N
N

N

HAL

open science

Feature Automata and Recognizable Sets of Feature
Trees
Joachim Niehren, Andreas Podelski

» To cite this version:

Joachim Niehren, Andreas Podelski. Feature Automata and Recognizable Sets of Feature
Trees. TAPSOFT: Theory and Practice of Software Development: Joint International Conference

CAAP/FASE/TOOLS., 1993, Orsay, France. pp.356-375. inria-00536823

HAL Id: inria-00536823
https://inria.hal.science/inria-00536823
Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00536823
https://hal.archives-ouvertes.fr

Feature Automata and
Recognizable Sets of Feature Trees

Joachim Niehren* Andreas Podelski
German Research Center for Digital Equipment Corporation
Artificial Intelligence (DFKI) Paris Research Laboratory (PRL)

Stuhlsatzenhausweg 3 85, Avenue Victor Hugo

6600 Saarbriicken 11, Germany 92563 Rueil-Malmaison, France
niehren@dfki.uni-sb.de podelski@prl.dec.com
Abstract

Feature trees generalize first-order trees whereby argument positions become keywords
(“features”) from an infinite symbol set F. Constructor symbols can occur with any
argument positions, in any finite number. Feature trees are used to model flexible
records; the assumption on the infiniteness of F accounts for dynamic record field
updates.

We develop a universal algebra framework for feature trees. We introduce the
classical set-defining notions: automata, regular expressions and equational systems,
and show that they coincide. This extension of the regular theory of trees requires
new notions and proofs. Roughly, a feature automaton reads a feature tree in two
directions: along its branches and along the fan-out of each node.

We illustrate the practical motivation of our regular theory of feature trees by
pointing out an application on the programming language LIFE.

1 Introduction

In this section, we will give some background and motivation (“the task”) and then outline
the rest of the paper (“the method”).

The Task. We describe a specific formalism of data structures called feature trees. They
are a generalization of first-order trees, also called constructor trees or the elements of
the Herbrand universe. Since trees have been useful, e.g., for structuring data in modern
symbolic programming languages like Prolog and ML, this gives the more flexible feature
trees an interesting potential. Precisely, feature trees model record structures. They form
the semantics of record calculi like [AKS86], which are used in symbolic programming lan-
guages [AKP91b] and in computational linguistics (cf., the book [Car92]). In the logical
framework for record structures of [BS92], they constitute the interpretation of a completely
axiomatizable, and hence decidable, first-order theory.

*partially supported by Graduierten-Kolleg Informatik der Universitat des Saarlandes.

As graphs, feature trees are easily described as finite trees whose nodes are labeled by con-
structor symbols, and whose edges are labeled by feature symbols, all those edges outgoing
from the same node by different ones. Thus, symbolic keywords called features denote the
possible argument positions of a node. They access uniquely the node’s direct subtrees.
All constructor symbols can label a node with any features attached to it, in any, though
finite, number.

Although thoroughly investigated [AK86, Smo92, BS92, AKPS92], also in comparison with
first-order trees [ST92], feature trees have never been characterized as composable elements
in an algebraic structure, i.e., with operations defined on them. Also, up to now, there
has been no corresponding notion of automata. This device has generally proven useful for
dealing efficiently with systems calculating over sets of elements.

In our case, the practical motivation consists of the possibility of defining a hierarchy of
types denoting sets of feature trees, as a Boolean lattice. For its use in a logical programming
system employing feature trees such as LIFE [AKP91b], we need to compute efficiently the
intersection of two types (roughly, for unification). Concurrent systems, in connection with
control mechanisms such as residuation or guards [AKP91a], require furthermore an efficient
test of the subset relation (matching). Thus, we need to provide a formalism defining the
types in a way which is expressive enough and yet keeps the two problems decidable. Such a
formalism can be given, for example, as a system of equations and a corresponding automata
notion with Boolean closure properties and decidable emptyness problem.

I comes from the fact that the

A major difficulty of an algebraic framework for feature trees
set F of features, i.e., of possible argument positions of a node accessing its direct subtrees,
is infinite. The infiniteness of F is, however, an essential ingredient of the formal frameworks
modeling flexible record structures. A practical motivation is the need to account for
dynamic record field updates. It turns out that this semantical point of view has advantages
in efficiency as well. Namely, the correctness of the algorithms for entailment and for solving

negated constraints on feature trees [AKPS92] relies on the infiniteness of F.

The Method. The first step in solving the problem described above is to build an appro-
priate algebraic framework. Such a framework is provided by universal algebra in the case of
first-order trees. Formally, these are the elements of the free algebra over a given signature
of function symbols (finite or infinite, ¢f., [Mah88]). This framework yields immediately a
“good” notion of automata.

In fact, as Courcelle has shown in [Cou89, Cou92], universal algebra provides a framework
for a rich variety of trees. Clearly, it is that work that inspired our notion of the algebra
underlying feature trees. We introduce this notion in Section 2. Informally speaking, the
operation composing feature trees in the algebra takes a record value and adds a record
field containing another value to it. In a special case, this amounts to Nivat’s notion of
‘sum of trees’ [Niv92]; thus, incidentally, we obtain an algebraic formalization hereof.

To define feature automata as algebras, it is useful to consider the class of all finite trees
whose nodes are labeled by constructor symbols, and whose edges are labeled by feature

... with the property that automata and equational systems coincide (let us note that the expressiveness

of tree automata is equal to the one of equational systems for the free term algebras over finite signatures;
it is strictly weaker in the case of infinite signatures for all tree species, also those considered in [Cou89,

Cou92])

symbols. We call these multitrees.? Multitrees are of interest on their own, namely for

representation of knowledge with set-valued attributes [Rou88]. Thus, feature trees are
multitrees with the restriction that features are “functional,” i.e., all edges outgoing from
the same node are labeled with different features. Feature automata recognize languages
of multitrees, which are then cut down to recognize languages of feature trees.

In Section 3, we will define feature automata and show the basic properties of this notion:
closure under the Boolean operations and decidability of the emptyness problem. In order
to restrict our study to finitely presentable automata and yet to account for the infiniteness
of the set of features F, we introduce the notion of a finitary automaton: the number of
states is finite, and the evaluation of the automaton can be specified not only on single
symbols, but also on finite sets or on complements of finite sets of symbols. Thus, say: on

ffor f € F,or:on ffor f & F, where F' C F finite.

Roughly, a feature automaton reads a feature tree in two directions: along its branches
(from the frontier to the root) and along the fan-out of each node (along all argument
positions). This is necessary in order to account for the flexibility in the depth as well as in
the out-degree of the nodes of feature trees. The first direction is standard for all automata
over trees. In order to study its behavior in the latter direction, or what we call the local
structure of the recognized language, we consider recognizable sets of feature trees of depth
1, called flat feature trees.

In Section 4, we define a class of logical formulas, called counting constraints. The name
comes from the fact that they express threshold- or modulo counting of the subtrees which
are accessed via features from a finite or co-finite set of features.

The main technical result of this paper is a theorem saying that counting constraints char-
acterize exactly the recognizable sets of flat feature trees. The proof takes up Sections 8
and 9. The theorem essentially links counting and the finitary-condition; in all of the set-
defining devices presented here, either of these two notions accounts for the infiniteness

of F.

Counting constraints can express that certain features exist in the flat feature tree (labeling
edges from the root), and that others do not.” As a consequence, one can show that the
set of first-order trees, with fixed arity assigned to constructor symbols, and recognizable
subsets of these, are sets recognized by feature automata.

In Sections 5 and 6 we give two alternative ways to define recognizable sets of feature trees
which are more practical than automata: regular expressions and equational systems. In
the first one, the sets are constructed by union, substitution and star (and, optionally,
complement or intersection). In the second, they are defined as solutions of equations in a
certain form. For both, counting constraints can be used to define the base cases. Thanks
to the main theorem in Section 4, we are able to show that either class of defined sets is
equal to the one for feature automata. Moreover, the devices can be effectively translated
one into another. These results, together with the previous ones, are necessary to present
a complete regular theory of feature trees and to offer a solution to the practical problem

2The unranked unordered trees studied in [Cou89] (the number of arguments of the nodes is not re-
stricted, and the arguments are not ordered) are a special case of multitrees, namely with just one feature.
In the framework of [Cou89], however, recognizability by automata is strictly weaker than definability by
equational systems, even if the set of node labels is finite.

3In [STY92, Smo92], these correspond to the constraints xF, x f] or their negations, where F' C F finite
and f e F.

of computing with types denoting sets of feature trees as described above.

2 The Algebra J

In this section we will introduce feature trees and the more general multitrees as elements
of an algebra that we define, called J. This yields the notion of a J-automaton. This
section follows the approach of [Cou89] and [Cou92].

In the following we will assume a given set S of constructor symbols (also called sorts,
referred to by A, B, etc.) and a given set F of feature symbols (also called attributes, or
record field selectors, referred to by f, g, ete.).

Formally, multitrees are trees (i.e., finite directed acyclic rooted graphs) whose nodes are
labeled over §, and whose edges are labeled over F. Or, the set MT of multitrees over &
and F can be introduced as MT = U,5o M7, where (let A" denote the set of all natural

numbers, and Nﬁ%’te the set of finite multisets with elements from the set M):

MTo = {(A,0)]A€S),
MT, = {(AB)Aes BEeNl M1y 0 mT, ..

MT ,, contains the multitrees of depth < n.

Feature trees are multitrees such that all edges outgoing from the same node are labeled
by different features. FT denote the set of all feature trees (and F7T, all those of depth
< n).

We introduce two sorts MT and F' for multitrees and features, respectively, and define the
{MT, F}-sorted signature:
Y={=}luFusS

where = is a function symbol of profile: MT x F' x MT — MT, and the symbols in F
and & are constants of sort F' and of sort MT', respectively.

The algebra of multitrees J is defined as a Y-algebra. Its two domains are Dy = MT
and Dp = F of the sorts MT and F', respectively. The function symbol = is interpreted
in J as the operation which composes two multitrees ¢, ¢’ € MT via a feature f € F to a
new multitree composed of ¢ and ¢’ with an edge labeled f from the root of ¢ to the root of
t’. Or (where U denotes multiset union),

=7 ((Av E)vat) = (AvE L {(f,t)})

Borrowing the ‘tree sum’ notation from [Niv92], we might write = (¢, f,#') more intuitively
as t+ ft'. In fact, for the special case where F = {1, 2} (the two features denoting the left
and right successor), we obtain an algebraic reading of the notation of [Niv92].

The interpretation of the constants is given by f7/ = fand A7 = (A,0).

It is easy to verify that the algebra J satisfies the order independence (OIT), i.e., the
following equation is valid in 7.

= (= (v, fi,21), f2,22) = = (= (¥, fa, x2), f1,21) (1)

In the ‘tree sum’ notation this expresses the commutativity* of 4, in the sense that ¢ +
fltl —|— fgtg =1 —|— fztg —|— fltl- Of course, ELlVVELyS t —|— fltl —|— fgtg 7£ t —|— f1 (tl —|— fgtz).

We use Ty to denote the free algebra of terms over the signature 3.

Lemma 2.1 The algebra of multitrees J is isomorphic to the quotient of the free term
algebra over X with the least congruence generated by the order-independence equation (1),

J =T 011"

It is well-known that, given any system of equations &, 7’2/5 is the initial object in the
category of all ¥-algebras satisfying the equations &.

A J-automaton is a tupel (A,h, Qfina) consisting of a ¥-algebra A, a homomorphism
h:J ~ A and the subset Qgna C Diyr of values of sort MT (“final states”) where the
number of values of sort MT and of sort F' (“states”) is finite. A J-automaton corresponds
to the “more concrete” notion of a (finite deterministic bottom-up) tree automaton over
the terms of 7% such that all terms which are equal modulo OIT are evaluated to the same
state. This means that any representation of a multitree ¢ as a term in Ty can be chosen
in order to calculate the value of .

3 Feature Automata

Given any many-sorted signature ¥ with a finite number of non-constant function symbols
c € X9, we define a Y-algebra A to be finitary if, for each sort s and each value ¢ € DA of
sort s, the set:

{eex et =4}
of constant symbols in ¥ of sort s which are valued to ¢ is finite or co-finite.

We now return to the particular { M7, F'}-sorted signature ¥ introduced above; clearly, the
definitions below can be made in general framework as well.

A feature automaton A is defined as a finitary J-automaton. The set of multitrees recog-
nized by A is the set:
Lar(A) ={t € MT [h(t) € Qsinal},

and the set of feature trees recognized by A is the set: Lrr(A) = Ly (A) N FT. The
families Recarr(J) and Recrr(J) of recognizable sets of multitrees and feature trees are
defined accordingly.

Remark. If (and only if) the set of features is infinite, the set of all feature trees is not a
recognizable language of multitrees (with respect to J).

Example. We will construct a feature automaton A that recognizes the set
of natural numbers. These are coded into the feature trees of the form
(0, {(suce, (0, {(suce, (..., {(0,0)})})}, with n edges labeled suce for the natural number

n. The congruence classes, i.e., the elements in the quotient term algebra TE/OIT’ are the

“In a sense which can be made formal (cf., Section 8), also the associativity holds for +; this justifies
dropping the parenthesis.

singletons {= (0, suce,= (0, suce,= (...,0)))}. The feature automaton A has the states
Q = {Gnat, Qother } and P = {psuce, Dother } of sort MT and F', respectively. The evaluation is
given by:

OA = dGnat
AA = {Yother if A 7£ 0 5
SUCCA = Psuce »
fA = Pother if f 7£ succ,
A JR—
= (Qnata Psuces Qnat) = {nat
:>A (q17 P, Q2) = Yother otherwise.

As final state set we choose Qfinal = {Gnat}. 1t is clear that A respects the order independence
theory and the finitary-condition. Of course, it will be more practical to define this set by
regular expressions or equational systems.

The following theorem and corollary states that the standard properties of recognizable
languages are valid for the sets in Recry as well.

Theorem 3.1

1. Feature automata have a finite representation.

2. The family of recognizable languages of feature trees Recry is closed under the Boolean
operations. The corresponding feature automata can be given effectively.

3. The emptiness problem (Lrr(A) = () is decidable for each feature automaton A.

Proof. The known constructions for Boolean operations on automata are still valid for
J-automata. To see that the finitary-condition is preserved, simply note that the system
of finite and co-finite sets is Boolean closed and, for two states ¢; and ¢y of the feature
automata A; and A,, respectively,

{eexy [=(q)} ={cex |t =g }n{ceX | =q}

Since J = TE/OIT’ each J-automaton A corresponds to a tree automaton Az over terms
in 7y, and:
Lrr(A) =0 iff Ly (Ar) =10,

it suffices to decide the emptiness problem for the tree automaton A7. As usually, this can
be done by checking all terms of depth smaller than the number of states of Ap. Let C be
some finite set of constants ¢ such that ¢* = ¢ for each state ¢ which is a value of some
constant. Iff L is not empty, it contains a term of bounded depth that is constructed with
constants of ' and non-constant function symbols. But there are only finitely many terms

of this kind.

A finitary automaton can be finitely represented. From such a representation one can
calculate some set C' as described above. This yields an algorithm for testing L7 (A) = 0.
In the case of Lz (.A) the algorithm checks only terms representing feature trees. O

We conclude the section by defining non-deterministic feature automata which are needed
in Sections 5 and 6.

Definition 3.2 A non-deterministic feature automaton A = (Q, P, h, Qfinal) s a tupel such
that:

Q) is the set of states of sort MT, P the states of sort F' and Qgna C Q) is the set of final
states,

h is composed of the functions h : S — 29 and h : F — 28 and the transition function
=>4 Q x PxQ — 29,

A satisfies the OIT -theory, i.e., for all states q,p1,q1, p2, q2,

=4 (=4 (¢, p1,01),p2,02) = =" (= (4.p2,), P101),

A satisfies the finitary-condition, i.e., for all states p and ¢, the sets
{feF|pe fA} and {A €S |qé€ AA} are finite or co-finite.

The evaluation of the term ¢ € Ty by A, i.e., the set h(t) C @ is defined inductively by:

h(:> (tlv f7 tQ)) = :>A (h(tl)v h(f)v h(tZ))
If ¢; and ¢y are congruent modulo OIT, we have h(t;) = h(tz). Thus, h([t]) = h(t) is well

defined for all congruence classes [t]. The language of multitrees recognized by A is:

Laar(A) = {[A(It]) N Qpinat # 0},

and the language of feature trees recognized by A is Lrr(A) = Luyr(A) N FT. Each
feature automaton is also a non-deterministic feature automaton.

Lemma 3.3 Given a non-deterministic feature automaton A, an equivalent (deterministic)
feature automaton A? can be constructed effectively.

Proof We apply the usual subset construction on a given non-deterministic feature automa-

ton A of the form above, yielding the equivalent automaton A? as follows: Q¢ = 29, P4 =
2P AAT = AA AT = A and:

d
=4 (¢}, 0" a3) = U= (ap @) | (a0 a2) € ¢ < p* x g5}

We define the final states of A% by: Q2 | = {¢% | ¢? N Qfina # 0 }.

Clearly, the algebra A? satisfies the OIT-theory. The equality: The finitary-condition is
preserved, since:

(A A =¢"} = N{Alge A% 0 N {A]qe a4)©
g€q? q¢q?

shows that the finitary-condition is preserved, too. a

4 Counting Constraints

In this section we characterize recognizable languages of feature trees using formulae of a
certain from, called counting constraints. The proof of this characterization, which is the
main technical result of this paper, will be done in Sections 8 and 9.

The syntax of counting constraints C' (written C(z) to indicate that x is the only free
variable) is defined in the BNF style as follows.

Clx) = card{e € F|3y.(xpy N Ty)} € N
| Sz @)
| C(x) A C(x)
| Cx) v C(x)

Here, N is a set of natural numbers which is recognizable in the monoid (N, +,0); S, and
T', a finite or co-finite subset of §; F' a finite or co-finite sets of features.

The counting constraint C'(z) = card{y € F|Jy.(zpy ATy)} € N holds for the multitree
x if the number of all edges in =, which go from the root to a node labeled by a symbol in
T and which are labeled by a feature in £, lies in the set N. Thus, the cardinality operater
card applies on a multiset of features, i.e., counts double occurrences.

The counting constraint C'(x) = S holds for the multitree x if the root of x is labeled by
some symbol in 5.

Some important feature constraints can be expressed by our new constraints. For example,
in the syntax of [Smo92], for F' C F finite, for f € F, and for A € §: «F (“for exactly the
features f in F' there exists one edge labeled f from the root”), « f] (“there exists no edge
labeled f from the root”), and Az (“the root is labeled by A”).

eF = N\ card{o € {f}|Ty.xpy} € {1}

fer
A card{p € F° [Ty xpy } € {0},

af | = card{e € {f}|Fy. zpy} € {0},

Az = {A}x.

Moreover our constraints are closed under negation. Indeed, = card {¢ € F' | Jy. (xpy A
Ty)} € N is equivalent to card {p € F'| Jy. (xpy A Ty)} € N¢, and = Tz is equivalent to
TCx.

FEach constraint C'(z) defines the set Lyr(C') of multitrees @ for which the constraint C'(x)
holds. Accordingly, we define: Lpr(C) = Lyr(C)NFT, Ly, (C) = Lyr(C)NMT 4, and
Lrr, (C) = Lpr(C)NFT1. The languages of flat multitrees of the form Ly, (C'), or of flat
feature trees Lpr, (C'), are called counting-definable.

The following theorem holds for multitrees instead of feature trees, as well.

Theorem 4.1 A language of flat feature trees is counting-definable iff it is recognizable (in
J, by a feature automaton).

Proof Sketch. A flat multitree can be represented as a finite multiset over (FU{root})xS.
The operation = corresponds to the union of such multisets. In Section 8 we study the
algebra M of finite multisets of pairs. It is three-sorted, the sorts denoting F U {root}, S
and MT, respectively. We show that J- and M-recognizability coincide.

In Section 9, we consider counting constraints D(x) for multisets @ of M. They are of the
form:

D(x) = card{(f,A)€ax|feF, AcT}eN,

8

or conjunctions or disjunctions of these. Again [and T' are finite or co-finite subsets of F
and § and N is a recognizable set of natural numbers.

We show that definability of languages of multisets by these constraints and M-
recognizability coincide. The main idea is that the mapping:

rcard{(f,A)ex|felF, AcT}

is essentially a homomorphism from M into N. a

We finish this section noting a fact (¢f., [Eil74]) which expresses exactly that feature au-
tomata can count features either threshold or modulo a natural number.

Fact 4.2 A language of natural numbers is recognizable iff it can be decomposed into a
finite union of sets of the form: {p +rs|r € N}, with p,s € N.

5 Kleene’s Theorem

We define regular expressions over feature trees. In generalization of the standard cases, the
atomic constituents of these are not just constants (denoting singletons or trees of depth
1), but expressions which denote sets of feature trees of depth < 1.

As usual, we need construction variables labeling the nodes where the substitution and the
Kleene star operations can take place. These variables are taken from a set Y which is
assumed given (disjoint from &). It is infinite; the definition of each regular language, of
course, uses only a finite number of construction variables. We call a syntactic expression
C of the form (2) a counting-expression if T' ranges over finite or co-finite subsets of SUY".

A regular expression R over F and S UY is of the form given by:

R = C (' is a counting-expression
| Ry R concatenation (where y € Y)
| R Kleene star (where y € Y')
| RUR union

Complement and intersection are optional operators, which, as we will see, do not properly
add expressiveness.

The definition of the language Lr7(R) of feature trees (or L7 (R) of multitrees) denoted
by the regular expression R is by straightforward induction. For concatenation and Kleene
star for sets of multitrees: If Ly and L; are sets of feature trees, then Ly -, L is obtained by
replacing the construction variable y in the leaves of the trees of L; by (possibly different)
trees of L,. The Kleene star operation on a set is an iterated concatenation of a set with
itself. Formally, for a set L of feature trees, Lll/ =L, L, = LZ_I y Ly and L™ = U5 L.

The languages of feature trees (or multitrees) denoted by regular expressions are called
reqular languages.

Theorem 5.1 (Kleene) A language of feature trees (or multitrees) is reqular iff it is rec-
ognizable.

Proof. It is sufficient to prove the theorem for multitrees. We show by induction over
the structure of the regular expressions that the language of each regular expression over
SUY and F is recognizable. The base case B = (' is handled by Theorem 4.1. Union
is captured by the Boolean closure properties in Theorem 3.1. Substitution and star are
established using the equivalence of deterministic and non deterministic feature automata.
For the other direction, we use the standard McNaughton/Papert induction technique, the
base case being handled again by Theorem 4.1. O

6 Equational Systems

The next possibility to define recognizable sets of feature trees (or multitrees) in a conve-
nient way uses equational systems. These systems again generalize the constituents from
singletons of trees of the form a or f(y1,...,yn), for a € ¥g and f € ¥, in the case of a
ranked signature for first-order trees, to counting-expressions denoting (unions of) sets of
flat feature trees.

The extra symbols y € Y in these counting expressions now correspond to set variables of
the equations.

We write C(yi,...,y,) instead of C if the set variables of C' are contained in the set
{y1,...,ys}. These variables are not to be confused with the logical variable z used in
C = C(x) as a logical formula.

An equational system is a finite set £ of equations of the form (where C; is a counting-
expression, for ¢ = 1,...,n):
Y, = Ci(yh ceey yn).

Given an assignment, i.e., a mapping o : Y — 277 the equations in & are interpreted such
that C;(y1,...,yn) denotes the set:

Lrr(Cs) -y alyn) « oo oy lYn)-

A solution of £ is an assignment « satisfying £. Each equational system has a least solution.
The existence follows with the usual fixed point argument. Namely, an equational system
is considered as an operator over the lattice of assignments o and the least solution is
obtained in w iteration steps of this operator, starting with the assignment a(y;) = () for
1=1,...,n.

A language of feature trees is called equational if it is the union of some of the sets a(y;)
for the least solution « of €. The notion is defined accordingly for multitrees.

Theorem 6.1 A language of feature trees (or multitrees) is equational iff it is recognizable.

Proof Since J-recognizability corresponds to the characterization by congruence relations,
and Theorem 4.1 covers the case of feature trees of depth < 1, the proof can be done
following the standard one for first-order trees (cf., [GS84]). O

10

7 Conclusion and Further Work

The results of this paper together present a complete regular theory of feature trees. They
offer a solution to the concrete practical problem of computing with types denoting sets of
feature trees as described in the introduction.

Now, it is interesting to investigate where, in the wide range of applications of first-order
trees, feature trees can be useful in replacing or extending those. Since tree automata play
a major role, either directly or just by underlying some other formalism, the regular theory
of feature trees developed here is a prerequisite for this investigation.

A more speculative application might be conceived as part of the compiler optimizer of
the programming language LIFE [AKP91b]. Namely, unary predicates over feature trees
defined by Horn clauses without multiple occurrences of variables define recognizable sets
of feature trees. Now, satisfiability of the conjunction of two such predicates corresponds to
non-emptyness of the intersection of the defined sets. When used in deep guards, entailment
of a predicate by others of this kind corresponds to the subset relation on the defined sets
of feature trees.

We are curious to extend the developed theory in the following ways. First, we would
like to find a logical characterization of the class of recognizable feature trees, extending
the results of Doner, Thatcher/Wright and Courcelle [Don70, TW67, Cou90]. It will be
interesting to combine second-order logic and the counting constraints introduced here, in
order to account for the flexibility in the depth as well as in the out-degree of the nodes of
feature trees.

Also, in order to account for circular data structures, like, e.g., circular lists, it is necessary
to consider infinite (rational) feature trees. Thus, it would be useful to construct a regular
theory of these.

Finally, in [CD91] it is shown that the first-order theory of a tree automaton is decidable
(in the case of a finite signature). More precisely, it is possible to solve first-order formulas
built up from equalities between first-order terms and membership constraints of the form
r € ¢, where ¢ denotes a set defined by a tree automaton. Since we have established
the corresponding automaton notion, we may hope to obtain the corresponding result for
feature trees. For the special case of the set of all feature trees, this is the decidability of
first-order feature logic. A proof for infinite feature trees can be found in [BS92]. Can the
techniques of that proof be combined with the ones of [CD91]?

11

References

[AKS6]

[AKP91a]

[AKP91D]

[AKPS92]

[BS92]

[Car92]

[CDI1]

[Coul9]

[Cou90]

[Cou92]

[Don70]

[Eil74]

[GS84]

Hassan Ait-Kaci. An algebraic semantics approach to the effective resolution of
type equations. Theoretical Computer Science, 45:293-351, 1986.

Hassan Ait-Kaci and Andreas Podelski. Functional constraints in LIFE. PRL
Research Report 13, Digital Equipment Corporation, Paris Research Laborato-
ry, Rueil-Malmaison, France, 1991.

Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. In
J. Maluszynski and M. Wirsing, editors, Proceedings of the 3rd International
Symposium on Programming Language Implementation and Logic Programminyg,

Springer LNCS vol. 528, pages 255-274. Springer-Verlag, 1991.

Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. A feature-based con-
straint system for logic programming with entailment. In Proceedings of the 5th

International Conference on Fifth Generation Computer Systems, pages 1012—
1022, Tokyo, Japan, June 1992. ICOT.

Rolf Backofen and Gert Smolka. A complete and recursive feature theory. Re-
search Report RR-92-30, German Research Center for Artificial Intelligence
(DFKI), Stuhlsatzenhausweg 3, 6600 Saarbriicken 11, Germany, September
1992.

Bob Carpenter. The Logic of Typed Feature Structures, volume 32 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,

Cambridge, UK, 1992.

Hubert Comon and Catherine Delors. Equational formula with membership
constraints,. Rapport de recherche 648, LRI, Universit de Paris Sud, March
1991. To appear in Information and Computation.

Bruno Courcelle. On recognizable sets and tree automata. In Hassan Ait-Kaci
and Maurice Nivat, editors, Resolution of Fquations in Algebraic Structures,
Algebraic Techniques, volume 1, chapter 3, pages 93-126. Academic Press, 1989.

Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets
of finite graphs. Information and Computation 85, pages 12-75, 1990.

Bruno Courcelle. Recognizable sets of unrooted trees. In Maurice Nivat and An-
dreas Podelski, editors, Tree Automata, Advances and Open Problems. Elsevier
Science, 1992.

John E. Doner. Tree Acceptors and some of their applications. Journal of

Comp. System Sci. 4, pages 406-451, 1970.

Samuel Eilenberg. Automata, Language and Machine, volume A of Applied and
Pure Mathematics. Academic Press, 1974.

F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiado, Budapest, 1984.

12

[Mah88]

[Niv92]

[Rou88]

[Smo092]

[ST92]

[TW67]

Michael J. Maher. Complete axiomatizations of the algebras of finite, rational

and infinite trees. In LICS, pages 348-457, July 1988.

Maurice Nivat. Elements of a theory of tree codes. In Maurice Nivat and An-
dreas Podelski, editors, Tree Automata, Advances and Open Problems. Elsevier
Science, 1992.

William C. Rounds. Set values for unification-based grammar formalisms and

logic programming. Report CSLI-88-129, 1988.

Gert Smolka. Feature constraint logics for unification grammars. Journal of
Logic Programmaing, 12:51-87, 1992.

Gert Smolka and Ralf Treinen. Records for logic programming. In Proceedings of
the 1992 Joint International Conference and Symposium on Logic Programming,

Washington, DC, November 1992. The MIT Press, to appear.

J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems

Theory, 2(1):57-81, August 1967. Published by Springer-Verlag NY Inc.

13

Appendix
(Proof of Theorem 4.1)

8 The Algebra of Multisets

We will reduce [J-recognizability for languages of flat multitrees to a notion of recognizabil-
ity of finite multisets of pairs. The idea is to identify a flat multitree with a finite multiset
of pairs,

(A, F) = {(root, A)}UFE

where root is considered like an extra feature. Roughly, the operation of adding edges
corresponds to the union operation on multisets.

In all generality, we introduce the algebra M = M(U,...,U,) of finite multisets over n-
tuples with components in given sets Uy, . ..,U,, for some n > 1. (Later, we will instantiate
U = FUA{root} and Uy = S.) M is n + 1-sorted, over the the sorts si,...,s, and

FMS which denote, respectively, the domains Dy, = Uy, ..., Ds, = U,, and Dpys =
N]Z{i}tex o X Un (where Nﬁ%’te denotes the set of finite multisets over M).

The operations of M are the (associative and commutative) union UM of multisets
and the creation of a singleton multiset from n elements, one for each component, i.e.,
(upy . un)™ = {(uy,...,u,)}. Thus, they are mappings UM : Dpys X Deys = Drags,
and<>M 2[/[1 X .. XUnHDFMs.

Formally, M is an algebra over the {si,...,s,, F'MS}-sorted signature:
Sty = Uh W WU, W), U

where the constants of sort s; are just the elements of i;, and the two function symbols

have the profile: U: FMS x FMS +— FMS, and () :s; X ... x s, — FMS.

Lemma 8.1 The algebra M is isomorphic to the quotient of the term algebra with the
congruence generated by the associativity and commutativity laws for L,

M = Tzul “n/AC

We define a subset of Dpysr of multisets of n-tuples to be recognizable if it is recognized by
a finitary M-automaton.

It is important to note that the notions of recognizability in M = MU, ..., U,) and
MUy x ... xU,) can be different, namely if n > 2 and one of the ; is infinite.’

Now, we consider the special case where Uy = F U {root} and Uy = S, i.e.,

M = M(FUA{root},S).

SGenerally, the finiteness condition for M(U;y x ... x Uy,)-automata is weaker then the one for M-
automata. It may be strictly weaker since cartesian products of finite and co-finite sets need neither be
finite nor co-finite. For example, suppose U to be an infinite set. The cartesian product & x {1} is neither
finite nor co-finite as subset of & x {0,1}. Thus, the language of the singleton subsets of & x {1} is not
recognizable in the algebra M (U x {0,1}), but it is with respect to M = M (U, {0, 1}).—In fact, it is this

finitary-condition which makes the proofs that complicated and non-standard.

14

Thus, the domains of M are DM = F U {root}, DM = S, and Dyj;g = FMS(FU
{root} x §).

We define the injection:

[MT, = NJSZSU {root}) x &

by I((A, E)) = {(root, A)} U E. Thus (writing the operator L™ infix):
[(=7 (1, £, A) = 1(t) U™ (f,)™,

Lemma 8.2 (Reduction Lemma) A language L of flat multitrees is recognizable in J
iff the language I(L) of multisets of pairs is recognizable in M.

Proof The difficult direction is from left to right. Given a finitary J-automaton
(A, by Qfinat), where DNMT = @ and DY = P, we construct a finitary M-automaton
(A*, h*, Qfinal) such that, for all flat multitrees ¢:

R(L(1) = h(1). (3)

This is sufficient to show the recognizability of I(L), since I(L) = h='(A)N [(MT), and
I(MT) is a recognizable set in M.

We set D;‘;* = Q, D;‘}* = P UA{proot}, and (where Func denotes the set of functions
generated by the functions =7 (., p,q); i.e., the smallest set containing these and closed
under composition):

Divs = Funcw Q W {q_}.

The evaluation of A* is defined by (we write 4™ instead of A*(-) and use the more intuitive
infix notation):

(pa)*” = ="(.,pq),

(Proot,)" = 4,
hiUA" hy = hyohsy,

qU" h = h(q),

hit g = h{q),

qut g = q-.
Every function in the interpretations taking ¢_ as argument is again mapped to g_. Pre-
cisely:

U h = g,
hit g = q,
g = q,
¢ g = q,
g)" = ¢,
<proot7Q—>A = 4q-.

Clearly, A* is an AC-automaton,i.e., the operation 4" is associative and commutative.
The associativity is trivial for functions as arguments. The commutativity for functions
follows from the OIT-theory, and the associativity for functions by:
:>A () Ps Q) |—|A :>A (7p17(h) = :>A (:>A (7p17(h)7p7 Q))
A
= = = ('7p7Q)7p17q1))

= :>A ('7p17q1) |—|A* :>A (7p7Q)

o

15

The proof for all possible cases is now easily established.

The identity (3) is now easily verified. Finally, we note that the finitary-condition is pre-
served from A to A*.

For the other direction, given a finitary M-automaton A*, we will construct a finitary J-
automaton A satisfying (3). This is sufficient, now, since M7 is a recognizable set in 7.
In fact, we will construct an automaton in another algebra.® Next, we will introduce this
algebra. We resume this proof after having proven Lemma 8.4.

The algebra Jp,eq of flat multitrees is obtained from the algebra J by restricting the domain
of the third argument from M7 to S (... = MT,), and the domain of the first from MT

to MT1, i.e., to to flat multitrees instead of arbitrary ones.

That is, the algebra Jj,cq is three-sorted with sorts MTy, F' and S. The domains are given
by Dyr, = MTy, Dp = F, Ds = S. The operation is given by (where E is a finite

multiset over pairs in F x S):
= Jecal (A, E), f, A3) = (A, EU{(f, A2)})
(which is equal to =7 ((Ay, E), f, Az)). The signature of Jisea is the disjoint union:
St = S F WS W {=1.

Here, the symbols in & appear twice: they are supposed to be renamed apart. Firstly,
they are constants of sort M7}, and secondly, they are constants of sort S. The different
functionality is made clear syntactically by writing Ay, and Ag, with interpretations

(AMTl)jlocal = (A,Q) e MTyC MT, and (As)jlocal = A cS.

The features are constants of sort /' and interpreted freely. The profile of the function

symbol in Jjpear 18 =: MT) x ' x S — MT;.

The algebra Jj,eq satisfies the order independence theory (OIT); namely, for all flat multi-
trees ¢, features f and symbols A the following holds.

:>jlocal ((:>~7local (t7f17A1)7f27A2) = :>‘7local ((:>~7local (t7f27A2)7f17A1)

The following lemma states that we can use the more concrete notion of tree automata.
Lemma 8.3 Jj,.q is isomorphic to a quotient term algebra,
tylocal - Elocal/O[T

Again, we define recognizability in Jj, 1n terms of finitary automata.

Lemma 8.4 A language of flat multitrees is recognizable in J iff it is recognizable in Jipear -

Proof We will first modify a finitary J-automaton A, where DT = Q and D = P,
in order to obtain a finitary Jj,cq-automaton A' such that the two automata (with the

5The motivation for the construction of yet another algebra is, roughly, the fact that a symbol A € S
occurs as a root-labeling as well as a leave-labeling; these two roles are distinguished in J-automata, but
not in M-automata.

16

same set of final states) will recognize the same languages of flat multitrees. We define the
domains of A! by:

D = Q,
D]J\44T1 = Q?
Dy = P,

and we define the evaluation of A' by (for all A € S, f € F, and for all ¢, ¢ € @ and
p € P):

(Aup)* = A4,
(AS)Al _ AA,
f.Al — f.A

= (¢,p,d) = =" (¢,p,q).

Clearly the finitary-condition and the order independence theory are preserved between A'

and A.

For the other direction, given a finitary Jj,.q-automaton A? (with final states Q)3 ., of sort
MTy), we will define a finitary Jjocq-automaton A! that recognizes the same language, but
has the two properties: D]“\‘;Tl = D', and, for all symbols A in S, (AMTl)A1 = (AS)Al :
Thanks to these, one can define a J-automaton A that accepts the same flat multitrees as
A'. Again, this is sufficient since the language M7 is recognizable with respect to J.

We define the domains of A! by:

A A2 A2
Dyr, = Dy x D5
Al A2 A2
Ds = Dy, X Dg
Al A2
DF - DF 9

and, after having fixed an arbitrary element ry;, € ng42, we define the evaluation of A' by
(forall A€ S, f € F,and for all ¢, € Dfyy,, p € D and r,7 € D&):

(Avr) = ((Aum)™ . (As)*),

(As)* = ((Aun)™, (As)*),
=

:>A1 (((Lr)vpv ((,77 7:)) = (:>A2 (Q7p7 7:)7 rfil’)'

As final states of A! we choose:

Qb = {(a,7) | ¢ € Q3 and r € DE 1.

Again, the finiteness condition and the order independence theory are preserved. This
concludes the proof of Lemma 8.4. O

17

End of Proof of Reduction Lemma 8.2

Given a finitary M-automaton A*, we construct a finitary Jj,cq-automaton A such that
(I(t))*" = tA for all flat multitrees t. The domains of A are: DF = D2", DA = D&

The evaluation of A is defined by (where ¢, p and r are states of A of sorts M7, F and S):

(AS)A — AA*,
o=
(Aum)? = (root?”, (As)A)",
=" (q.p,r) = qut (p,r)"".

Since A* satisfies (AC), A satisfies (OIT). The finitary-condition is preserved, as well. O

9 Counting in Multisets

Again in the general framework where M = M(Uy, ..., U,), We will characterize recogniz-
ability in M, i.e., of languages of finite multisets, by appropiate counting constraints.

We define M-counting constraints C' (written C(x) to indicate that = is the only free
variable—logically, a multiset variable) to expressions of the following form:

Clx) = card{(uy,...,u,) €x|u; € U;foralli} e N
| Clz)nC(x)
| C(x)UC(x).

Here, N is a recognizable set of natural numbers with respect to the monoid (N, +,0), and
the sets U; C U; are finite or co-finite. The counting constraint

Clz) = card{(u1,...,u,) € v |u; € U;forall i} € N holds for the multiset = if the
number of tuples (uy,...,u,) in @ such that u;, € U; for all ¢ = 1,...,n is an element
of N. The cardinality operater card applies on a multiset of tuples, i.e., counts double
occurrences.

The language defined by an M-counting constraint C'(x) is the set of all finite multisets «
that satisfy C'(x). It is denoted by La(C).

Theorem 9.1 The family of languages defined by M-counting constraints is exactly the
family of languages of multisets recognizable in M.

Proof. Given an M-counting constraint of the form: C' = card {(u1,...,u,) € @ |u; €
U; for all 1 } € N, we will show the recognizability of La(C).

We can define a homomorphism h : M(Uy ..., U,) — M({1},...,{1}) by setting h(u;) =
{1} for w; € U;, and h(u;) = 0 otherwise.

Furthermore, the homomorphism .J : ijnlli <ol — N, given by J({(uy,...,u,)} =
Lif (ug,..oyun) = (1,...,1), and ... = 0, otherwise, identifies a multiset consisting of k

tuples (1,...,1) with k € V.

18

Thus, for all finite multisets of n-tupels © € Dy,
J(h(z)) = card{(u1,...,u,) € x| u; € U; for all ¢ }.

Hence, Ly (C) = h~'(J7Y(N)). The finitary-condition is invariant under inverse images of
homomorphisms. Thus, La(C') is recognizable in M.

For the reverse inclusion, suppose that [is recognized by a finitary M-automaton
(A, h, Qfinal) With, say, the set Dpays = {q1,...,qn} of states of sort FMS.

The evaluation of the multiset ¢ by A leads to the state (written in a notation which is
justified by the fact that A satisfies (AC), even if U4 is taken over the empty multiset):

tA = | A (ufts o u)
(w1, un) €L
We define the natural numbers: a;(i) = card {(ui,...,u,) € t|{uf,...,u) = ¢} and

obtain (again thanks to (AC) being satisfied):

noat(i)

= UAUA%-

We define a mapping v4 : {1,...,n} = {1,...,n} such that ¢,,;y = Ll;t:(i)““ q. 1ft € Ly(A),
then:

n

|_|A o (i) € Qﬁnah (4)

=1

Generally, for a mapping p: {1,...,n} = {1,...,n}, we define, for : = 1,...,n, the set of
natural numbers:

Ny = {meN | a = qun -

i=1

We note that a.(i) € let for e =1,...,n. That is, ¢ is an element of the language defined
by the M-counting constraint:

as(i) € N,.

~.

=1

Vice versa, for each mapping p satisfying the property (4), the language of the M-counting
constraint:

N a.(i) € N}
=1

is contained in L. We get L = L(R) where R is the M-counting constraint:

Since the number of mappings p with (4) is finite, it only remains to show that the con-
straints used in R are of the defined form. The constituents a;(x) are admissible by the
finitary-condition of A. Finally, we have to proof that the sets NZL are recognizable with

19

respect to (N, 4,0). We will construct appropiate automata AL from A. We set DAr = Q,

04k = 04, 14 = ¢; and interpret the addition by U4, As final states we take the singleton
{qu()}- Then, Ai recognizes Ni. 0

Proof of Theorem 4.1.

For each language L of flat multitrees defined by a counting constraint €' we will find an
M-counting constraint C’ that defines (L), and vice versa.

Given a counting constraint for flat multitrees of the form:
C(x) = card{p € F'|3y.(xpy A Ty} € N,

we set:
C(e)= cardi(py)cr|pe P ANyeTteN
N card{(root,y) €z |ye F} = 1.

The case €' = T'x is obvious, as well as conjunction and disjunction.

For the other direction, given an M-counting constraint ¢’ for finite multisets, we will
give a constraint C' such that L7, (Cr) = 7Y Lm(C")), or, equivalently, Lar, (C) =
Lam(CNI(MT). We note that the languages of the form /(L) are the multisets containing
exactly one pair with first component root. Given the M-counting constraint:

C" = card{(p,y) €Ex|p e FNyeT} €N,
we have to distinguish the two cases root ¢ F' and root € F. In the first case we set:
C = card{p € F|Jy.(xpy N Ty} € N.

In the second case, we note that the set: N—1 = {n—1|n € N and n > 1} is recognizable
with respect to (N, +,0), and set:

C = card{e € F —{root} | Jy.(xpy N Ty)} € N —1
n Te.

In either case €' has the required property.

This concludes the proof of Theorem 4.1, since the reduction lemma (Lemma 8.2, page 15)
and the above theorem (Theorem 9.1) close the cycle from counting-definable languages
L of flat feature trees to those recognizable in J by feature automata. Namely, accord-
ing to the above correspondence between counting- and M-counting constraints, via M-
counting-definable languages (L), which, according to Theorem 9.1, are exactly the ones
recognizable in M, back to L according to Lemma 8.2. O

20

This is the version published as

Q@inproceedings{FeatureAutomata,

author = {Joachim Niehren and Andreas Podelskil},

title = {Feature Automata and Recognizable Sets of Feature Trees},
booktitle = {{TAPSOFT 93}: Theory and Practice of Software Development},
editor = "M.-C. Gaudel and J.-P. Jouannaud",

publisher = "Springer Verlag, LNCS vol. 668",

month = apr,

year = 1993,

pages = "356--375",

21

