms.

For a var-labeled node bound within the segment, the corresponding node is bound
correspondingly.

(C.λ.Copy) λ(U1)=U2 ∧
∧2

i=1 cos(
X1
X2

Y1
Y2

)(Ui)=Vi ∧U1∈b−(X1/X2)→ λ(V1)=V2

For a var-node bound outside the segment, the corresponding node has the same
binder.

(C.λ.Above) λ(U1)=Y ∧ cos( X1
X2

Y1
Y2

)(U1)=V1 ∧ U1∈b−(X1/X2) ∧ Y !+X1 →
λ(V1)=Y
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There are no ’hanging λ-binders’.

(C.λ.Hang) λ(U1)=U2 ∧ X1/X2
s∼Y1/Y2 ∧ U2∈b−(X1/X2)→X2¬!∗U1

If an ana-node is bound within the segment, there are two possible antecedents for
its corresponding node, matching the strict and the sloppy reading:

(C.ante.StrictSloppy) ante(U1)=U2 ∧
∧2

i=1 co(
X1
X2

Y1
Y2

)(Ui)=Vi ∧ U1∈b−(X1/X2) →
ante(V1)=U1 ∨ ante(V1)=V2

If an ana-node is bound outside the segment, then its correspondent has the same
anaphoric binder.

(C.ante.Above) ante(U1)=U2 ∧ co(X1
X2

Y1
Y2

)(U1)=V1 ∧ U2(!+∪⊥)X1 ∧ U1∈b−(X1/X2)

→ ante(V1)=U2

(C.ante.Below) ante(U1)=U2 ∧ co(X1
X2

Y1
Y2

)(U1)=V1 ∧ X2!+U2 ∧ U1∈b−(X1/X2)→
ante(V1)=U2

Axioms (C.λ.Copy), (C.λ.Above) and (C.λ.Hang) regulate the interaction of paral-
lelism and variable binding, while axioms (C.ante.StrictSloppy), (C.ante.Above) and
(C.ante.Below) deal with the interaction of parallelism and anaphoric binding. Most
axioms should be self-explanatory, with two exceptions. (C.ante.StrictSloppy) will be
explained in more detail in Section 9.3. (C.λ.Hang) prevents a certain overgeneration
problem; its (linguistic) motivation is explained in [17].

8.2 Example: Solving parallelism with binders
As we have announced above, we now re-use the axioms from the previous paragraph
as saturation rules. We use these rules on two examples to illustrate how the constraint
solving procedure works.

and •
• X1

@ • U1

@ • X2

every • man •
lam • U2

• U3

@ • U4

sleeps • U5 var • U6

• Y1

@ • V1

mary • Y2 lam • V2

• V3

@ • V4

sleeps • V5 var • V6

X1/X2∼Y1/Y2

FIG. 25. Partial saturation of the constraint in Fig. 21; λ-link still missing
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and •
• X1

@ •
@ •

car of • ana • U

lam •
•

@ •
@ •

dislikes • var •
mary • X2

• Y1

bill • Y2

X1/X2∼Y1/Y2

FIG. 26. Constraint for Mary1 dislikes her1 car, and so does Bill.

We first demonstrate the λ-binding rules. Fig. 21 shows the constraint for the
sentence Every man sleeps, and so does Mary. To find a solved form for this con-
straint, we first proceed as for the Hirschbühler example in Section 7.2; this yields
the constraint in Fig. 25. It remains to copy the binding literal λ(U6)=U2. This is
achieved by applying (C.λ.Copy). We have co(U6)=V6 and co(U2)=V2, so we may
add λ(V6)=V2.
As an example with anaphora, consider the following sentence:

(8.1) Mary1 dislikes her1 car, and so does Bill.

This sentence is an example of a strict/sloppy ambiguity. In the strict reading of this
sentence, it is Mary’s car that Bill does not like, while in the sloppy reading, Bill dis-
approves of his own car. The semantics of this sentence is described by the constraint
in Fig. 26.
We saturate this constraint exactly as we did the two previous ones; among other

things, we introduce a correspondent V for the anaphoric node U . It remains to handle
the anaphoric binding. The anaphoric link ante(U)=X2 is entirely inside the source
context, so it is copied using the distribution rule (C.ante.StrictSloppy). As the con-
straint contains co(X2)=Y2, this rule adds either ante(V )=U or ante(V )=Y2.
Fig. 27 shows the first possibility, corresponding to the strict reading. V is bound

by U , which in turn is bound by X2, so we can reach mary from V via a link chain
[24]. The second possibility, ante(V )=Y2, corresponds to the sloppy reading.

9 Soundness and Completeness of the CLLS Solver
Finally, we present a sound and complete solution procedure for CLLS. We first in-
troduce a relation on tree nodes that helps us compute with correspondences. Then
we present the saturation rules we have left out before. Finally we state the soundness
and completeness results and sketch a proof.
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and •
• X1

@ •
@ •

car of • ana • U

lam •
•

@ •
@ •

dislikes • var •
mary • X2

• Y1

@ •
@ •

car of • ana • V

lam •
•

@ •
@ •

dislikes • var •
bill • Y2

FIG. 27. Solved form for Fig. 26 (strict reading)

9.1 Path equality
We first introduce another relation on nodes of a λ-structure, the path equality relation.
It states, informally speaking, that two paths in a λ-structure are equal in length and
in the node labels passed.

DEFINITION 9.1
Let τ = (V, E, L, λ, ante) be a λ-structure. A path equality p( u1

u
v1
v ) holds in τ iff

• either u=u1 and v=v1,
• or E contains edges (u′, u), (v′, v) such that L(u′) = L(v′), and L(u′, u) =

L(v′, v), and p(u1
u′

v1
v′ ) holds in τ .

The interesting point about path equality is that it can express correspondence:
LEMMA 9.2
Let τ be a lambda structure with nodes u1, u2, v1, v2 such that the correspondence
function co(u1

u2

v1
v2

) exists. The following property then holds for all nodes u, v of τ :

co(u1
u2

v1
v2

) (u)=v iff u ∈ b(u1/u2) and p(u1
u

v1
v )

PROOF. Let τ = (V, E, L, λ, ante). We abbreviate co( u1
u2

v1
v2

) by c. For the⇒ direc-
tion, c(u1) = v1, and p(u1

u1

v1
v1

) always holds. Suppose p(u1
w

v1
c(w) ) has been shown

for w ∈ b−(u1/v1), and w:f(w1, . . . , wn) holds. Then c(w):f(c(w1), . . . c(wn)) by
Def. 6.2, so p( u1

wi

v1
c(wi)

) holds for 1 ≤ i ≤ n.
Now for the⇐ case. We must have c(u1) = v1, so the case p(u1

u1

v1
v1

) is trivial. Now
suppose p(u1

u
v1
v ) holds for u '=u1. Then by Def. 9.1 there are u′, v′ such that p(u1

u′
v1
v′ )

holds, u′ and v′ bear the same label, and u is the i-th child of u′ and v the i-th child
of v′ for some i. Hence if c(u′) = v′ holds, so does c(u) = v by Def. 6.2.

We extend our constraint language by path equality literals, which are interpreted
by the path equality relation. Like correspondence literals, they are auxiliary literals
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(P.Path.Corr) cos( X1
X2

Y1
Y2

)(U)=V → p(X1
U

Y1
V

) ∧ U∈b(X1/X2)

(P.Path.Sym) p(X
U

Y
V )→ p(Y

V
X
U )

(P.Path.Dom) p(X
U

Y
V )→X!∗U ∧ Y !∗V

(P.Path.Eq.1) p(X1
X2

X3
X4

) ∧
∧4

i=1 Xi=Yi → p(Y1
Y2

Y3
Y4

)

(P.Path.Eq.2) p(X
U

X
V )→ U=V

(P.Trans.H) p(X
U

Y
V ) ∧ p(Y

V
Z
W )→ p(X

U
Z
W )

(P.Trans.V) p(X1
X2

Y1
Y2

) ∧ p(X2
X3

Y2
Y3

)→ p(X1
X3

Y1
Y3

)

(P.Diff.1) p(X1
X2

Y1
Y2

) ∧ p(X1
X3

Y1
Y3

) ∧ X2!∗X3 ∧ Y2!∗Y3 → p(X2
X3

Y2
Y3

)

(P.Diff.2) p(X1
X3

Y1
Y3

) ∧ p(X2
X3

Y2
Y3

) ∧ X1!∗X2 ∧ Y1!∗Y2 → p(X1
X2

Y1
Y2

)

FIG. 28. Rules for correspondence functions and path equalities

rather than a proper part of CLLS.

ϕ ::= . . . | p(X1
Y1

Y1
Z1

)

9.2 Further Rules
The saturation rules we have presented so far are not even complete for CLLS without
binding constraints. This is not surprising, as we have not shown any rules that talk
about properties of correspondence functions. We now amend this by the rules in
Fig. 28.
(P.Path.Corr) is justified by Lemma 9.2. The next four rules state obvious truths

on path equalities. At the same time, these rules together with (P.New) ensure that
correspondence functions are actually bijective functions. Rules (P.Trans.H) through
(P.Diff.2) handle the proper interaction of correspondence functions when there is
more than one parallelism.
The final ingredient to the solver are three distribution rules, given in Fig. 29. They

are necessary to make the saturation strong enough to achieve completeness.

(P.Distr.Seg) X1/X2
s∼Y1/Y2 ∧ X1!∗X →X∈b(X1/X2) ∨ X2!+X

(P.Distr.Project) ϕ→X=Y ∨ X '=Y whereX, Y ∈ Vars(ϕ)

(C.ante.Distr) ante(U1)=U2 ∧ X1/X2
s∼Y1/Y2 ∧ U1∈b−(X1/X2)→

X1!∗U2 ∨ U2!+X1 ∨ U2⊥X1

FIG. 29. Distribution rules
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The first rule guesses whether or not to put a variable into the sphere of action of a
parallelism literal. The second rule guesses (in)equalities between variables. The third
rule is only necessary when there are anaphoric linking constraints; it allows us to de-
cide when we need to apply (C.ante.StrictSloppy), (C.ante.Above), or (C.ante.Below).
The second rule in particular is very powerful and can lead to an explosion of the
search space. Fortunately, it seems that this rule is not needed for linguistic examples
(see Section 11.2).

9.3 Soundness and completeness
Combining all the rules we have discussed so far (which are all listed in Appendix A),
we obtain the procedureD plus P,DP for short, for CLLS without binding constraints,
and the procedure DB plus P and C, DBPC for short, for CLLS. These procedures are
both sound and complete, in the sense defined in Section 5.4.4.
THEOREM 9.3
The procedure DP is sound and complete for CLLS without binding constraints. The
procedure DBPC is sound and complete for CLLS.
For the soundness part, [19] construct a concrete solution (τ, α) for a given con-

straint ϕ in DP-solved form. They then check that all literals are indeed satisfied,
which requires a tedious case distinction.
Concerning completeness, [19] show that DP computes all minimal solved forms

of a constraint, with respect to the notion of minimality we have sketched at the end
of Section 5.5. The proof of completeness in [19] only takes recourse to few of the
actual saturation rules and is thus easily extended to DBPC.

10 The expressiveness of CLLS
The procedure for solving CLLS constraints is sound and complete, but it does not
necessarily terminate, even when there are no binding constraints.
An example is shown in Fig. 30, Picture 1. This constraint describes two parallel

segments that overlapwithout one of them being properly nested in the other: Y1 must
denote a node inside the segment described by X1/X2, and X2 a node inside Y1/Y2.
The constraint is unsatisfiable: there is no finite tree which, seen from the root, has an
infinite number of f -labeled nodes followed by an infinite number of g-labeled nodes.
If we run our algorithm on this constraint, it will keep copying f -labeled and g-labeled
variables forever. Pictures 2 and 3 of Fig. 30 show two stages of the infinite copying
process.
This behaviour is not surprising, as CLLS is at least as expressive as context unifica-

tion (CU), a problem from unification theory whose decidability is open [48]. Decid-
ability of CU is interesting on its own because CU is a specialization of (undecidable)
second-order unification, but the best known lower bound is NP-hard, by encoding
string unification [33].
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X  / X  ~ Y  / Y2121

X1

Y1

X2

Y2

1 f

g

X1

X2
Y2

Y1

2 f

f

g
g
a

X1
Y1

X2
Y2

a

etc.

3 f
f

g
g

g
a

f

FIG. 30. A constraint for which the procedure never terminates

g •
f •

a • b •

= =⇒C =

g •
f •

b •
•

C

a

FIG. 31. g(f(a, b)) = C(a)

We devote the rest of this section to exploring the connection between CLLS and
CU, generalizing an earlier equivalence result [41] and presenting an alternative en-
coding of CU into CLLS by example. The main idea is that we can see an occurrence
of a context as a segment or, vice versa, we identifiy a context with the structure of a
segment.
A Context Unification problem is a conjunction of equations between terms con-

taining context variables. Given a set of function symbols f, g, . . . and a set of context
variables ranged over by C, context terms have the following formal syntax:

t ::= f(t1, . . . , tn) | C(t).

Usually, the syntax of context terms also comprises first-order variables, but this
adds nothing to the expressiveness [42]. A context variable C denotes a ground term
with exactly one hole, e.g. g(f(•, b)). Alternatively, a context variable can be seen as
a context function, a function that maps terms to terms, like λX.g(f(X, b)).
A solution of a CU problem is a mapping of the context variables to context func-

tions. For example, the CU problem

g(f(a, b)) = C(a)

has exactly one solution: C must be mapped to the context function λX.g(f(X, b))
(Fig. 31). This context function corresponds to the term g(f(•, b)) with exactly one
hole. As before, we regard ground terms as constructor trees.
Now we can take CLLS without binding to be the sublanguage of CLLS that con-

tains conjunctions only of labeling, dominance, and parallelism literals, and prove the
following theorem.
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THEOREM 10.1
The satisfiability problem of CLLS without binding is equivalent to context unifica-
tion.

PROOF. On the one hand, every context unification problem can be encoded in equal-
ity up-to constraints [39], which can be rewritten using labeling and parallelism con-
straints [41]. On the other hand, [41] shows that any conjunction of labeling, domi-
nance, and parallelism constraints can be written as a context unification problem.

It is an open question whether path equality and binding constraints can be ex-
pressed in CU. The problem with binding is that the interaction of binding and paral-
lelism (Def. 8.1) is rather intricate and makes use of correspondence functions; and
correspondence literals may or may not exceed the expressiveness of CU.
One drawback of this proof is that the first direction (encoding of CU in CLLS) is

very indirect. Here we present a direct encoding. We only discuss the example

g(f(C(a), b)) = C(g(f(a, b))),

but the encoding generalizes in a straightforward manner.

g • v1

f • v2

C • v3

a • v4

b • v5

C • v6

g • v7

f • v8

a • v9 b • v10

FIG. 32. Trees for g(f(C(a), b)) and C(g(f(a, b)))

First of all, we read the terms g(f(C(a), b)) and C(g(f(a, b))) as finite constructor
trees whose node labels are either ordinary function symbols or context variables. The
result of this first step is shown in Fig. 32.
Now we form a constraint from the trees. We use one variable per tree node, say

X1, . . . , X10. (For ease of notation, we just use the same index for a tree node and
the matching variable here.) For every tree node labeled by a function symbol, we
put the matching labeling literal in our constraint – e.g. X1:g(X2) andX2:f(X3, X4)
for the first two nodes of the first tree. Now for every two nodes labeled by the same
context variable, we put a parallelism literal in our constraint. v3 and v6 are both
labeled C; they have v4 and v7 as their children, respectively. We translate this into
the parallelism literal X3/X4∼X6/X7.
Finally, we express equality of the two context terms by adding X1=X6 to our

constraint: X1 and X6 are the variables for the two root nodes. The end result
is shown in Fig. 33. It is satisfiable, as is the CU problem. Our example gener-
alizes easily; conjunctions of equations are no problem either, as any conjunction
s1=t1 ∧ . . . ∧ sn=tn of equations can be turned into an equivalent single equation
f(s1, . . . , sn)=f(t1, . . . , tn).
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g • X1

f • X2

• X3

a • X4

b • X5

• X6

g • X7

f • X8

a • X9 b • X10

X1=X6

X3/X4∼X6/X7

FIG. 33. Constraint for the problem g
(
f(C(a), b)

)
= C

(
g(f(a, b))

)

11 Implementations
In this section, we give a brief overview of implemented solvers for DB and CLLS
constraints. All mentioned implementations are available over the web at http://
www.coli.uni-sb.de/sfb378/projects/CHORUS-en.html.

11.1 Solvers for dominance and binding constraints
The approach in [13] describes a solver for DB constraints that uses concurrent con-
straint programming. The idea is to encode dominance constraints into constraints
over finite sets of integers and disjunctive propagators, as provided by the Mozart Pro-
gramming System for the language Oz [49, 43]. The saturation rules of Section 5 can
thereby be reduced to Mozart’s propagation and distribution mechanisms.
Interestingly, the propagation power of this solver is so strong that on the examples

from our application, it seems never to try a wrong choice; all choices made merely
distinguish between the different solutions. Failure free search is a very much unchar-
acteristic behaviour when solving an NP-complete problem; it indicates that a poly-
nomial time subproblem could be used in practice. In our case, such a fragment exists
indeed: it is the fragment of normal dominance constraints presented in Section 4.2.
A polynomial time solver for normal DB constraints is desribed in [26]. It uses the

graph algorithm from the proof of Theorem 4.3 that we have implemented in LEDA
[36, 30], a library of common data structures and algorithms.
The general observation is that the graph algorithm is faster than the constraint

implementation, which in turn is faster than the straightforward implementation of the
saturation algorithm. This is illustrated in Table 16 on “chains” of growing lengths. A
chain [28] is a type of constraint that is very common in scope underspecification; it
alternates “upper” fragments (quantifiers) and “lower” fragments (nuclear scopes), as
sketched in Fig. 34. Concrete examples in this paper include Fig. 6, a chain of length
two, and the lower part of Fig. 7, which is a chain of length three.
The table displays the runtimes in milliseconds on a 350 MHz Pentium III and the

numbers of minimal solved forms.
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Runtimes in milliseconds
graph constraint naive saturation

Length Sols (normal DB) (DB) (CLLS)
2 2 20 30 40
3 5 30 110 270
4 14 60 400 1510
5 42 170 1700 7000
6 132 610 5400 35200
7 429 2700 20700 > 150000
8 1430 9000 61000 > 500000

TABLE 16. Runtimes of the three DB implementations on chains of growing lengths.

FIG. 34. A chain of length three

11.2 Solver for CLLS including parallelism
The best implementation for the CLLS solver that is known so far is the naive in-
terpretation of the saturation system. To gain some efficiency, this implementation
never applies (P.Distr.Project). Distribution rules are only applied to constraints that
are saturated under all propagation rules except (P.New), and (P.New) is only applied
to constraints that are saturated with all other rules.

Runtimes
CU CU CLLS

Sentence complete incomplete naive saturation
(11.1) 40 sec 1 sec 40 ms
(11.2) n/a 15 sec 270 ms
(11.3) 2+ h 1 sec 4 sec

TABLE 17. Comparison of CU and CLLS implementations

A baseline against which we can compare this implementation are the (formally
equivalent) solvers for context unification from the literature – a complete one from [40],
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and one where the most expensive rules were removed to improve efficiency [25]. Ta-
ble 17 compares some runtimes, on the following sentences:

(11.1) Every man loves a woman.
(11.2) Every researcher of a company saw most samples.
(11.3) Peter likes Mary. John does, too.

The result of the comparison is that the CU solvers suffer badly in the examples
with more complex scope ambiguities; the complete solver took several hours for the
five-reading sentence. The CLLS solver, which can separate scope and ellipsis more
cleanly, is much more efficient because it simply uses the DB rules. Another result
is that the incomplete CU implementation can resolve the simple ellipsis (11.3) faster
than the CLLS implementation can. This is because the current CLLS implementa-
tion has not been optimized at all; it is actually promising that the runtime is on the
same order of magnitude as for the optimized CU solver. However, it is clearly still
necessary to improve the implementation, e.g. by limiting the redundancy produced
by the saturation system, or by sharing parts of constraints instead of copying them.

12 Conclusion and Outlook
In this paper, we have investigated algorithms and complexity results for CLLS as
a whole and for the sublanguage of dominance and binding constraints. We have
illustrated the algorithms on examples arising in an underspecified analysis of scope,
anaphora, and ellipsis.
Because parallelism constraints are equivalent to context unification, one cannot

expect that our saturation procedure terminates in general. This is, of course, unfor-
tunate from a processing point of view. However, we can again look for fragments of
the full language that are large enough for the linguistic application and on which our
procedure does terminate. One possibility is to exclude models with parallel segments
that overlap without being properly nested (see Section 10).
On the other hand, the results presented in this paper can act as a platform on which

further useful extensions of the constraint language can be pursued. One such exten-
sion is group parallelism [3]; this is a generalization of parallelism to sequences of
segments. Group parallelism is interesting because it can be used to represent beta
reduction in an underspecified way [3, 4]. The saturation procedure presented here
serves as a foundation for the saturation procedure for group parallelism.
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A Solving CLLS Constraints: All Saturation Rules
In this appendix, we gather all the saturation rules we have mentioned throughout the paper.

Solving Dominance Constraints: Rule system D

Main rules

(D.NegDisj) X!∗Z ∧ Y !∗Z →X¬⊥Y

(D.Distr.NegDisj) X¬⊥Y →X!∗Y ∨ Y !∗X

(D.Inter) XR1Y ∧XR2Y →XRY if R1 ∩ R2 ⊆ R

(D.Child.Ineq) X '=Y ∧X:f(. . . , X′, . . .) ∧ Y :g(. . . , Y ′, . . .)→X′ '=Y ′

(D.Parent.Ineq) X!+Z ∧ Y :f(. . . , Z, . . .)→X!∗Y

Testing satisfiability of normal constraints

(D.Clash) X∅Y → false

(D.Dom.Refl) ϕ→X!∗X X occurs in ϕ

(D.Inv) XRY → Y R−1X

(D.Dom.Trans) X!∗Y ∧ Y !∗Z →X!∗Z

(D.Lab.Disj) X:f(. . . , Xi, . . . , Xj , . . .)→Xi⊥Xj where 1 ≤ i < j ≤ n

(D.Lab.Dom) X:f(. . . , Y, . . .)→X!+Y

(D.Disj) X⊥Y ∧ Y !∗Z →X⊥Z

Dealing with overlaps

(D.Eq.Decom) X:f(X1, . . . , Xn) ∧ Y :f(Y1, . . . , Yn) ∧X=Y →
∧n

i=1 Xi=Yi

(D.Children.up) X!∗Y ∧X:f(X1, . . . , Xn) ∧
∧n

i=1 Xi¬!∗Y → Y =X

(D.Distr.Children) X!∗Y ∧X:f(X1, . . . , Xn)→Xi!∗Y ∨Xi¬!∗Y (1 ≤ i ≤ n)

Binding for Dominance Constraints: Rule System B

(B.λ.Func) λ(X)=Y ∧ λ(U)=V ∧ X=U → Y =V

(B.λ.Dom) λ(X)=Y → Y !∗X

(B.λ.var) λ(X)=Y →X:var

(B.λ.lam) λ(X)=Y → ∃Z (Y :lam(Z))

(B.ante.Func) ante(X)=Y ∧ ante(U)=V ∧ X=U → Y =V

(B.ante.ana) ante(X)=Y →X:ana
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Solving CLLS Constraints: Rule System P

Main Rules

(P.Root) X1/X2∼Y1/Y2 → co(X1
X2

Y1
Y2

)(X1)=Y1 ∧ co(X1
X2

Y1
Y2

)(X2)=Y2

(P.New) X1/X2
s∼Y1/Y2 ∧ U∈b(X1/X2)→ ∃V co(X1

X2
Y1
Y2

)(U)=V

(P.Copy.Label)
∧n

i=0 cos(
X1
X2

Y1
Y2

)(Ui)=Vi ∧ U0:f(U1, . . . , Un) ∧ U0∈b−(X1/X2) →
V0:f(V1, . . . , Vn)

(P.Copy.Dom) U1RU2 ∧
∧2

i=1 co
s( X1

X2
Y1
Y2

)(Ui)=Vi → V1RV2

Properties of Path Equality Constraints

(P.Path.Corr) cos( X1
X2

Y1
Y2

)(U)=V → p(X1
U

Y1
V ) ∧ U∈b(X1/X2)

(P.Path.Sym) p(X
U

Y
V )→ p(Y

V
X
U )

(P.Path.Dom) p(X
U

Y
V )→X!∗U ∧ Y !∗V

(P.Path.Eq.1) p(X1
X2

X3
X4

) ∧
∧4

i=1 Xi=Yi → p(Y1
Y2

Y3
Y4

)

(P.Path.Eq.2) p(X
U

X
V

)→ U=V

Interaction between correspondence functions

(P.Trans.H) p(X
U

Y
V ) ∧ p(Y

V
Z
W )→ p(X

U
Z
W )

(P.Trans.V) p(X1
X2

Y1
Y2

) ∧ p(X2
X3

Y2
Y3

)→ p(X1
X3

Y1
Y3

)

(P.Diff.1) p(X1
X2

Y1
Y2

) ∧ p(X1
X3

Y1
Y3

) ∧ X2!∗X3 ∧ Y2!∗Y3 → p(X2
X3

Y2
Y3

)

(P.Diff.2) p(X1
X3

Y1
Y3

) ∧ p(X2
X3

Y2
Y3

) ∧ X1!∗X2 ∧ Y1!∗Y2 → p(X1
X2

Y1
Y2

)

Distribution Rules

(P.Distr.Seg) X1/X2
s∼Y1/Y2 ∧ X1!∗X →X∈b(X1/X2) ∨ X2!+X

(P.Distr.Project) ϕ→X=Y ∨ X '=Y whereX, Y ∈ Vars(ϕ)

Binding in CLLS Constraints: Rule System C

(C.λ.Copy) λ(U1)=U2 ∧
∧2

i=1 co
s( X1

X2
Y1
Y2

)(Ui)=Vi ∧U1∈b−(X1/X2)→ λ(V1)=V2

(C.λ.Above) λ(U1)=Y ∧ cos( X1
X2

Y1
Y2

)(U1)=V1 ∧ U1∈b−(X1/X2) ∧ Y !+X1 →
λ(V1)=Y

(C.λ.Hang) λ(U1)=U2 ∧ X1/X2
s∼Y1/Y2 ∧ U2∈b−(X1/X2)→X2¬!∗U1

(C.ante.StrictSloppy) ante(U1)=U2 ∧
∧2

i=1 co(
X1
X2

Y1
Y2

)(Ui)=Vi ∧ U1∈b−(X1/X2) →
ante(V1)=U1 ∨ ante(V1)=V2

(C.ante.Above) ante(U1)=U2 ∧ co(X1
X2

Y1
Y2

)(U1)=V1 ∧ U2(!+∪⊥)X1 ∧ U1∈b−(X1/X2)

→ ante(V1)=U2
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(C.ante.Below) ante(U1)=U2 ∧ co(X1
X2

Y1
Y2

)(U1)=V1 ∧ X2!+U2 ∧ U1∈b−(X1/X2)→
ante(V1)=U2

(C.ante.Distr) ante(U1)=U2 ∧ X1/X2
s∼Y1/Y2 ∧ U1∈b−(X1/X2)→

X1!∗U2 ∨ U2!+X1 ∨ U2⊥X1
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