A. Aiken, D. Kozen, M. Vardi, and E. Wimmers, The Complexity of Set Constraints. 7 ØØ Conf. on CSL, LNCS, vol.832, pp.1-17, 1993.

A. Aiken, D. Kozen, and E. Wimmers, Decidability of Systems of Set Constraints with Negative Constraints, Information and Computation, vol.122, issue.1, pp.30-44, 1995.
DOI : 10.1006/inco.1995.1139

A. Aiken and E. Wimmers, Type inclusion constraints and type inference, Proceedings of the conference on Functional programming languages and computer architecture , FPCA '93, pp.31-41, 1993.
DOI : 10.1145/165180.165188

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.1739

H. A¨?ta¨?t-kaci, A. Podelski, and G. Smolka, A feature constraint system for logic programming with entailment, Theoretical Computer Science, vol.122, issue.1-2, pp.263-283, 1994.
DOI : 10.1016/0304-3975(94)90209-7

L. Bachmair, H. Ganzinger, and U. Waldmann, Set constraints are the monadic class, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science, pp.75-83, 1993.
DOI : 10.1109/LICS.1993.287598

W. Charatonik and L. Pacholski, Negative set constraints with equality, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, pp.128-136, 1994.
DOI : 10.1109/LICS.1994.316078

W. Charatonik and L. Pacholski, Set constraints with projections are in NEXPTIME, Proceedings 35th Annual Symposium on Foundations of Computer Science, pp.642-653, 1994.
DOI : 10.1109/SFCS.1994.365727

W. Charatonik and A. Podelski, The independence property of a class of set constraints, 2 ÒÒ Int. Conf . on Principles and Practice of Constraint Progr., volume 1118 of LNCS, pp.76-90, 1996.
DOI : 10.1007/3-540-61551-2_67

W. Charatonik and A. Podelski, Set constraints with intersection, 12 ØØ LICS, pp.352-361, 1997.

A. Colmerauer, Equations and inequations on finite and infinite trees, 2nd Int. Conf. on Fifth Generation Computer Systems, pp.85-99, 1984.

P. Devienne, J. Talbot, and S. Tison, Solving classes of set constraints with tree automata, 3 Ö Int. Conf . on Principles and Practice of Constraint Progr., volume 1330 of LNCS, pp.62-76, 1997.
DOI : 10.1007/BFb0017430

T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni, Logic programs as types for logic programs, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science, pp.300-309, 1991.
DOI : 10.1109/LICS.1991.151654

R. Gilleron, S. Tison, and M. Tommasi, Solving systems of set constraints using tree automata, 10 ØØ Symp. on Theoretical Aspects of Computer Software, pp.505-514, 1993.
DOI : 10.1007/3-540-56503-5_50

URL : https://hal.archives-ouvertes.fr/inria-00538878

]. R. Gilleron, S. Tison, and M. Tommasi, Solving systems of set constraints with negated subset relationships, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pp.372-380, 1993.
DOI : 10.1109/SFCS.1993.366850

URL : https://hal.archives-ouvertes.fr/inria-00538879

N. Heintze, Set Based Program Analysis, 1992.

N. Heintze and J. Jaffar, A decision procedure for a class of set constraints, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science, 1990.
DOI : 10.1109/LICS.1990.113732

N. Heintze and J. Jaffar, A finite presentation theorem for approximating logic programs, Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages , POPL '90, pp.197-209, 1990.
DOI : 10.1145/96709.96729

F. Henglein and J. Rehof, The complexity of subtype entailment for simple types, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pp.362-372, 1997.
DOI : 10.1109/LICS.1997.614961

F. Henglein and J. Rehof, Constraint automata and the complexity of recursive subtype entailment, 25 ØØ Int. Conf. on Automata, Languages, and Programming, 1998.
DOI : 10.1007/BFb0055089

D. Kozen, Set Constraints and Logic Programming, Information and Computation, vol.142, issue.1, pp.2-25, 1998.
DOI : 10.1006/inco.1997.2694

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.416.3881

M. Müller, Set-based Failure Diagnosis for Concurrent Constraint Programming. Dissertation, 1998.

M. Müller, J. Niehren, and A. Podelski, Inclusion constraints over non-empty sets of trees, Theory and Practice of Software Development, pp.345-356, 1997.
DOI : 10.1007/BFb0030609

M. Müller, J. Niehren, and J. Talbot, Entailment of atomic set constraints is PSpace-complete, 1999. long version at www.ps.uni-sb

F. Pottier, Simplifying subtyping constraints, ACM SIGPLAN Int. Conf. on Functional Programming, pp.122-133, 1996.
DOI : 10.1145/232627.232642

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7032

V. A. Saraswat, M. Rinard, and P. Panangaden, The semantic foundations of concurrent constraint programming, Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages , POPL '91, pp.333-352, 1991.
DOI : 10.1145/99583.99627

G. Smolka and R. Treinen, Records for logic programming, The Journal of Logic Programming, vol.18, issue.3, pp.229-258, 1994.
DOI : 10.1016/0743-1066(94)90044-2

K. Stefansson, Systems of set constraints with negative constraints are NEXPTIME-complete, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, pp.137-141, 1994.
DOI : 10.1109/LICS.1994.316077

T. E. Uribe, Sorted unification using set constraints, Conf. on Autom. Deduction, pp.163-177, 1992.
DOI : 10.1007/3-540-55602-8_163