N

HAL

open science

Dominance Constraints with Set Operators

Denys Duchier, Joachim Niehren

» To cite this version:

Denys Duchier, Joachim Niehren. Dominance Constraints with Set Operators. Proceedings of the
First International Conference on Computational Logic, 2000, London, United Kingdom. pp.326-341.

inria-00536806

HAL Id: inria-00536806
https://inria.hal.science/inria-00536806
Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00536806
https://hal.archives-ouvertes.fr

Dominance Constraints with Set Operators

Denys Duchier and Joachim Niehren

Programming Systems Lab, Universitit des Saarlandes Saarbriicken

Abstract. Dominance constraints are widely used in computational lin-
guistics as a language for talking and reasoning about trees. In this paper,
we extend dominance constraints by admitting set operators. We present
a solver for dominance constraints with set operators, which is based on
propagation and distribution rules, and prove its soundness and com-
pleteness. From this solver, we derive an implementation in a constraint
programming language with finite sets and prove its faithfullness.

1 Introduction

The dominance relation of a tree is the ancestor relation between its nodes.
Logical descriptions of trees via dominance were investigated in computer science
since the beginning of the sixties, for instance in the logics (W)SkS [15,16]. In
computational linguistics, the importance of dominance based tree descriptions
for deterministic parsing was discovered at the beginning of the eighties [9]. Since
then, tree descriptions based on dominance constraints have become increasingly
popular [14, 1]. Meanwhile, they are used for tree-adjoining and D-tree grammars
[17,13, 3], for underspecified representation of scope ambiguities in semantics [12,
4] and for underspecified descriptions of discourse structure [5].

A dominance constraint describes a finite tree by conjunctions of literals with
variables for nodes. A dominance literal 2<1*y requires  to denote one of the
ancestors of the denotation of y. A labeling literal x:f(z1, ..., z,) expresses that
the node denoted by x is labeled with symbol f and has the sequence of children
referred to by z1,...,,. Solving dominance constraints is an essential service
required by applications in e.g. semantics and discourse. Even though satisfia-
bility of dominance constraints is NP-complete [8], it appears that dominance
constraints occurring in these applications can be solved rather efficiently [2, 7].

For a typical application of dominance constraints in semantic underspecifi-
cation of scope we consider the sentence: every yogi has a guru. This sentence is
semantically ambiguous, even though its syntactic structure is uniquely deter-
mined. The trees in Figure 1 specify both meanings: either there exists a common
guru for every yogi, or every yogi has his own guru. Both trees (and thus mean-
ings) can be represented in an underspecified manner through the dominance
constraint in Figure 2.

In this paper, we propose to extend dominance constraints by admitting
set operators: union, intersection, and complementation can be applied to the
relations of dominance <* and inverse dominance >*. Set operators contribute
a controlled form of disjunction and negation that is eminently well-suited for



exists forall
guru @\ yogi '/e@\
yogi has guru has

Fig. 1. Sets of trees represent sets of meanings.

forall exists zo:forall(z1, z2) A
' Q Xl 0 .
i yo:exists(y1, y2) A
yogi Am guru 'y/l’\l/\. Y2 Tryogi A ma<z A
R yi:guru A ya<d*z A
has e 2 z:has

Fig. 2. A single tree description as underspecified representation of all meanings.

constraint propagation while less expressive than general Boolean connectives.
Set operators allow to express proper dominance, disjointness, nondisjointness,
nondominance, and unions thereof. Such a rich set of relations is important for
specifying powerful constraint propagation rules for dominance constraints as
we will argue in the paper.

We first present a system of abstract saturation rules for propagation and
distribution, which solve dominance constraints with set operators. We illus-
trate the power of the propagation rules and prove soundness, completeness,
and termination in nondeterministic polynomial time. We then derive a con-
crete implementation in a constraint programming language with finite sets [11,
6] and prove its faithfulness to the abstract saturation rules. The resulting solver
is not only well suited for formal reasoning but also improves in expressiveness on
the saturation based solver for pure dominance constraints of [8] and produces
smaller search trees than the earlier set based implementation of [2] because it
requires less explicit solved forms. For omitted proofs, we globally refer to the
extended version of this paper available from http://www.ps.uni-sb.de/Papers/.

2 Dominance Constraints

We first define tree structures and then dominance constraints with set operators
which are interpreted in the class of tree structures. We assume a signature X
of function symbols ranged over by f,g,..., each of which is equipped with an
arity ar(f) > 0. Constants — function symbols of arity 0 — are ranged over by
a,b. We assume that X contains at least one constant and one symbol of arity at
least 2. We are interested in finite constructor trees that can be seen as ground
terms over X such as f(g(a,b)) in Fig. 3.

We define an (unlabeled) tree to be a finite directed graph (V, E). V is a finite
sets of nodes ranged over by u,v,w, and E C V x V is a finite set of edges. The
in-degree of each node is at most 1; each tree has exactly one root, i.e. a node
with in-degree 0. We call the nodes with out-degree 0 the leaves of the tree.



A (finite) constructor tree T is a triple (V, E, L) consist- f
ing of a tree (V, E), and labelings L : V — X for nodes and %\
L : E — N for edges, such that any node u € V has exactly a b

one outgoing edge with label k for each 1 < k < ar(o(n)), Fig. 3. f(g(a,b))
and no other outgoing edges. We draw constructor trees

as in Fig. 3, by annotating nodes with their labels and ordering the edges by
increasing labels from left to right. If 7 = (V, E, L), we write V, =V, E, = E,
L. =L.

Definition 1. The tree structure M" of a finite constructor tree T over X is
the first-order structure with domain V; which provides the dominance relation
<*" and a labeling relation of arity ar(f) + 1 for each function symbol f € X.
These relations are defined such that for all w,v,uq,...,u, € V;:

*T

ug*"v iff there is a path from u to v with egdes in E;;

We consider the following set operators on binary relations: inversion ~!, union

U, intersection N, and complementation —. We write >*" for the inverse of dom-
inance <*7, equality =" for the intersection <*” N >*7, inequality #” for the
complement of equality, proper dominance <t" as dominance but not equality,
>17 for the inverse of proper dominance, and disjointness L7 for ~<*7 N —>*T,
Most importantly, the following partition holds in all tree structures M7.

V‘r X V‘r — &J{:T’<+T7D+T7J_T}

Thus, all relations that set operators can generate from dominance <*7 have the
form U{r™ | r € R} for some set of relation symbols R C {=, <™, >*, L}.

For defining the constraint language, we let z, y, z range over an infinite set of
node variables. A dominance constraints with set operators ¢ has the following
abstract syntax (that leaves set operators implicit).

vu=xRy | x:f(x1, ... ,20) | @AY | false

where R C {=, <%, >T, 1} isaset of relation symbols and n = ar(f). Constraints
are interpreted in the class of tree structures over X. For instance, a constraint
x {=, L} y expresses that the nodes denoted by z and y are either equal or lie
in disjoint subtrees. In general, a set R of relation symbols is interpreted in M7
as the union U{r" | r € R}.

We write Vars(p) for the set of variables occurring in . A solution of a
constraint ¢ consists of a tree structure M™ and a variable assignment « :
Vars(p) — V;. We write (M7, a) | ¢ if all constraints of ¢ are satisfied by
(M7, ) in the usual Tarskian sense. For convenience we admit syntactic sugar
and allow to write constraints of the form xSy where S is a set expression:

S:::R‘:|<*|l>*|:|#‘<+||>+‘J_|_‘S‘51USQ|51052|571

Clearly, every set expression S can be translated to a set R of relation symbols
denoting the same relation. In all tree structures, x Sy is equivalent to =z Sy
and £ S1 USyy to x.S1yV xSsy. Thus our formalism allows a controlled form
of negation and disjunction without admitting full Boolean connectives.



Propagation Rules:

(Clash) zfly — false

Dom.Refl) ¢ — 2<%z (z occurs in )
Dom.Trans) z<*y A y<*z — x4z

NegDisj) z<"zAy<’z — z-ly
Childup) z<'yAz:f(zy,...,2o) AN, 2y — y=zx

(

(

(Eq.Decom) z:f(z1,...,xn) Ay:f(yr,...,un) Az=y — A, zi=y;
(Lab.Ineq) a:f(...) Ayg(...) — a#y iff#g

(Lab.Disj) Sz xy,) = xilag where 1 <i<j<n
(Lab.Dom) z:f(...,y,...) — xz<aty

(Inter) zRiy ANzRyy — xRy if RiNRs C R

(Inv) tRy — yR 'z

(Disj) rlyAy<z — zlz

(

(

Distribution Rules:

(Distr.Child) z<*yAz:f(z1,...,2n) — x;<yVa-<y (1<i<n)
(Distr.NegDisj) z-ly — z<*yVz-<'y

Fig. 4. Saturation rules D of the Base Solver

3 A Saturation Algorithm

We now present a solver for dominance constraints with set operators. First, we
give a base solver which saturates a constraint with respect to a set of propa-
gation and distribution rules, and prove soundness, completeness, and termina-
tion of saturation in nondeterministic polynomial time. Second, we add optional
propagation rules, which enhance the propagation power of the base solver.

The base solver is specified by the rule schemes in Figure 4. Let D be the
(infinite) set of rules instantiating these schemes. Each rule is an implication
between a constraint and a disjunction of constraints. We distinguish propagation
rules ¢1 — @2 which are deterministic and distribution rules ;1 — @2 Vs which
are nondeterministic.

Proposition 1 (Soundness). The rules of D are valid in all tree structures.

The inference system D can be interpreted as a saturation algorithm which
decides the satisfiability of a constraint. A propagation rule ¢;— @2 applies to
a constraint ¢ if all atomic constraints in ¢; belong to ¢ but at least one of
the atomic constraints in ¢, does not. In this case, saturation proceeds with
@ A 2. A distribution rule ¢1—ps V @3 applies to a constraint ¢ if both rules
p1—po and @1 —p3 could be applied to ¢. In this case, one of these two rules
is non-deterministically chosen and applied. A constraint is called D-saturated
if none of the rules in D can be applied to it.

Proposition 2 (Termination). The mazimal number of iterated D-saturation
steps on a constraint is polynomially bounded in the number of its variables.



Proof. Let ¢ be a constraint with m variables. Each D-saturation step adds at
least one new literal to ¢. Only a O(m?) literals can be added since all of them
have the form xRy where z,y € Vars(p) and R has 16 possible values.

Next, we illustrate prototypical inconsistencies and how /f-x\
D-saturation detects them. We start with the constraint et} e T2
x:f(x1,22) A x1<*2 A £2<*2 in Fig. 5 which is unsatis- ez

fiable since siblings cannot have a common descendant. Fig. 5. (Neg.Disj)

Indeed, the disjointness of the siblings z; L5 can be
derived from (Lab.Disj) whereas x; Lo follows from (NegDisj) since z1 and x4
have the common descendant z.

To illustrate the first distribution rule, we consider f..
the unsatisfiable constraint z:f(z1) A z<*y A z1:a A .\%. o
y:b in Fig. 6 where a # b. We can decide the position
of y with respect to z by applying rule (Distr.Child) Fig. 6. (Distr.Child)
which either adds z; <*y or z;—~<*y. (1) If z;-<*y is
added, propagation with (Child.up) yields z=y. As x and y carry distinct labels,
rule (Lab.Ineq) adds z#y. Now, we can deduce zy by intersecting equality and
inequality (Inter). Thus, the (Clash) rule applies. (2) If z;<*y is added then
(Child.up) yields 21 =y which again clashes because of distinct labels.

The second distribution rules helps detect the in- f gy
consistency of z: f(z) A y:g(z) in Fig 7 where f#g. In a v

first step one can infer from (Lab.Dom) that <tz and

y<*z. As the (Inter) rule allows to weaken relations, we Fig. 7. (Distr.NegDisj)
also have z<*z and y<*z, i.e. z—Ly by (NegDisj), so

that (Distr.NegDisj) can deduce either z<*y or z—<*y. Consider the case z<1*y,
from y<1tz derive z—<*y by (Inv, Inter), and (Child.up) infers y=z resulting in
a clash due to the distinct labels. Similarly for the other case.

b oy

Definition 2. A D-solved form is a D-saturated constraint without false.

The intuition is that a D-solved form has a back-

bone which is a dominance forest, i.e. a forest with f Il’1 ® 19
child and dominance edges. For instance, Fig 8 shows L7 ® I3
the dominance forest underlying z1:f(z4) A z4<*z5 A s ‘® Ig

4"z N 22<"23 A 25l which becomes D-solved  Fig, 8. D-solved form
when D-propagation.

We would like to note that the set based solver for dominance constraints
of [2] insists on more explicit solved forms: for each two variables, one of the
relations {=, <™, >%, L} must be selected. For the dominance forest in Fig. 8,
this leads to 63 explicit solutions instead of a single D-solved form. The situation
is even worse for the formula 21 <* 25 A 25 <*23 A. . .A 2,1 <*2,,. This constraint
can be deterministically D-solved by D-propagation whereas the implementation
of [2] computes a search tree of size 2™.

Proposition 3 (Completeness). Fvery D-solved form has a solution.



(Child.down) z<Ty A z:f(z1,...,2n) A Niciizj2in<y — z;<7y
(NegDom) zlyAy-lz — z-<"z

(Dom.Ineq) =<y Ayi<ttys Ayat®z = z#z

(Child.Ineq) z#y Az f(....z",..)Ayg(...,y,...) — z'#y
(Parent.Ineq) z<Tz A y:f(...,2,...) —= x4y

Fig. 10. Some Optional Propagation Rules O

The proof is given in the Section 4. The idea for
constructing a solution of a D-solved form is to turn its
underlying dominance forest into a tree, by adding la-
bels such that dominance children are placed at disjoint
positions whenever possible. For instance, a solution of
the dominance forest in Fig. 8 is drawn in Fig. 9. Note Fig. 9. A solution.
that this solution does also satisfy x5lxz¢ which be-
longs to the above constraint but not to its dominance forest. This solution is
obtained from the dominance forest in Fig. 8 by adding a root node and node
labels by which all dominance edges are turned into child edges.

Theorem 1. Saturation by the inference rules in D decides the satisfiability of
a dominance constraint with set operators in non-deterministic polynomial time.

Proof. Let ¢ be a dominance constraint with set operators. Since all rules in
D are sound (Proposition 1) and terminate (Proposition 2), ¢ is equivalent to
the disjunction of all D-solved forms reachable from ¢ by non-deterministic D-
saturation. Completeness (Proposition 3) yields that ¢ is satisfiable iff there
exists a D-solved reachable from .

We can reduce the search space of D-saturation by adding optional propaga-
tion rules O. Taking advantage of set operators, we can define rather powerful
propagation rules. The schemes in Fig 10, for instance, exploit the complemen-
tation set operators, and are indeed supported by the set based implementation
of Section 6. We illustrate O in the situation below which arises naturally when

resolving scope ambiguities as in Figure 2.
xr1 Ty

zif(z1,9) Ayig(yr,ya) A za<*z A y1 ¥z A 2<%y % v

oz
We derive z<tTy by (Lab.Ineq,Inter), 71 Lzs by (Lab.Disj), and z3— Ly by (Dom.
Trans,NegDisj). We combine the latter two using optional rule (NegDom) into
x1—<*y. Finally, optional rule (Child.down) yields z2<*y whereby the situation
is resolved.

4 Completeness Proof

We now prove Proposition 3 which states completeness in the sense that every
D-solved form is satisfiable. We proceed in two steps. First, we identify simple



D-solved forms and show that they are satisfiable (Proposition 4). Then we show
how to extend every D-solved form into a simple D-solved form by adding further
constraints (Proposition 5).

Definition 3. A variable x is labeled in ¢ if z=y in ¢ and y:f(y1,...,yn) in
for some variable y and term f(y1,...,yn). A variable y is a root variable for ¢
if y<*z in @ for all z € Vars(p). We call a constraint ¢ simple if all its variables
are labeled, and if there is a root variable for .

Proposition 4. A simple D-solved form is satisfiable.

Proof. By induction on the number of literals in a simple D-solved form ¢. ¢
has a root variable z. Since all variables in ¢ are labeled there is a variable 2z’
and a term f(z1,...,2,) such that z=2" A 2":f(21,...,2n) € p. We pose:

V = {z € Vars(p) | z=z € p} and V; = {z € Vars(p) | z;<*z € p}

for all 1 <4 < n. To see that Vars(yp) is covered by VUV; U. . .UV, let = € Vars(p)
such that z;<*z ¢ ¢ for all 1 < i < n. Saturation with (Distr.Child) derives
either z;<<*z or z;—<*z; but z;<*z € ¢ by assumption, therefore z;=<*z € ¢
for all 1 <4 <mn. (Child.up) infers z=z € ¢, i.e. x € V. For a set W C Vars(y)
we define o to be the conjunction of all literals ¢» € ¢ with Vars(y)) C .

@ = ¢" holds where ¢ =qer @y A z:if(21,...,20) A@jyy Aol Ay,

¢ = ¢’ follows from ¢’ C ¢. To show ¢’ |= ¢ we prove that each literal in ¢ is
entailed by ¢’

1. Case z:g(x1,...,%m) € @ for some variable z and term g(z1,...,z,): Ifz €
Vi, ie. z;<*x € @ for some 1 <@ < n then z:g(x1,...,Tm) € @)y; since ¢ is
saturated under (Lab.Dom, Dom.Trans). Otherwise z € V, i.e. z=x € ¢, and
thus 2=z € @y Since ¢ is clash free and saturated under (Lab.Ineq,Clash),
f=g and n=m must hold. Saturation with respect to (Eq.Decom) implies
zi=z; € ¢ for all 1 <4 < n and hence z;=z; € py,. All together, the
right hand side ¢’ contains z=x A z:f(z1,...,2n) A A, z;=2; which entails

2. Case xRy € ¢ for some variables z,y and relation set R C {=,<",>", L}.
Since z,y € VUV, U... UV, we distinguish 4 possibilities:

(a) z €V, y €V, where 1 <i# j <n.Here, Ly € ¢ by saturation under
(Lab.Disj, Inv, Disj). Clash-freeness and saturation under (Inter, Clash)
yield L € R. Finally, ¢’ entails z; 1 z; and thus z Ly which in turn entails
T Ry.

(b) When =,y € V (resp. V;), by definition 2Ry € ¢y (resp. ¢)v;)

(c) z € V and y € V;. Here, z<ty € ¢ by saturation under (Lab.Dom,
Dom.Trans). Thus <t € R by saturation under (Inter, Clash) and clash-
freeness of . But ¢’ entails z<1"2; and thus <y which in turn entails
T Ry.

(d) The case z € V and y € V; is symmetric to the previous one.



Next note that all ¢y, are simple D-solved forms. By induction hypothesis there
exist solutions (M™,a;) = ¢y, for all 1 < i < n. Thus (MI(T10) a) s a
solution of ¢ if a|y; = a; and a(z) = a(z) is the root node of f(r,...,,) for
allz e V. O

An extension of a constraint o is a constraint of the form ¢ A ¢’ for some
¢'. Given a constraint ¢ we define a partial ordering <, on its variables such
that £ <, y holds if and only if x<1*y in ¢ but not y<*z in ¢. If = is unlabeled
then we define the set con,(z) of variables connected to x in ¢ as follows:

cony,(z) = {y | y is <, minimal with z <, y}

Intuitively, a variable y is connected to z if it is a “direct dominance child” of
z. So for example, con,, (z) = {y} and cony, (y) = {z} for:

1=z Ay A<tz Ay<tz,

Definition 4. We call V C Vars(p) a ¢-disjointness set if for any two distinct
variables y1,y2 € V, y1—=Lys not in ¢.

The idea is that all variables in a (-disjointness set can safely be placed at
disjoint, positions in at least one of the trees solving (.

Lemma 1. Let ¢ be D-saturated, x € Vars(p). If V is a mazimal p-disjointness
set in cong(x) then for all y € cony,(x) there exists z € V such that y=z in ¢.

Proof. If y=1z not in ¢ for all z € V then {y} UV is a disjointness set; thus
y € V by maximality of V. Otherwise, there exists z € V such that y—1lz in ¢.
Saturation of ¢ with respect to rules (Distr.NegDisj, Inter) yields y<*z in ¢ or
z2<*y in ¢. In both cases, it follows that z=y in ¢ since z and y are both <,
minimal elements in the set cong(z).

Lemma 2 (Extension by Labeling). Every D-solved form ¢ with an unla-
beled variable x can be extended to a D-solved form with strictly fewer unlabeled
variables, and in which x is labeled.

Proof. Let {x1,...,z,} be a maximal ¢-disjointness set included in con,(z). Let
f be a function symbol of arity n in X', which exists w.l.o.g. Otherwise, f can
be encoded from a constant and a symbol of arity > 2 whose existence in X we

assumed. We define the following extension ext(y) of :

ext() =qef @ A x:f(T1,.. ., Tn) A
/\{mRz AzR 'z | <t €R, i<z inp, 1 <i<n}A (1)

/\{sz | LER, z;<"y inp, ;<92 inp, 1 <i#j<n} (2)

Note that z is labeled in ext(y) since z=z € ¢ by saturation under (Dom.Refl).
We have to verify that ext(y) is D-solved, i.e. that none of the D-rules can be
applied to ext(y). We give the proof only for two of the more complex cases.



1. (Distr.Child) cannot be applied to z:f(z1,...,z,): suppose x<1*y in ¢ and
consider the case y<*z not in ¢. Thus z <, y and there exists z € con,(z)
with z<*y in . Lemma 1 and the maximality of the ¢-disjointness set
{z1,...,2,} yield z;=2 in ¢ for some 1 < j < n. Thus, z;<*y in ¢ by
(Dom.Trans) and (Distr.Child) cannot be applied with z;. For all such
1 <i# j <n we can derive z; Ly by (Lab.Dom, Disj, Inv), thus z;—<*y by
(Inter) and (Distr.Child) cannot be applied with z; either.

2. (Inter) applies when Ry N Ry C R, yR1z in ext(y), and yRaz in ext(p). We
prove yRz in ext(yp) for the case where yR;z in ¢ and yRsz is contributed
to ext(p) by (2). Thus, L € Ry and there exists 1 < i#j < n such that
z;<I*y in ¢ and z;<*z in . It is sufficient to prove L € R; since then
1 € Ry N Ry C R which implies yRz in . We assume L ¢ R; and de-
rive a contradiction. If L ¢ Ry then Ry C {=,<",>*}. Thus, weakening
yR1z in ¢ with (Inter) yields y—1z in . Next, we can apply (Distr.NegDisj)
which proves either y<*z in ¢ or y—=<*z in .

(a) Ify<t*z in @ then 2;<9*z in ¢ follows from (Dom.Trans) and z;—Lz; in ¢
from (NegDisj). This contradicts our assumption that {z,...,z,} is a
p-disjointness set.

(b) If y=<*z in ¢ then we have y—=<*z in ¢ and y—Llz in ¢ from which
on can derive y>*z in ¢ with (Inter) and z<t*y in ¢ with (Inv). From
(Dom.Trans) we derive z;<1*y in ¢. Since we already know z;<*y in ¢
we can apply (NegDisj) which shows a;—Lx; in ¢. But again, this con-
tradicts that {z1,...,z,} is a p-disjointness set. O

Proposition 5. Every D-solved form can be extended to a simple D-solved form.

Proof. Let ¢ be D-solved. W.l.o.g., ¢ has a root variable, else we choose a fresh
variable z and consider instead the D-solved extension ¢ A A{zRy A yR~'z |
<t € R, y € Vars(p)}. By Lemma 2, we can successively label all its variables.

a

5 Constraint Programming with Finite Sets

Current constraint programming technology provides no support for our D-
saturation algorithm. Instead, improving on [2], we reformulate the task of find-
ing solutions of a tree description as a constraint satisfaction problem solvable by
constraint programming [11,6]. In this section, we define our target language.
Its propagation rules are given in Fig 12 and are used in proving correctness
of implementation. Distribution rules, however, are typically problem dependent
and we assume that they can be programmatically stipulated by the application.
Thus, the concrete solver of Section 6 specifies its distribution rules in Figure 13.

Let A ={1 ... u} be a finite set of integers for some large practical limit
i such as 134217726. We assume a set of integer variables with values in A and
ranged over by I and a set of set variables with values in 22 and ranged over by
S. Integer and finite set variables are also both denoted by X.



B:u=false | X1=X, | I€D |i€S | i¢gS (DCA)
Co=B | S1iNSe=0 | S3CS1US> | CiAC> | CiorC(Cs

Fig. 11. Finite Domain and Finite Set Constraints

Equality: X1=X2 AB[X;] ~» B[X] {j,k} ={1,2} (eq.subst)

Finite domain integer constraints:

IeDi ANl eDy ~» I€DiNDsy (fd.COl’lj)
Teh ~p false (fd.clash)
Finite sets constraints:

i€ SANiIgS ~»p false (fs.clash)
S1NSe=0Ai€S; ~p &Sk {j,k} ={1,2} (fs.disjoint)
Sg g 51 U SQ A1t ¢ 51 A1 Q SQ ~>p 7 Q 53 (fs.subset.neg)
S3CS1US ANi€SaNigS; ~p i€ Sk {j,k} ={1,2} (fs.subset.pos)

Disjunctive propagators:

BAC ~®  false BAC ~®  false .

BA (CorC) e C B A (CorC) ~» C (commit)

Fig. 12. Propagation Rules

The abstract syntax of our language is given in Fig 11. We distinguish be-
tween basic constraints B, directly representable in the constraint store, and
non-basic constraints C acting as propagators and amplifying the store. The
declarative semantics of these constraints is obvious (given that C; or Cs is inter-
preted as disjunction). We write 8 = C if 5 is an assignment of integer variables
to integers and set variables to sets which renders C true (where set operators
and Boolean connectives have the usual meaning).

We use the following abbreviations: we write I#i for I € A\ {i}, S1 || So
for S N Se=P, S=D for AN{i € S|i e D}A{i g S|i€e A\ D}, S; C S, for
Sl g SQUSg/\Sg:@, and S = Sl LﬂSQ for Sl || SQ/\S g Sl USQ/\Sl g S/\SQ g S

The propagation rules ~»p for inference in this language are summarized in
Fig 12. The expression C; or Cy operates as a disjunctive propagator which does
not invoke any case distinction. The propagation rules for disjunctive propaga-
tors use the saturation relation ~® induced by ~»p which in turn is defined by
recursion through ~®. Clearly, all propagation rules are valid formulas when
seen as implications or as implications between implications in case of (commit).

6 Reduction to Finite Set Constraints

We now reduce dominance constraints with set operators to finite set constraints
of the language introduced above. This reduction yields a concrete implementa-
tion of the abstract dominance constraint solver when realized in a constraint
programming system such as [11, 6].

10



The underlying idea is to represent a literal z Ry by a membership expression
yE€R(z) where R(z) is a set variable denoting a finite set of nodes in a tree.
This idea is fairly general in that it does not depend on the particular relations
interpreting the relation symbols. Our encoding consists of 3 parts:

= A A A As(z, A B
[[QO]] z€Vars(p) 1(w)z,y€Vars(np) Q(m‘y) [[Qp]]

A;(-) introduces a node representation per variable, A ( - ) axiomatizes the tree-
ness of the relations between these nodes, and B[¢] encodes the specific restric-
tions imposed by ¢.

Representation. When observed from a specific node  Up, Eq,

x, the nodes of a solution tree (hence the variables Side, Down,
that they interpret) are partitioned into 4 regions: z

itself, all nodes above, all nodes below, and all nodes to the side. The main idea
is to introduce corresponding set variables.

Let MAX be the maximum constructor arity used in . For each formal vari-
able z in ¢ we choose a distinct integer ¢, to represent it, and introduce 7 +
MAX constraint set variables written Eq,, Up,, Down,, Side,, Equp,, Eqdown,,,
Parent,, DownfE for 1 < i < MAX, and one constraint integer variable Label,.
First we state that z = z:

Ly € Eq, (3)
Eq,,Up,,Down,,Side, encode the set of variables that are respectively equal,
above, below, and to the side (i.e. disjoint) of x. Thus, posing Z = {¢, | = €
Vars(p)} for the set of integers encoding Vars(yp), we have:

1 = Eq, ¥ Down, W Up, ¥ Side,

We can improve propagation by introducing Eqdown, and Equp, as intermediate
results. This improvement is required by (Dom.Trans):

T = Eqdown, W Up, W Side, (4) Eqdown, = Eq, ¥ Down,  (6)
T = Equp, W Down, W Side, (5) Equp, = Eq, ¥ Up, (7)

Down; encodes the set of variables in the subtree rooted at z’s ith child (empty
if there is no such child):

Down, = w{Down’, | 1 <i < MAX} (8)

We define A;(x) as the conjunction of the constraints introduced above:



Wellformedness. Posing Rel = {=,<",>", 1}. In a tree, the relationship
that obtains between the nodes denoted by z and y must be one in Rel. We
introduce an integer variable Cy,, called a choice variable, to explicitly represent
it and contribute a well-formedness clause As[z r y] for each r € Rel. Freely
indentifying the symbols in Rel with the integers 1,2,3,4, we write:

As(z,y) = Cpy € RelA /\{Ag[[:nry]] | » € Rel} 9)
As[zry] = Dlzry]ACyy =71 or Cyy#r ADJz-ry] (10)

For all r € Rel, it remains to define D[z7y] and D]z —r y] encoding the relations
zry and x —r y resp. by set constraints on the representations of z and y.
Dlr=y] = Eq, = Eq, A Up, = Up, A Down, = Downy A Side, = Side,
NEqdown, = Eqdown, A Equp, = Equp,
AParent, = Parent, A Label, = Label, A Down;, = Down;
2

Dle-=y] = By, || By, '
D[z <t y] = Eqdown, C Down, A Equp, C Up, A Side, C Side,
D[z -<Ty] = Egq, | Up, A Down, || Eq,
D[z Ly] = Eqdown, C Side, A Eqdown, C Side,
Dlz—-Ly] = Eq, | Side, A Side, || Eq,

Problem specific constraints. The third part B[¢] of the translation forms
the additional problem-specific constraints that further restrict the admissibil-
ity of wellformed solutions and only accept those that are models of ¢. The
translation is given by clauses (11,12,13).

BloAgT = Ble]AB[¢] (11)
A pleasant consequence of the introduction of choice variables C,, is that any

dominance constraint x R y can be translated as a restriction on the possible
values of Cy,,. For example, z<1*y can be encoded as Cy,, € {1, 2}. More generally:

BlzRy] = C. €R (12)

Finally the labelling constraint = : f(y; ... y,) requires a more complex treat-
ment. For each constructor f we choose a distinct integer +y to encode it.

Blz: f(y1 .- yn)] = Label, = 1y AJZ7 Downl, =0
/\;z? Parent,; = Eq, A Down?, = Eqdown,, A Up,, = Equp, (13)

Definition of The Concrete Solver. For each problem ¢ we define a search
strategy specified by the distribution rules of Figure 13. These rules correspond
precisely to (Distr.Child, Distr.NegDisj) of algorithm-D and are to be applied
in the same non-deterministic fashion. Posing ~» = ~s, U ~»,, we define our
concrete solver as the non-deterministic saturation ~+® induced by ~+ and write
01 ~® 9 to mean that s is in a ~® saturation of ¢;. While the abstract
solver left this point open, in order to avoid unnecessary choices, we further
require that a ~», step be taken only if no ~~, step is possible.

12



Coy € {:7<]+} ~n o Oy € {:7<]+}VC1W ¢{:7<]+} for z:f(z1,...,2n) in ¢
Coy# L ~>p Cay € {=, <|+} V Cay € {=, <|+}

Fig. 13. Problem specific distribution rules

7 Proving Correctness of Implementation

We now prove that [¢] combined with the search strategy defined above yields
a sound and complete solver for ¢. Completeness is demonstrated by showing
that the concrete solver obtained by [¢] provides at least as much propagation
as specified by the rules of algorithm D, i.e. whenever x Ry is in a —® saturation
of ¢ then Cyy € R is in a ~® saturation of [¢].

Theorem 2. [¢] is satisfiable iff ¢ is satisfiable.
This follows from Propositions 6 and 7 below.
Proposition 6. if ¢ is satisfiable then [¢] is satisfiable.

We show how to construct a model § of [¢] from a model (M7, ) of ¢. We define
the variable assignment 3 as follows: 3(Up,) = {¢, | a(y) <* a(z)} and similarly
for Eq,, Down,, Sidey, Eqdown,, Equp,, B(Parent;) = {1, | 3k a(y)k = a(x)},
B(Downt) = {1y | aly) &* a(2)k}, H(Labels) = 11, (a(s)) and B(Cay) = R if
a(z) R a(y) in M™. We have that if (M7, a) |= ¢ then 3 |= [¢].

Proposition 7. if [] is satisfiable, then ¢ is satisfiable.
We prove this by reading a D-solved form off a model 3 of [¢].

o = <p/\/\ /\ zR'y where R = 3(Cyy)
z,y R"OR

¢’ is a D-solved form containing ¢: all relationships between variables are fully

resolved and all their generalizations have been added. The only possibility is
that D-rules might derive a contradiction. However, if ¢/ —& false then [¢'] ~&
false (Lemma 4) which would contradict the existence of a solution 8. Therefore
¢’ is a O-solved form and ¢ is satisfiable.

We distinguish propagation and distribution rules; in algorithm D they are
written —p and —p, and in our concrete solver ~, and ~,. We write ¢" < ¢’
for ¢ is stronger than ¢' and define it as the smallest relation that holds of
atomic constraints and such that false g falseand z Ry < z R'yif RC R'.

Proposition 8 (Stronger Propagation). For each rule p —p ¢’ of algorithm
D, there exists ¢" < @' such that [¢] ~& [¢"].

The proof technique follows this pattern: each ¢’ is of the form z Ry and we
choose ¢ = zR'y where R’ C R. Assume [¢] as a premise. Show that [p]AC ~~&
false. Notice that a clause C or (' is introduced by [¢] as required by (10). Thus
C' follows by (commit). Then show that [p] A C' ~® [¢"]. For want of space,
we include here only the proof for rule (NegDisj).

13



Lemma 3. [z <* y] ~& «, € Eqdown,, (proof omitted)
Proposition 9. [z <* 2 Ay <* 2] ~& [z ~L y]

Proof. From the premises [z <* 2] and [y <* 2], i.e. C;. € {=,<7} and Cy. €
{=,<"}, we must show [z —L y] i.e. Cpy#L. By Lemma 3 we obtain ¢, €
Eqdown, and 1, € Eqdown,. Since T = Eqdown, ¥ Up, ¥ Side,, we have 1, ¢
Sidey. Now consider the non-basic constraint Eqdown, C Side, which occurs in
D[z L y]: from ¢, € Eqdown, it infers ¢, € Side, which contradicts ¢, ¢ Side,.
Therefore, the well-formedness clause D[z Ly]ACyy = L or Cyy# LAD[z—Ly]
infers its right alternative by rule (commit). Hence Cpy#L O

Lemma 4. (1) if o =% ', then there exists ©" < ¢' such that [p] ~® [©"].
(2) if p =% 1 and p1 —p @2, then there exists ] X p1 such that @] ~% [pi]
and [¢1] ~o 2]

(1) follows from Proposition 8, and (2) from (1) and the fact that the concrete
distribution rules precisely correspond to those of algorithm D.

Proposition 10 (Simulation). The concrete solver simulates the abstract solver:
if o —=® ' then there exists ¢ < ' such that o] ~® [¢"].

Follows from Lemma 4.

Theorem 3. (1) every ~® saturation of [¢] corresponds to a D-solved form of
@ and (2) for every D-solved form of ¢ there is a corresponding ~® saturation

of [

(1) from Proposition 10. (2) Consider a ~® saturation of [¢]. As in Propo-
sition 7, we can construct a D-solved form ¢’ of ¢ by reading off the current
domains of the choice variables Cy,. If ¢’ was not D-solved, then —® could
infer a new fact, but then by Proposition 10 so could ~® and it would not be a
saturation.

8 Conclusion

In this paper, we extended dominance constraints by admitting set operators.
Set operators introduce a controlled form of disjunction and negation that is
less expressive than general Boolean connectives and remains especially well-
suited for constraint propagation. On the basis of this extension we presented
two solvers: one abstract, one concrete.

The design of the abstract solver is carefully informed by the needs of practi-
cal applications: it stipulates inference rules required for efficiently solving dom-
inance constraints occurring in these applications. The rules take full advantage
of the extra expressivity afforded by set operators. We proved the abstract solver
sound and complete and that its distribution strategy improves over [2] and may
avoid an exponential number of choice points. This improvement accrues from
admitting less explicit solved forms while preserving soundness.

14



Elaborating on the technique first presented in [2], the concrete solver real-
izes the desired constraint propagation by reduction to constraint programming
using set constraints. We proved that the concrete solver faithfully simulates the
abstract one, and thereby shed new light on the source of its observed practi-
cal effectiveness. The concrete solver has been implemented in the concurrent
constraint programming language Oz [10], performs efficiently in practical appli-
cations to semantic underspecification, and produces smaller search trees than
the solver of [2].

References

1. R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization of the
theory of finite trees. Journal of Logic, Language, and Information, 4:5-39, 1995.

2. D. Duchier and C. Gardent. A constraint-based treatment of descriptions. In Int.
Workshop on Computational Semantics, Tilburg, 1999.

3. D. Duchier and S. Thater. Parsing with tree descriptions: a constraint-based ap-
proach. In Int. Workshop on Natural Language Understanding and Logic Program-
ming, Las Cruces, New Mexico, 1999.

4. M. Egg, J. Niehren, P. Ruhrberg, and F. Xu. Constraints over lambda-structures in
semantic underspecification. In Joint Conf. COLING/ACL, pages 353-359, 1998.

5. C. Gardent and B. Webber. Describing discourse semantics. In Proceedings of the
4th TAG+ Workshop, Philadelphia, 1998.

6. C. Gervet. Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints, 1(3):191-244, 1997.

7. A. Koller, K. Mehlhorn, and J. Niehren. A polynomial-time fragment of domi-
nance constraints. Technical report, Programming Systems Lab, Universitit des
Saarlandes, Apr. 2000. Submitted.

8. A. Koller, J. Niehren, and R. Treinen. Dominance constraints: Algorithms and
complexity. In Logical Aspects of Comp. Linguistics 98, 2000. To appear in LNCS.

9. M. P. Marcus, D. Hindle, and M. M. Fleck. D-theory: Talking about talking about
trees. In 21st ACL, pages 129-136, 1983.

10. Mozart. The mozart programming system. http://www.mozart-oz.org/.

11. T. Miiller and M. Miiller. Finite set constraints in Oz. In F. Bry, B. Freitag,
and D. Seipel, editors, 13. Workshop Logische Programmierung, pages 104-115,
Technische Universitat Miinchen, 1997.

12. R. Muskens. Order-Independence and Underspecification. In J. Groenendijk, edi-
tor, Ellipsis, Underspecification, Events and More in Dynamic Semantics. DYANA
Deliverable R.2.2.C, 1995.

13. O. Rambow, K. Vijay-Shanker, and D. Weir. D-tree grammars. In Proceedings of
ACL’95, pages 151-158, MIT, Cambridge, 1995.

14. J. Rogers and K. Vijay-Shanker. Reasoning with descriptions of trees. In Annual
Meeting of the Association for Comp. Linguistics (ACL), 1992.

15. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57-81, August 1967.

16. W. Thomas. Automata on Infinite Objects. In J. v. Leeuwen, editor, Handbook of
Theoretical Computer Science, Formal Models and Semantics, volume B, chapter 4,
pages 133-191. The MIT Press, 1990.

17. K. Vijay-Shanker. Using descriptions of trees in a tree adjoining grammar. Com-
putational Linguistics, 18:481-518, 1992.

15



A Correctness of Implementation

The proof of correctness of implementation relies on showing that the concrete
solver simulates the abstract solver. Abstract rules are either of the form ¢ —p
false (Clash rule) or ¢ —p 2 Ry (all other rules). In the first case we show
that [] ~* false and in the other cases that [¢] ~* [z R' y] where R’ C R.
In other words, we prove that the concrete solver provides as much or stronger
propagation than the abstract solver.

For every rule ¢ —p = Ry, it is the case that =,y € Vars(y). Therefore,
posing:

A = A A A As(z,
(QO) z€Vars(p) 1(w)z,y€Vars(np) Q(m‘y)

we have A(z Ry) C A(p). Thus, in order to show that [¢] ~» [z R’ y], where
R' C R, we only need prove that [¢] ~» B[z R’ y].

Our proofs are in natural deduction style and presented in a tabular format
in 3 columns; left: the formula, center: its justification, right: a line name. A
name of the form (j o) introduces the name (0) but also explicitly records the
fact that it was derived from the non-discharged assumption (j).

(Clash) zQy — false
Cyy €0 Premise [z 0 y] (a)
false (a) (fd.clash) O
(Dom.Refl) ARSI
i € By, ) @)
Eq, || Eq, Assumption (b)
false (a) (b) (bkc)
D[z == z] ~& false (c) (b Fd)
Dz =2] A Cpp == or Cypp#=AD[z—-=2z] (10) (e)
(Dom.Trans) YAy = A"z
Coy €4{=,<"} Premise [z <* y] (a)
Cy: € {=,<%} Premise [y <* 2] (b)
Dy <t 2] ACyy =>T or Cpy#>T AD[y =<t 2]  (10) (c)
Dly ~<* z] ie. Eq, || Up, A Down, || Eg, (a) (c) (commit) (d)
Dlz Ly]ACsy =L or Cypy# L AD[z -1 y] (10) (e)
D[z ~Ly] ie. Eq, | Side, A Side, || Eq, (a) (e) (commit) (f)
D[z <t y]ACy: =T or Cp.#>T AD[z < y]  (10) (g)
D[z <t y] ie. Eg, | Up, A Down. || Eq, (b) (g) (commit) (h)
Dly L2]ACy. =1L or Cy.# L AD[y -1 2] (10) (i)
Dly =L 2] i.e. Egq, || Side. A Side, || Eq, (b) (i) (commit) ()

continued on next page

16



continued from previous page

\y € Fy, &) 0
ty € Up, 1y & Sidey 1y € Down, 1, € Side. (d) (f) (g) ) k) )
7T = Eqdown, ¥ Up, ¥ Side, 4 (m)
ty € Eqdown, (1) (m) (n)
D[z <™ z] i.e. Eqdown, C Down, Assumption (0)
false (o) (n) (1) (o+p)
D[z <t z] ~@ false (p) ok q)
D[z <t 2] ACy, =T or Cpa#>T AD[z—<t 2] (10) (r)
Oy (1) (@) (commit) (5
D[z —L z] i.e. Egdown, C Side, Assumption (t)
false (t) (n) () (t Fu)
D[z —L 2] ~@ false (u) t )
D[z L2]ACy. =1L or C,.# L AD[z —L 2] (10) (w)
Co#1L (w) (v) (commit) (x)
Cp. € {=,<"} (s) (x) O
(Eq.Decom) x: f(zry,..., T)ANY: [y, yn) A=y = x;=y;
[x=y] ie. Cpy== Premise (a)
[z: f(z1,...,2,)] ie. Downl = Eqdown,, Premise (b)
ly: flyi,...,yn)] ie. Doum; = Eqdown,, Premise (c)
D[z =y] A Czy = = or Cpy# =AD[z ~=y] (10) (d)
D[z =y] ie. Down, = Down, (d) (a) (commit) (e)
Eqdown,, = Eqdown,, (e) (b) (c) (f)
ta, € Fa,, (3) (&)
1o, € Bqdoun,, (&) (6) (h)
tz; € Eqdown,, (h) (f) (i)
ta; € Equp,, (8) (7) (1)
T = Equp,, & Down,, ¥ Side,, (5) (k)
ta; & Downg, (i) (k (1)
Eqdown,,, C Down,, Assumption  (m)
Lz; € Downg, (m) (i) (m + n)
false (1) (m) (m F o)
Dlz; <t y;] ~ false (o) (m F p)
D[[xi Sk yl]] A CIzyz =<t or Cziyi# <t /\D[[xi -t yi]] (10) (CI)
Dlz; ~<" yi] i.e. Downy, || Eq,, (q) (p) (commit)  (r)
s € F, (3) (5
by, € Badoun,, (5) (6) (¥
1y, € Bqdoun,, (t) (& (1)
1y, & Doun,, (s) () )
1y, € B, () (¥) ()
Eq,. || Eq,, Assumption (%)

17

continued on next page



continued from previous page

false (s) (w) (x) (xFy)
D[z; == y;] ~¥ false (y) (x  z1)
D[[xi = yi]] A sz'yi == or Cziyi# = /\D[[xi = yi]] (10) (ZZ)
Coii == (z1) (z2) (commit) O
(Lab.Ineq) z:f(..)Ny:9(..) — z-=y if f#g
[z: f(...)] ie. Label, = Premise (a)
ly:g(...)] ie. Label, =1, Premise (b)
Label, = Label, Assumption (c)
false (c) f#g (ckd)
D[z =y] ~& false (d) (cke)
Dlz=y]ACyy == or Cpy#=AD[z-=y] (10) (f)
Coy#= (e) (f) (commit) O
(Lab.Disj) zof(coox oz ) — mila
[z:f(... % ... z; ...)] ie. Down, = Eqdown,, Premise (a)
[z: f(... % ... z; ...)] ie. Downl = Eqdoun,, Premise (b)
[z:f(.. z ... z; ...)] ie. Up,, = Equp, Premise (c)
le; € Eq,, (3) (d)
le; € Eqdown,, (d) (6) (e)
La; € Down’, (e) (a) (f)
Down, = W Downk (8) (g)
te; & Down,, (g) (f) (h)
Lz; & Eqdown,, (h) (b) (i)
La; € Downg (g) (f) (i)
T = Equp, W Down, & Side, (5) (k)
te; & Equp, () (k) O]
to; & Upy, (1) (c) (m)
1 = Eqdown, ¥ Up, \ Side,; (4) (n)
Ly; € Sidey, (n) (i) (m) (0)
Eq,, || Side,, Assumption (p)
false (p) (d) (o) (pFa)
D[z; =L z;] ~& false (q) (pFr)
Dlz; Lz;J] A Coio; = L or Cpp;# LAD[z; =L ;] (10) (s)
Cacixj =1 (S) (I“) (commlt) O
(Lab.Dom) zif(coyi) — z<aty
[z:f(... yi ...)] ie. Up, = Equp, Premise (a)
to € Eq, (3) (b)
to € Equp, (b) (7) ()
L, € Up,, (c) (a) (d)
Eq, || Up,, Assumption (e)

18

continued on next page



continued from previous page

false (

D[z =™ 4] ~7 false (

D[z <™ y;] AD[zy;] = <t or Cuy,# <t AD[z =< ;] (
(

10) (
Cay: = <7 h) (f) (commit) O
(Inter) rRiyNnxRyy — xRy RDODR NR,
[z Riy] ie. Cpy € Ry Premise ()
[z Ryy] ie. Cpy € Ry Premise (b)
Coy € RN Ry (a) (b) (fd.conj) (c)
Cay ER (¢c) RO R NR, 0

For rule (Inv) z Ry — y R~! z, we need to show that [z Ry] ~@ [y R’ z],
where R’ C R™!. We show this by proving that whenever r ¢ R~! we also have
r ¢ R'. We must consider the following 4 cases:

(case =¢gR) o=yl ~§ [y-=: (e =¢R)
(case > ¢ R™1) [ ~<aty] ~2 [y—->T 2] (ie. >t € R')
(case <« ¢ R71) [z >t y] ~@ [y-<t 2] (ie. <t ¢ R')
(case L ¢ R [r-Ly] ~@ [y-La] (ie. L¢gR"
(Inv 1) [r-=y] ~7 [y-=a]
Coy#= Premise (a)
Dlz=y]ACyy == or Cpy#=AD[z-=y] (10) (b)
D[z -=y] ie. Egq, || Eq, (b) (commit) (akc)
L, € By, (3) (d)
L & B, (c) (d) (e)
Eq, = Eq, Assumption (f)
false (d) (e) (f) (fF g
Dly=2]ACys == or Cya#=ADJy—=2] (10) (h)
CyaF= (h) (g) (commit) O
(Inv 2) zodty ~® gty
Coy#<T Premise (a)
D[z <t y] ACyy = < or Cpy# <t AD[z =<t y]  (10) (b)
D[z ~<* y] ie. Eq, | Up, (a) (b) (commit) (c)
e € By, (3) (d)
te € Bqup, (d) (7) (e)
" & Up, (@) () (t
Equp, C Up, Assumption (2)
€ Up, (®) (@) (g - b)
false (h) (f) (g k1)
Dz <* y] ~ false (i) (g i)

continued on next page

19



continued from previous page

D[z <t y] ACye = > or Cpu# T AD[z =<Fy]  (10) (k)
Cputs (k) () (commit) O
(Inv 3) z>tTy w® oy-gta
Cory#>T Premise (a)
Dy <t 2] ACyy =T or Cpy#>T AD[y =<t 2]  (10) (b)
Dly ~<t 2] ie. Eq,| Up, (a) (b) (commit) (c)
Ly € Eq, (3) (d)
Ly Equp, (d) (7) (e)
ty & Up, (d) (c) (f)
Equp, C Up, Assumption (2)
Ly € Up, (g) (e) (g h)
false (h) (f) (g k1)
D[y <t 2] ~@ false (i) (gFj)
Dy <t 2] ACy, = < or Cy# <t AD[y =<t 2]  (10) (k)
Cpa?t (k) (j) (commit) O
(Inv 4) zoly ~® y-la
Coy#L Premise (a)
Dlz LyJ]ACyy =1L or Cpy# LAD[z-Ly] (10) (b)
D[z —~Ly] ie. Eg, | Side, ) (b) (commit) (c)
Lz € Egq, (d)
Lty & Sidey (c) (e)
Ly € Eqdown, (6) (f)
Eqdown, C Side, umption (8)
Ly € Side, g) (f) (fF h)
false h) (e) (fF1)
Dly L x] ~& false i (f-3)
Dly L2] ACyz = L or Cy# L ADJy =L 2] 0) (k)
Cya#L ) (j) (commit) O
(Disj) rlyAy<*z — =xzlz

[z Ly] ie. Cypy=1

[y <*z] ie. Cy. €{=<"}
Dlz<t y]ACy: =T or Cy.#0>T AD[z ~<T y]

D[z —-<ty] ie. Egq, | Up,

D[[yJ_Z]] /\Cyz =1 or Cyz7éJ-/\D[[y -1 Z]]

Dly —L z] ie. Eg, | Side,
L. € Bgq,

Lz & Up,

L, & Side,

7 = Eqdown, ¥ Up, W Side,

Premise (a)
Premise (b)
(10) (©)
(b) (c) (commit) (d)
(10) (e)
(e) (b) (commit) (f)
(3) ()
(&) (d) (h)
(2) (1) (i)
(4) )

continued on next page



continued from previous page

Lz € Eqdown,,

Dlz Ly]ACsy =L or Cypy# L AD[z L y]
D[z Ly] ie. Eqdown, C Side,

L. € Side,

Side, || Eq,

false

D[z =L 2] ~& false

Dz L 2] ACyy =L or Cp,# L AD[z —L 2]
Cpr=1

(1) (h) (i) (k)
(10) 1
(1) (a) (commit) (m)
(k) (m) (n)
Assumption (o)
(o) (n) (g) (oFp)
(p) (oFq)
(10) (r)
(r) (q) (commit) O

Lemma 5. [z <* y] ~& 1, € Eqdown,

(Lemma 5)

[z <* y] ~& y € Eqdown,

[z <*y] ie. Cpy€{=<F} Premise (a)
Dy <t 2] ACyy =>T or Cpy#>T AD[y =<t 2]  (10) (b)
Dly ~<* z] ie. Eq,| Up, (a) (b) (commit) (c)
Dlz Ly]ACsy =L or Cypy# L AD[z —L y] (10) (d)
D[z —~Ly] ie. Egq, | Side, (a) (d) (commit) (e)
1y € F, 3) (t
& Up, (f) (0 (&)
1y & Side, (1) (e) (h)
Z = Eqdown, ¥ Up, ¥ Side, (4) (i)
Lty € Eqdown, (i) (g) (h) O
(NegDisj) rzAy<*z — z-ly
Cp. € {=<"} Premise (a)
Cy: € {=,<"} Premise (b)
L. € Eqdown,, (a) (Lemma 5) (c)
L, € Eqdown, (b) (Lemma 5) (d)
T = Eqdown, W Up, ¥ Side, (4) (e)
L. ¢ Side, (d) (e) (f)
Eqdown, C Side, Assumption (8)
L; € Sidey (c) (2) (g F i)
false (f) (i) (8 F 1)
D[z L y] ~& false §) (g k)
Dlz LyJ]ACysy =1L or Cpy# LAD[z-Ly] (10) )
Coy#L (1) (k) (commit) O

Lemma 6. [z —<* y] ~% 1, € Eqdown,

(Lemma 6) [z =<* y] ~& 1, & Eqdown,
[z ~<*y] ie. Cpye{>T, 1} Premise (a)
Dlz=y]ACyy == or Cpy#=AD[z-=y] (10) (b)

21

continued on next page



continued from previous page

D[z ~=y] ie. Eq,]| Eq, (a) (b) (commit) (c)
D[z <t y] ACyy = < or Cpy# <t AD[z =<t y]  (10) (d)
Dz —~<* y] ie. Down, || Eg, (a) (d) (commit) (e)
1y € B, (3) (f)
& B, (f) (c) (2)
1, & Doun, (@) (0 (1)
1y & Bqdoun, (&) (b) (6) 0
(Child.up) e yANz: flzy,..,z) NN 2 n<F 'y = x=y
Cpy € {=,<"} Premise (a)
[z: flz1,...,2z,)] ie. Premise (b)
DownfE = Eqdown,, 1<i<n
Doun’ =0 i>n

Criy € {>T, 1} Premise (c)
ty & Eqdown,, (¢) (Lemma 6) (d)
1y & Doun, (d) (b) (e)
Down, = &; Down, (8) (f)
1, & Doun, (e) () (&)
ty € Eqdown, (a) (Lemma 5) (h)
1y € F, (&) (h) (6) ()
1, € Eq, (3) ()
Eq, || Eq, Assumption (k)
false 1) () (k) (k-1
D[z == y] ~¥ false 1) (k F m)
Dlz=y]ACyy == or Cpy#=AD[z-=y] (10) (n)
Coy == (n) (m) (commit) O
Lemma 7. 1, € Eqdouwn,

(Lemma 7) Ly € Eqdouwn,
Ly € Eq, (3) (a)
Eqdown, = Eq, ¥ Down,  (6) (b)
Ly € Eqdown, (a) (b) O

Lemma 8. [z <t y] ~& 1, € Down,

(Lemma 8) [t <ty] ~® 1, € Down,
Coy =<t Premise (a)
Coy#<T Assumption (b)
false (a) (b) (bkc)
D[z <t y] ACyy = < or Cpy# <t AD[z =< y]  (10) (d)
D[z <t y] ie. Eqdown, C Down, (c) (d) (commit) (e)
Ly € Eqdown, (Lemma 7) (f)

22

continued on next page



continued from previous page

|ty € Down,  (e) (f) ]
Lemma 9. 1, ¢ Side,

(Lemma 9) Ly & Side,
L, € Eq, (3) (a)
Eqdown, = Eq, ¥ Down, (6) (b)
ty € Eqdown, (a) (b) (c)
T = Eqdown, & Up, & Side,  (4) (d)
Ly & Side, (c) (d) O
Lemma 10. ¢, € Down,

(Lemma 10) Lz & Down,
Lo € Eq, (3) (a)
Eqdown, = Eq, ¥ Down,  (6) (b)
ty & Downy, (a) (b) O

Lemma 11. ¢y € Eqdouwn, ~

v Caye{=<"}

(Lemma 11) Ly € Eqdown, ~® Cpy € {=,<"}
ty € Eqdown, Premise (a)
Ly & Side, (Lemma 9) (b)
Eqdown, C Side, Assumption (c)
Ly € Side, (a) (c) (ckd)
false (d) (cte)
D[z L y] ~& false (e) (c k1)
Dlz Ly]ACsy =L or Cypy# L AD[z -1 y] (10) (2)
Coy L (f) (2) (h)
ty & Downy (Lemma 10) (i)
Eqdown, C Down, Assumption §)
ty € Down, (a) (3) GFKk)
false (i) (k) GED
D[y <t 2] ~@ false 1) (j F m)
Dly <t 2] ACy, = < or Cy# <t AD[y =<t 2] (10) (n)
Cya#™ (m) (n) (commit) (o)
Cpy = (0) (Tnv) (v)
Cuy € {=, <"} (h) (p) o
(Child.down) At yANzf(r, @) AN i o<y = 1y <ty
[z <™ y] Premise (a)
[z: f(z1,...,2,)] ie. Premise (13) (b)
Down; = Eqdown,, 1<i<n
Downl, =0 i>n

continued on next page

23



continued from previous page

[z ~<*y] 1<i#j<n Premise (c)
ty € Downyg (a) (Lemma 8) (d)
v, & Downl, i>n (b) (e)
ty & Eqdown,, 1<i#j<n (c¢) (Lemma 6) (f)
1y & Downl, 1< iAj<n (€) (b) (5)
Down, = w{Down, | 1 <i < MAX} (8) (h)
by € Downy, (h) (d) (e) (g) (i)
1, € Eqdoun,, () (b) ()
Coyy € {=,<} (j) (Lemma 11 O
Lemma 12. [z ~Ly] ~% ¢, & Side,

(Lemma 12) [x-Ly] ~% 1, & Side,
[z -Ly] ie. Chy#Ll Premise (a)
Dlz LyJ]ACysy =1L or Cpy# LAD[z—-Ly] (10) (b)
Coy=1 Assumption (c)
false (a) (c) (ckd)
D[z ~Ly] ie. Egq,| Side, (d) (commit) (e)
1, € Ey, 3 ®
Ly & Side, (f) (e) O

A really important lemma that I should have proven much earlier

Lemma 13. [zry] ~® Dlzry]

(Lemma 13) [ery] ~& Dlzry]
[zry] ie. Cpy=r Premise (a)
Cry#r Assumption (b)
false (a) (b) (bkc)
Dlzry] A Cay =1 or Cyy#r ADJz-ry]  (10) (d)
D[zry] (c) (d) (commit) O
(NegDom) rlyAy-Llz — x-9*z
[z Ly] Premise (a)
[y —L 2] Premise (b)
L. ¢ Side, (b) (Lemma 12) (c)
Eq, = Eq, Assumption (d)
1. € Eq, (3) (e)
. € Fq, (d) (o (@1
Eqdown, = Eq, & Down, (6) (2)
Lz € Eqdown, (f) (g) (d + h)
Dlz Ly] ie. Egdown, C Side, (a) (Lemma 13) (1)
L, € Side, (h) (i) (dF+j)

24

continued on next page



continued from previous page

false (c) (j) (d k)
D[z = 2] ~2 false (k) (dF1)
Dz =2] ACyy = = or Cy,# = AD[z -= 2] (10) (m)
Co#= (1) (m) (commit) (n)
Eqdown, C Down, Assumption (o)
L. € Eqdown, (Lemma 7) (p)
L, € Down, (o) (p) (oF q)
Eqdown, = Eq, W Eqdown,, (6) (r)
L. € Eqdown,, (@) (r) (o F s)
Dlz Ly] ie. Egdown, C Side, (a) (Lemma 13) (t)
L, € Side, (s) (t) (o F u)
false (c) (u) (oF V)
D[z <t 2] ~@ false (v) (o Fw)
Dz <t 2] ACy. = <t or Ch# <™ AD[z —<T 2] (10) (x)
Cpoibat (w) (x) (commit)  (v)
C.. @ (=, <) (1) () 0
Lemma 14. 1, ¢ Eq, ~% C, #=

(Lemma 14) ly € Bq, ~& Chy#=
Ly & Eq, Premise (a)
) € Fy, 3) (b)
Eq, = Eq, Assumption (c)
Ly € Eq, (b) (c) (ckd)
false (a) (d) (cke)
D[z =y] ~& false (e) (c k1)
Dlz =y] A Cey == or Coy#=AD[z—-=y] (10) ()
Coy#= (f) (g) (commit) O
(Dom.Ineq) TPy AP <Tp AR dtz o5 o=z
[z <* yi] Premise (a)
[yr <t yo] Premise (b)
ly2 <* 2] Premise (c)
L, € Eqdoun,, (c¢) (Lemma 5) (d)
Dly:1 <F y2] ie. Eqdown,, C Down, (b) (Lemma 13) (e)
tz € Downy, (d) (e) (f)
Cwlh € {:7 <+} Le. Cmyl 7él>+ (a) (g)
Coyy =T Assumption (h)
false (g) (h) (h 1)
Dlz > y1] A Cpyy =T or Cpy,#>T AD[z -1 1] (10) ()
D[z =" 1] i.e. Downy, || Eq, (i) (j) (commit) (k)
- & Fg, (f) (k) ()

25

continued on next page



continued from previous page

|Co:#= (1) (Lemma 14) ]
(Child.Ineq) z-=yAx:f(...2' . )Ayg(..y..) = 2=y
[z == y] Premise (a)
D[z ~=y] ie. Eq,| Eq, (a) (Lemma 13) (b)
1o € B, (3) (©)
2 & Fy, (b) (© (@)
[z:f(...2"...)] ie. Eq, = Parent, Premise (e)
Ly € Parenty (e) (d) (f)
[y:9(...y"...)] ie. Eq, = Parent, Premise (g)
te & Parent, (d) (g) (h)
Parent, = Parent, Assumption (i)
false (f) (h) (ikj)
D[z’ = y'] ~® false () i+ k)
D[z’ =y'TACyry == or Cypy#=AD[z' ==y'] (10) 1)
Copry #= (k) (1) (commit) O
Lemma 15. ¢, & Up,

(Lemma 15) Lz & Up,
s € Eq, (3) (a)
Equp, = Eq, ¥ Up,  (7) (b)
ta & Up, (a) (b) O
Lemma 16. (, € Equp, ~% Cyy, € {=>"}

(Lemma 16) Ly € Bqup, ~® Cpy€{=>"}
ty € Equp, Premise (a)
Equp, C Up, Assumption (b)
1 € Up, (a) (b) (b c)
v, & Up, (Lemma 15) (d)
false (c) (d) (bFe)
D[z <t y] ~¥ false (e) (b 1)
D[z <t y] ACyy = < or Cpy# <™ AD[z ~<Ty]  (10) (g)
Coyiat (1) (g) (commit) (W)
Eqdown,, C Side, Assumption (i)
ty € Eqdown, (Lemma 7) §)
Ly € Side, i) () ik k)
T = Equp, W Down, W Side, (5) )
1y Side, (a) ( (m)
false (k) (m) (ikn)
D[z L y] ~& false (n) i+ o)

26

continued on next page



continued from previous page

Dlz LyJ]ACyy =L or Cpy# L AD[z L y]
Coy#L
Coy € {=,>7"}

fa N

D.D’U

27




