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On Rewrite Constraints and ContextUni�
ationJoa
him Niehren 1;2;3Universit�at des Saarlandes, Postfa
h 15 11 50, D-66041 Saarbr�u
ken, GermanySophie Tison 1;2LIFL, Uni
ersit�e Lille 1, F-59655 Villeneuve d'As
q 
edex, Fran
eRalf Treinen 1LRI, Universit�e Paris-Sud, F-91405 Orsay 
edex, Fran
eAbstra
tWe show that strati�ed 
ontext uni�
ation, whi
h is one of the most expressive frag-ments of 
ontext uni�
ation known to be de
idable, is equivalent to the satis�abilityproblem of slightly generalized rewriting 
onstraints.Key words: Automati
 Theorem Proving; Theory of Computation; Uni�
ation;Rewrite Constraints.
1 Introdu
tionContext uni�
ation (CU) was introdu
ed in rewriting and uni�
ation theory[3,14℄. CU 
an be 
onsidered as se
ond-order linear uni�
ation [6℄, that isse
ond-order uni�
ation where the interpretation of se
ond-order variables isrestri
ted to lambda-terms with exa
tly one o

urren
e of the bound variable.Hen
e, CU is a restri
tion of higher-order uni�
ation (whi
h is unde
idableeven in the se
ond-order 
ase [5℄) and a generalization of string uni�
ation(whi
h is de
idable [9℄). De
idability of CU is still open.1 Partially supported by the Esprit Working Group 22457 - CCL II2 Partially supported by the PROCOPE proje
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A de
idable fragment of CU 
alled strati�ed CU has been introdu
ed in [15℄.It is shown in [17℄ that 
ontext uni�
ation with two 
ontext variables { ea
hof whi
h may o

ur an arbitrary number of times { is de
idable. Furthermore,so-
alled bounded se
ond-order uni�
ation where lambda-terms may have oneor zero o

urren
e of the bound variable is de
idable [16℄. CU has appli
a-tions in solving membership 
onstraints in 
ompletion of 
onstrained rewrit-ing [3℄, solving 
onstraints o

urring in distributive uni�
ation [15℄, extended
riti
al pairs in bi-rewriting systems [7℄ and semanti
s of ellipses in naturallanguage [13,4,11℄.The investigation of (one-step) rewrite 
onstraints (RC) has been initiatedby [1℄. Atomi
 rewrite 
onstraints have the form x ! y by R, saying that aground term denoted by x rewrites by the rewrite system R to a ground termdenoted by y (in its most primitive form only one �xed rewrite system R isallowed to o

ur in a 
onstraint). The original proje
t was to show de
idabilityof the �rst-order theory of these 
onstraints sin
e su
h a result would haveallowed to generalize known de
idability results in rewrite theory. However,unde
idability of the 8�9�-fragment 
ould be shown even for very simple 
lassesof rewrite systems [19,20,10,18℄. The question of de
idability of the purelyexistential fragment of positive and negative rewrite 
onstraints remains open,even though some 
ases for restri
ted 
lasses of rewrite systems are solved [2,8℄.It has been shown in [12℄ that satis�ability of RC 
an be expressed as satis-�ability of strati�ed CU and hen
e is de
idable. However, it was not knownwhether strati�ed CU really is more diÆ
ult than solving RC. In this paper,we propose a minor extension of RC and show that it is in fa
t equivalent tostrati�ed CU, with linear-time translations in both dire
tions. Our extension
on
erns a means to 
ompare the positions at whi
h one term rewrites intoanother. We 
onsider this extension to be insigni�
ant sin
e whenever rewrite
onstraints su
h as x! y by R1 ^ x! z by R2 are to be resolved then it is anatural �rst step to 
onsider the di�erent 
ases a

ording to the relative posi-tions of the two rede
es in x. Hen
e, in our opinion, any method to solve RCanyway has to 
ope with 
omparisons of positions of rede
es in a term. In thissense we argue that Strati�ed Context Uni�
ation Problems are essentiallyequivalent to Rewrite Constraints.2 The LanguagesThe syntax of 
ontext uni�
ation is given in Figure 1. A CU-term T is atree-valued term whi
h is built from tree variables x; y; z, 
ontext variablesC;D;E, and fun
tion symbols from a signature � (a is a 
onstant and f afun
tion symbol in �). A tree over � is a ground CU-term, i.e. a term without(tree or 
ontext) variables. 2



CU-terms T ::= C(T ) j x j f(T1; : : : ; Tn)CU-equation systems E ::= T = T 0 j E ^ E 0Fig. 1. Terms and equations in 
ontext uni�
ationFO-terms t ::= x j f(t1; : : : ; tn)rewrite 
onstraints R ::= x! y at C by t! t0j C=id j C � C 0 j R ^ R0Fig. 2. First-order terms and rewrite 
onstraintsA system of CU-equations is a 
onjun
tion of equations between CU-terms.CU-equations are interpreted in the two sorted algebra where every 
ontext-variable is assigned a 
ontext, that is a �-term with exa
tly one o

urren
eof the bound variable, and where a CU-term t denotes the tree obtained as�-normal form of the �-term t with his variables repla
ed by their values.A 
ontext term is a sequen
e of 
ontext variables C1 : : : Cn, n � 0. The emptysequen
e is written id. The se
ond-order pre�x of a position in a term (CU-term or 
ontext term) is the 
ontext term given by the sequen
e of 
ontext-variables lying on the path from the root of the term to the position. A setof CU-terms is 
alled strati�ed if every two o

urren
es of the same (tree or
ontext) variable have the same se
ond-order pre�x. A CU-equation systemE is strati�ed if the set of all CU-terms used as left or right hand side in anequation of E is strati�ed.Example 1 The system D(f(a)) = f(D(a)) is strati�ed sin
e both o

ur-ren
es of the 
ontext-variable D have the se
ond-order pre�x id. The set of so-lutions for D is f(�x:fn(x)) j n � 0g. The system D(f(D(a))) = f(D(f(a)))is not strati�ed sin
e the innermost o

urren
e of D on the left hand side hasse
ond-order pre�x D but the two other o

urren
es of D have se
ond-orderpre�x id. Its only solution is �x:f(x).The syntax of rewrite 
onstraints is given in Figure 2. Variables x; y; z denotetrees. The rewrite 
onstraint x! y at C by t! t0 means that x rewrites to y at
ontext C by using the rule t! t0. We assume x; y 62 V where V = V (t)[V (t0).Then, x! y at C by t! t0 is equivalent to 9V (x = C(t) ^ y = C(t)). Hen
e,the variables in a rewrite rule should be seen as bound variables having thatrewrite rule as s
ope. The ordering 
onstraint C � D means that D denotesan instan
e of C and is equivalent to 9E(CE = D) where juxtaposition isinterpreted by 
omposition.Example 2 The rewrite 
onstraint x ! y at id by f(z) ! z is equivalent tox = f(y). 3



(U1) x! y at C by t! t09V (x = C(t) ^ y = C(t0)) V = V (t) [ V (t0)fresh variables(U2) C = idC(a) = a a 2 �(U3) C � D9E(D(t) = C(E(t)) ^D(t0) = C(E(t0))) t 6= t0 groundE freshFig. 3. Rewrite Constraints as CU-EquationsOur main result isTheorem 3 For every signature, there is a linear time, satis�ability preserv-ing translation whi
h maps a strati�ed system of CU-equations to a rewrite
onstraint, and vi
e versa.3 Rewrite Constraints as Strati�ed CU EquationsIt was already shown in [12℄ that rewrite 
onstraints of the form x! y by t!t0 
an be translated into a strati�ed system of CU-equations. This translationis extended in Figure 3 to the slightly more general rewrite 
onstraints thatwe 
onsider in this arti
le. The 
orre
tness of the translation of C � D byrule (U3) was already proved in [11℄.Proposition 4 Given a rewrite 
onstraint the rules (U1){(U3) in Figure 3terminate and yield a satisfa
tion equivalent strati�ed system of CU-equationin linear time.4 Strati�ed CU-Equations as Rewrite ConstraintsIt remains to show that strati�ed systems of CU-equations 
an be translatedto rewrite 
onstraints. We pro
eed in three steps: We �rst show that we 
anrestri
t ourselves to normalized CU-equations, that is equations of the formx = T where T is a CU-term without tree variables. Se
ond, we translatenormalized CU-equations into 
ontextual 
onstraints - an expressive general-ization of rewrite 
onstraints - su
h that strati�
ation is preserved. Third, wemap strati�ed 
ontextual 
onstraints to rewrite 
onstraints.Proposition 5 For every signature � there exists a signature �0 with a single
onstant su
h that CU-equations over � 
an be translated in linear time bypreserving satis�ability and strati�
ation into CU-equations over �0.4




ontext terms � ::= �C j id
ontextual 
onstraints S ::= x! y at � by t! t0 j S ^ S 0Fig. 4. Contextual 
onstraints(C1) x = �(f(T1; : : : ; Tn))^i=1;:::;n9xi(xi = �(Ti) ^ x! xi at � by f(u1; : : : ; un)! ui) n 6= 0(C2) x = �(a)x! x at � by a! a a 
onstantFig. 5. Normal CU-equations into 
ontextual 
onstraintsProof: For any signature � let �0 be the signature 
onsisting of all non-
onstant symbols of �, plus the 
onstants of � 
onsidered as unary fun
tionsymbols, plus a new 
onstant a. Analogously, we 
an transform a system of
ontext equations E into a system E 0 by repla
ing every 
onstant 
 by 
(a).Now it is easy to see that E is satis�able over � i� E 0 is satis�able over �0.Note that we 
an obtain, from an arbitrary solution of E 0 over �0, a solutionof E over � simply be repla
ing 
(a) by the 
onstant 
 and by removing allremaining new unary fun
tion symbols 
. 2Proposition 6 Every CU-equation 
an be normalized in linear time su
h thatstrati�
ation and satis�ability are preserved.Proof: A

ording to Proposition 5 we 
an assume that the signature �
ontains only one 
onstant a. For any tree variable x, we �x a new 
ontext-variable Cx and repla
e all o

urren
es of x by Cx(a). This transformationpreserves satis�ability sin
e all ground terms have to 
ontain the 
onstanta. It also preserves strati�
ation sin
e the o

urren
es of Cx have the samese
ond-order pre�xes as the o

urren
es of x before. Finally, we repla
e anequation t = s by x = t ^ x = s for some fresh variable x. 2In Figure 4 we present 
ontextual 
onstraints whi
h are mu
h more expressivethan rewrite 
onstraints in that they allow to spe
ify the rewrite position bya 
ontext term �. A 
ontextual 
onstraint x! y at � by t! t0 is equivalentto 9V (x = �(t) ^ y = �(t0)) where all variables in V = V (t) [ V (t0) aresupposed to be fresh. We 
all a system of 
ontextual 
onstraints strati�ed ifits set of 
ontext terms is strati�ed.Proposition 7 A normalized system of CU-equations 
an be translated inlinear time to a 
ontextual 
onstraint su
h that strati�
ation and satis�abilityare preserved.Proof: Given a normalized system of CU-equations, the rules (C1){(C2)in Figure 5 yield a satisfa
tion equivalent 
ontextual 
onstraint. The rules5



A strati�ed system of CU-equations:x = D(f(E(g(a)))) x = D(h(E(b); F (
)))Translation to a strati�ed 
ontextual 
onstraint:x! x1 at D by f(u)! u x1 ! x1 at DE by g(a)! g(a)x! x2 at D by h(u1; u2)! u1 x2 ! x2 at DE by b! bx! x3 at D by h(u1; u2)! u2 x3 ! x3 at DF by 
! 
Translation to a rewrite 
onstraint:x! x1 at D by f(u)! u x1 ! x1 at C1 by g(a)! g(a)x! x2 at D by h(u1; u2)! u1 x2 ! x2 at C1 by b! bx! x3 at D by h(u1; u2)! u2 x3 ! x3 at C2 by 
! 
D � C1 ^ D � C2Fig. 6. Translation of a strati�ed CU-equations by exampleterminate in linear time: Both rules repla
e one CU-equation by one 
ontextual
onstraint plus one CU-equation per subterm. It is obvious that both rules aresound. They preserve strati�
ation sin
e deletion of fun
tion symbols does not
hange se
ond-order pre�xes. 2In fa
t, we 
ould generalize rule (C2) be allowing an arbitrary ground terminstead of a 
onstant a. An example for the translation of a strati�ed systemof normalized CU-equations into a strati�ed 
ontextual 
onstraint is given inFigure 6.Proposition 8 A strati�ed 
ontextual 
onstraint 
an be transformed in lineartime into a satisfa
tion equivalent rewrite 
onstraint.Proof: Given a 
ontextual 
onstraint, we repla
e all its 
ontext terms �1; : : : ;�nby fresh variables C1; : : : ; Cn, always using the same variable for repla
ing mul-tiple o

urren
es of the same 
ontext term. We obtain a rewrite 
onstraint plusa system of equations Vni=1 Ci = �i su
h that 1) for all i; j 2 f1; : : : ; ng: Cidoes not o

ur in �j, 2) all �i are pairwise distin
t, 3) the set f�1; : : : ;�ngis strati�ed.Let �j be a term of maximal length in this set. If �j = id then all equations inVni=1 Ci = �i are of the form Ci = id and hen
e rewrite 
onstraints. Otherwise,�j = �0jD for some 
ontext term �0j and 
ontext variable D. We next showthat D 
annot o

ur elsewhere in the equation system. If �i = �1D�2 for6



some i;�1;�2 then �1 = �0j by strati�
ation and �2 = id due to maximality.Sin
e all terms �i are distin
t, the o

urren
es of D in �j and �1D�2 mustbe equal.If our equation system does not 
ontain an equation C = �0j for some C thanwe add one for a fresh variable C. Given thatD o

urs only on
e, we 
an safelyrepla
e the equation Cj = �0jD by 9D(Cj = �0jD) and thus by C � Cj, and
ontinue the pro
ess. 2Example 9 The following strati�ed system of equationsC1 = id ^ C2 = D ^ C3 = DE ^C4 = DF ^ C5 = DEG ^ C6 = DEHis satisfa
tion equivalent to the following system of ordering 
onstraints:C1=id ^ C1 � C2 ^ C2 � C3 ^ C2 � C4 ^ C3 � C5 ^ C3 � C6Referen
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