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Abstract

We present a new constraint system with equational and membership con-
straints over infinite trees. It provides for complete and correct satisfiability and
entailment tests and is therefore suitable for the use in concurrent constraint pro-
gramming systems which are based on cyclic data structures.

Our set defining devices are greatest fizpoint solutions of regular systems of
equations with a deterministic form of union. As the main technical particularity
of the algorithms we present a novel memorization technique. We believe that
both satisfiability and entailment tests can be implemented in an efficient and
incremental manner.
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1 Introduction

Concurrent constraint programming (CCP) systems factorize into a constraint system,
which may be seen as a parameter to the system, and an extension facility to compute
with relations or processes. The constraint system consists of a universal data structure
and a set of logical formulae, called constraints, that express relations between the data
objects.

There are several computation models for different CCP systems and paradigms, such
as AKL [HJ90], ALPS [Mah87], cc-languages [SR91], constraint logic programing
(CLP) [J1.87, HS88], LIFE [AKP91] and Oz [Smo93, HSW93]. They all require the con-
straints to be closed under conjunction and raise the need for an efficient and incremental
constraint simplification algorithm that yields a test for satisfiability of constraints. All
of them use existential quantification of constraints implicitly or explicitly, and most of
them require an efficient and incremental entailment test (i.e., a test of of the implica-
tion between two constraints). In particular this test is necessary for committed choice
mechanisms depending on the satisfaction of guards as in Oz, AKL, LIFE and ALPS.

In many programming languages, memberships come in the form of static type assertions.
In the CCP context however, it is natural to have memberships as relations. Having
definitions for the two sets Nat and NatList like

Nat = 0U succ(Nat)
NatList = nilUcons(Nat, NatList)

we could of course define according unary predicates Nat and NatList in the exten-
sion facility (for instance as a logic program). The problem is that the extension fa-
cility is by design decision in general incomplete for disjunctive information, while the
sort definitions are inherently disjunctive. For instance the conjunction of the atoms
Nat(z) A NatList(z) will not be reduced to L unless the language provides some kind
of backtracking, which often is not the case in CCP systems. Even worse, in the context
of the set definitions

Even = 0 U suce (0dd) Nat = 0 U succ(Nat)
Odd suce (Even ) Inf = succ(Inf)

the computation rules of the extension facility will not detect that the denotation of Fven
is a subset of the denotation of Nat, since this requires an inductive argument. Hence, a
rule like

if Nat(z) then ---

will not fire in a context where Fven(z) is given. The third reason why we can not
employ the extension facility for dealing with memberships is founded in the use of



infinite trees as the basic data structure. Infinite trees have been introduced in Prolog 11
[CKCS83] in order to model cyclic data structures. With the definition of Nat as above,
the conjunction z = succ(z) A Nat(z) will forever unfold Nat. Again, an inductive
reasoning is missing here.

Consequently, we claim that CCP systems will benefit from the incorporation of mem-
berships of some restricted form into the constraint part.! This allows to delegate some
computation from the extension facility to a possibly complete constraint solver. Hence,
our constraint system comprises equational constraints and membership constraints. The
syntax in BNF style of our constraints is as follows:

yu=aepla=ylae=flynyn) [YAY [ Fey | LT

As defining device we use regular systems of equations with deterministic union and
its greatest fixpoint solution. These equations are not part of the constraint system.
Nevertheless, it i1s possible to extended the system by new equations in the course of
computation.

For instance in the definition of Nat given above, z € Nat holds exactly if z is a natural
number including co. This conforms with the fact that oc has an equational representa-
tion as the unique solution of = = suce(x).

The union is used in a deterministic manner, since the constructors in the different
possibilities of an equation are distinct. We use the name determinism for this concept,
since the components of the least fixpoint solutions of our deterministic regular systems
are exactly the sets recognized by deterministic top down tree automata. Without an
appropriate restriction of the union like determinism we could not hope for any efficient
algorithm. Furthermore, our entailment test relies on the determinism condition.

Our algorithms for testing the satisfiability and entailment are based on a novel technique
that we call memorization. The correctness of memorization depends mainly on the
greatest fixpoint solution. We illustrate this technique by proving the entailment:

x = succ(z) =a € Nat .

By unfolding the definition of Nat, we obtain a constraint which simplifies to z € Nat
relatively to @ = succ(x).> Now, instead of reducing to the same subproblem infinite-
ly often, we memorize all constraints once unfolded, and throw them away when they
reappear. In this way = € Nat is simplified to T, and entailment is proven.

We prove that the step of deleting once unfolded constraints is correct in the greatest
fixpoint solution, while it can be wrong in other fixpoints. More technically, we use the

IThis idea is due to Gert Smolka.
2Relative simplification [ST92a, AKPS92] of a constraint ¢ relatively to a constraint ¥ means that
we transform ¢ into a constraint ¢’ which is equivalent to ¢ modulo ¢ (i.e., ¢ A is equivalent to ¢’ A ).
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fact that the greatest fixpoint solution is obtained by w iteration steps from ’top’. Note
that for arbitrary logic programs this is in general not the case [LLlo84].

In order to check the satisfiability of the conjunction of membership constraints, we need
to be able to compute the intersection of sets. Furthermore, the entailment problem
for two membership constraints amounts to the computation of the subset relation for
the two corresponding sets. Our constraint system provides both computations. Note
that we can not decide the subset relation p C ¢ with an emptiness test of p N ¢°, since
the family of sets defined by deterministic equation systems is closed under intersection
but neither under union nor under complement (either would lead to inefficiency by
combinatorial explosion). Instead, we will give a system of transformation rules on
conjunctions of subset formulae p C ¢ according to the equation system. and again apply
the memorization technique.

Entailment tests for feature constraints, which refine equational constraints for infinite
trees, have been treated in [ST92a, AKPS92]. Tn most of those contexts rational and
infinite trees can not be distinguished by means of logical formulae [BS92, Mah8§].

Membership constraints over sets of finite trees have been considered in [CD91, Uri92].
The case of finite feature trees is discussed in [NP93]. In these works (generalized)
tree automata or regular equation systems with least fixpoint solutions are used. The
proposed simplification algorithms are not efficient, since the union in the set defining
devices is not restricted such that combinatoric explosion is possible.

As an alternative to the approach chosen here, we could have taken Rabin automata
to define sets of infinite trees (¢f., [Tho90]). In a constraint system for CCP, however,
it would be irrealistic to hope that one could use this theory. The complexity of the
algorithms involved is far too high. Clearly, we don’t need the expressiveness of the
corresponding second-order logic.

The paper is organized as follows. We first introduce general notation and the constraint
formulae. In Section 3 we define deterministic equation systems and prove the fact that
the greatest fixpoint solution is calculated by w-iteration from top. In Sections 4 and 5
we introduce the memorization technique and present the satisfiability test, proving its
correctness. In Section 6 we present the entailment test. In the last two sections we
describe the decision procedure for the test of the subset relation and the computation
of the intersection. Finally, we conclude with a discussion of further work.

2 Equational and Membership Constraints

We assume a non empty, finite or infinite, one-sorted signature ¥ of function symbols
f.g..... T denotes the set of all finite and infinite trees over X. We also assume an
infinite alphabet of variables ranged over by z, y, z and a possibly infinite collection Q of



0 = a=y|T|ONY
1 = fly) | T Inny ¢ = OApAp| L
poun= x2€q|T puny

Figure 1: The fragments of constraints without 3.

set expressions ranged over by p, ¢, 7, s. We will be more specific about the set expressions
in Section 3.

Finite sequences of set expressions and variables are abbreviated as p and z. We will
also use similar notions like £ = y or x € p for finite sequences of formulae.

As atomic constraints we take equational constraints of the form z = y or z = f(y),
membership constraints x €p and L. The set of constraints is the closure of the set of
atomic constraints under conjunction and existential quantification. T is a constraint
standing for the empty conjunction. Note that, without loss of generality, we consider
only flat terms f(y). The symbols for constraints of several restricted forms are given
in Figure 1. A membership constraint = € p can be seen as a convenient notion for the
application p(x) of a unary predicate p to the variable z.

As semantics of this first order language we consider Z7T —structures . These are structures
with the domain ZT that interpret the function symbols f of ¥ as the pertaining tree
constructor fZ7. The possible interpretations of the unary predicate symbols of Q will
be restricted in Section 3 by the choice of special Z7T structures. It is understood that
1 and = get their standard meaning. As usual, we use the notions of existential (resp.
universal) closure, B (resp. ‘5’11}), and the set of free variables V(w) occurring in w.
The notion of a structure A being a model of a closed formula w (|F4 w) is defined
as usual. An arbitrary formula w is satisfiable in a structure A if =4 Elw, otherwise
it is unsatisfiable in A. A formula v entails a formula w in a structure A (v =4 w)
if Fa V(o = w). Two formulae v,w are equivalent in a structure A (v =y w) if
Ea g(v ¢» w). The notions of entailment and equivalence can be extended to classes of
structures. Sometimes, we furthermore use the notion v =% w for ¢ =4 V(v — w) and
v \:\i w for ¢ =4 Y(v & w).

3 Set Definitions

When simplifying membership constraints such as z € p A € ¢, we need set expressions
representing intersections. Therefore, we require that the set @ of set expressions is closed
under N, which is taken to be an associative, commutative and idempotent constructor
for set expressions. For instance, ¢ N (p N ¢) is identified with p N g.



The possible interpretations of the unary predicates are described by a given regular
system of equations . This is a set of equations of one of the two following forms:

¢ = f[@U...U fu(@n) or qg=T. (1)

We restrict the union in the equations to be deterministic, which means that the con-
structors on the right hand side of an equation have to be pairwise distinct. In particular
the empty disjunction, denoted as 1, is allowed.

We say that a set expression is defined in &, if it appears on the left hand side of an
equation in €. We require that no set expression is defined twice and that each set
expression appearing on the right hand side of £ is defined. In the following sections we
will often consider a constraint together with an equation system &£ and assume that all
the set expressions used in the constraint are defined in £.

A structure A is a model of £ if the statement
gL I Tm (= f) A méa) Ve v (o= fE) AT ET))

holds for all equations in £ of the first form of (1), and if € ¢ H 4, T holds in the second
case of (1).

An equation system £ can be considered as a syntactic characterization of its ZT —models.
Therefore, we identify £ with its Z7 models in notions like v = w and v |=¢ w.

We restrict ourselves to equation systems &€ with appropriate definitions of compound set
expressions. If p,q and p N g are defined in £, then we require:

zEpNgHzephaeq.

We will often make use of the following observation. If  contains the equation = f;(y),
then we get by the determinism condition of £ and the restriction to tree structures:

TEQHIYET

In the rest of this section we discuss computational properties of the greatest Z7 model
oM and the least ZT—model m of an equation system &.

The set of ZT—structures over the defined set expressions of £ is a complete lattice in its
canonical order. We denote its greatest and least elements by At and A_. The equation
system & defines a monotone operator, also called €, on this lattice. If g* denotes the
interpretation of the unary relation ¢ in the Z7 structure A, then the definition of the
IT —structure £(A) is given by:

W = UL, T ifq=A@) U ... U fulg)in €
FA = TT ifg=Tin€&.



Hence, the Z7T models A of £ are exactly the fixpoints of the operator £. By mono-
tonicity and Tarski’s fixed point theorem (see for instance [Gue89]) the operator £ has a
least and a greatest fixpoint. This proves the existence of m and M.

The operator £ is upward and downward continuous, as the reader easily verifies. This
means that £ preserves least upper (greatest lower) bounds of every upward (downward)
directed chain A,, i.e. E(sup A,) = supE(A,) (E(inf A,) = inf&(A,)). With an
application of Kleene’s fixed point theorem to the complete lattice of Z7 structures and
to its dual lattice, we get that the least (resp. greatest) fixed points of £ can be reached
in w iteration steps from bottom (resp. top). This is well known for the least fixed point
of &€, since £ considered as a logic program defines an upward continuous operator. For
the greatest fixed point of £ it is surprising, since it takes in general more than w steps
to iterate the greatest fixed point of a logic program from top [Ll1o84].

Lemma 3.1 m=[J &"(A) and m= () E"(Ar).
m=0 m=0

We intend to interpret set expressions in greatest Z7-models M. Therefore we call a
subset of ZT definable, if it is a component of the greatest ZT -model of some deterministic
equation system.

An example of a non-definable set is {f(a,a), f(b,0)}, since our equation systems are

deterministic.
In general, the restrictions of Z7 definable sets to finite trees are exactly those that are
recognizable by a deterministic top down tree automaton.

More precisely the restriction of the greatest solution of a deterministic equation system
to finite trees is the least solution, and the components of the least solution of determin-
istic equation systems are exactly the sets recognizable by deterministic tree automata.

4 Normal Forms of Constraints

In order to decide the satisfiability of constraints, we present a transformation of con-
straints into either L or a satisfiable normal form. Since Jz¢ is satisfiable iff ¢ is, we
will restrict ourselves to constraints without existential quantification. These are con-
sidered as multisets of atomic constraints. In other words the conjunction is seen to be
associative and commutative, but not idempotent.

Since we use membership constraints, all our normal forms are calculated with respect
to the maximal model M of an equation system &.

A variable is called constrained (in ¢) if it appears on the left hand side of an atomic
constraint in ¢ which is not equivalent to T. With C(¢) we denote the set of all con-
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strained variables in the multiset ¢. The problem ¢ =, T can be decided syntactically.
This is trivial for infinite, and a little bit more complicated for finite signatures. For
example, let € contain the definition of Nat from the introduction and let ¢ be the con-
straint @ = x Ay € Nat . Then C(¢) = (, if the signature consists of {succ, 0} only, and
C(¢) = {y} otherwise.

For the case of an infinite signature, x is always constrained in v = f(y) and constrained
inz€piff p=T is not in & (both statement can be wrong for finite signatures). Note
that @ = y constrains a if 2 # y, but not y.

Definition 4.1 A constraint ¢ is in normal form, iff & = 0 Ay A p with

1. every variables of ¢ is constrained at most once.
2. every variable constrained in 6 does not occur in n A p.
3. p is satisfiable in M.

¥ is a normal form of ¢, if 1 is in normal form and ¢ =, .

A normal form € can be considered as an idempotent substitution with domain C(8).
The application of this substitution to a formula w is denoted by fw and corresponds
exactly to the elimination of the constrained variables of 0 in w.

The following proposition implies in particular the satisfiability of normal forms. We will
exploit this proposition again for the entailment check.

Proposition 4.2 If ¢ is in normal form, then every assignment of the non constrained
vartables of ¢ can be extended to a solution of ¢ in M:

Eam V3IC(4)0.

The proof reduces immediately to the case of equational constraints only, which has been

solved in [Mah88§].

Normal forms of equational constraints can be obtained by the well known unification
rules in Figure 2. We obtain normal forms of arbitrary constraints in four steps. First we
calculate a normal form @ An of the equational part. Second we apply  to the membership
part and call the result g. Third we simplify p relative to n and € by memorization. In
the last step we calculate intersections and detect unsatisfiable membership constraints.

The memorization technique is described by schemes of rewrite rules which depend on 5
and &. It transforms expressions of the form p O u’, where O is a new symbol. We say
that uo simplifies to pq relative to n and £, if there is a y} such that peOT rewrites to

9



decomp v ;:f(fg()yf)AX;:f(;;\/;g

elim " :‘Ly?\ gr[/"\rf— m if # #yand x € V(o)

clash 1 mifg)AI:g(g)Aﬂ it f#g

Figure 2: Unification rules. Here 0 := o =y |z = f(y) | o Ao’
un fold zEqApDu ifféqijl}o(t )inUul‘/ isin &
R = A
memo TE€qAp Dy if 2 €qisin '

p B
e D if o= f(g) is in.77 '
clash?2 % the definition of ¢ does not contain f,
K and ¢ = T is not in &.

Figure 3: Simplification of Memberships relative to Equational Constraints with Memo-
rization.

w1 0p4 relative to n and €. In this case we will prove g and p; to be equivalent relative
to n in M (correctness of memorization).

On the right hand side of O we memorize the constraints which have already been un-

folded. The rules are presented in Figure 3. They forbid multiple unfolding of the same
constraint and delete those that have been unfolded hefore.

The termination of memorization is obvious. The main problem is the correctness of the
memo-rule, which is proven in Section 5.

A typical example is the simplification of the constraint = € Inf relative to @ = succ ()

and & containing Inf = succ (Inf):

Mun.f'old
x&Inf Dx & Inf
TOzxE Inf

memo

The last set of rules handles empty sets in membership constraints and conjunctions
of membership constraints for the same variable. It is given in Figure 4. During its
execution we want to maintain two invariants. First, each occurring set expression should
be defined in €. This means that we have to calculate equations for intersections and to
extend the equation system by need without changing the interpretations of previously
defined set expressions in M. This will be done in Section 7.

10



intersect rEprTEq
rephng
emply % ifp=_Lisin &

Figure 4: Simplification of Empty Sets and Conjunctions of Membership.

Second, a set expression p should be defined by p = L iff p™ = (). This can easily be
done by propagating L in £.

Theorem 4.3 When started with the constraint ¢, the above algorithm terminates with
L if ¢ is unsatisfiable in M, and in a normal form of ¢ otherwise.

Here is an example that illustrates our algorithm in action. £ contains the equations for
Nat , NatList, Fven and Odd from the introduction. We compute a normal form of

x = cons (y,z) Nx = cons (z,2) ANx € NatList Ny €& Even Az € Odd .
The equational part simplifies to 6 A n with
f=y=zArx=z, n=u1x=cons(z,z).
By applying § to the membership part we get
pu = x € NatList \ z € Fven A z € Odd
The memorization algorithm simplifies u relative to n and € to
pr = z€Nat Nz € Even A z€ Odd .

This is transformed with the intersection rule to z € Nat N Fven N Odd . The intersection
algorithm of Section 7 adds the following equation to &:

Nat N Even N Odd = suce(Nat N Even N Odd)

To be precise it also adds an equation for Fven N Odd, Nat 0 FEven or Nat N Odd
depending on which intersection is calculated first. We get the normal form

y=zAax =z Az =cons(z,2) AN z€Nat N Even N Odd .
This normal form is satisfiable since oo € (Nat N Even N Odd)™. Note that we could

replace z € Nat N Even N Odd by the M-equivalent constraint z = suce (z). This will be
necessary in the entailment check.

11



5 Correctness of Relative Simplification with Mem-
orization

Since the clash rule terminates the rewriting, we can restrict ourselves to the memo and
un fold rule. The relation ‘rewrites to in one memo or un fold step’ on expressions of the
form p Oy will be denoted by >, ¢ and its reflexive transitive closure by B ..

Roughly speaking, the following theorem states that the symbol O can be interpreted as
the logical connective A with respect to all Z7—models of £, and also as — with respect
to the greatest Z7—model M.

Theorem 5.1 For each computation

pot g Bhe a0 py
the following two statements are invariants:

7

fo N B i Ay and  pg B — g

Only the second statement is not obvious, since the assumption of the implication is
weakened by the memorization rule.

Corollary 5.2 (Correctness) [f o simplifies to py by memorization relative to n and
E then py =gy pa holds.

Proof. By definition there is p} with 1o @ T b7 o w1 O pf. The above theorem implies

po AT HE e A py Hlgy g

O

Theorem 5.1 can be proven with the help of Lemma 5.3, which reflects an important
property of the greatest Z7 model 9.

In order to be general enough we need the concept of derivable constructors. If f € ¥
is a constructor with arity n, m a natural number and o : {1,---,n} = {1,--+,m} an
arbitrary mapping, then the pair f, is called derivable constructor with arity m. The
interpretation of f, in a X structure Z is defined by

faz(dlv' . 7dm) = f](da(l)-, e -7da(n))

for all elements d; of the domain of Z. Each constructor is itself a derivable constructor,
since we may chose ¢ to be the identity. We will freely use derivable constructors as

12



abbreviations in terms. For example f,(x,y) stands for f(y,y,y) if o is the mapping
(1) = 0(2) = 0(3) = 2. In the sequel we will not distinguish between constructors
and derivable constructors.

Using this notion in the rest of this section we will always assume finite sequence of
objects to have the form o = (o0;);.

Lemma 5.3 (Main) Let € be an equation system, p = (p;); and § = (g;); finite se-
quences of set expressions, x = (x;); andy = (y;); finite sequences of variables, f = (f;);
a finite sequence of derivable constructors and n a constraint. We assume that for all j
the equations

pj = ...U fi(p.g) U ...

are contained in € and that the statement
Em oz = f;(2,9)

is valid. Then the following implication relative to n and the greatest model M of £ holds:
= YEG < TEP.

In order to illustrate the contents of the Main Lemma, let 5 be z; = f(2y,22) A 29 =
f(z1,22) and let € contain the equations p1 = f(pi,p2) and ps = f(p1,p2). The main
lemma implies T [=q 21 € pi Axg € po. Note that this does not hold in any other solution
of &, i.e. for p = 0 and p = 0.

Proof of the Main Lemma. We proof that each solution of n A y € ¢ over M is a
solution of # € p. Suppose o : Var — IT to be a solution of n Ay € g in M. This implies

o(zj) = fi7(a(z),aly))  and  a(y) € ¢

for all j (with a(z) = (a(z;)); ).

By the representation of M in Lemma 3.1, it suffices to show:
afz;) € p; U7

for all 7 and all m > 0. This can be done by induction over m. The case m = 0 is trivial.

For the induction step we have to show

£ (Ar)

j
= ... U ijT(pg AT) gAY UL

for all j. But a(z;) is contained in the right hand side. Indeed a(z;) = fJIT(a(T),@),
by induction hypothesis

a(z) € P& (AT)

13



and by assumption

aly) € ¢™ C 7"
m

Proof of Theorem 5.1. For simplicity we assume pug = T, which is sufficient to conclude
Corollary 5.2.

We call the expression y €Oz € p appropriate with respect to n and £ iff there is a finite
sequence of derived constructors [ and a finite sequence of variables y such that for all
7 the equation

pi=...Ufi(pg) U....
is in £ and the following statement holds:
7oz = (e )

(o O T is appropriate even for arbitrary n and £. We will show that un fold and memo
steps relative to n and € maintain appropriateness relative to n and €. Therefore uy O 1}
is appropriate relative to n and €. The Main Lemma yields

7

=m 1 -

It remains to prove that the un fold and memo rule maintain appropriateness. First we
consider the un fold rule that reduces ' €p' to ' €¢' in

yEqha' €EpOxép byeyEqhy g Daépnra’ép .
To prove the appropriateness of the right hand side we will find constructors ¢’ and g
with
P = ... U gj(ﬁvplqugl) u... and =" T; igg‘(f:f’?mﬂv_y’) :
po= .. Ugpr.gq)U...  and =T 2 =g(2 ).

By the application condition of the un fold rule, there is a constructor f’ with
o= ..U f(d)U ... and o2t = 1y .

By the appropriateness of the left hand side of >, ¢ there are derived constructors f
with

p; = ...U fi(p.qp) U ... and E7 o, = f(2,9,2)
We can now find definable constructors that are essentially like f;, but take possibly
more arguments in a possibly permuted order. Formally there are definable constructors
g and ¢’ with

fj(f]«'ay-,w/) = gj(:v,;c',y,y’) and f’(yl) = g,(xvxl:yvyl) .

14



This 1mplies

f7(p7 Q7p,) = 97(ﬁ./ Q7 Q7a/) and fl(gl) = gl(ﬁ7pl7 (?75/)
and proves the appropriateness of the right hand side.
For the second case we consider an application of the memo rules erasing x¢ € po:
YEGATeEP OTEPATeEPY Bre YEGOTEP A T0€Epo -

The appropriateness of the left hand side guarantees the existence of derivable construc-
tors f and fy with

p; = ... U fj(p',p(lv(]',p(l) u... and |:TI &€ ifj("L‘v:L’U:vao)

for all ; > 0. Now we can find derivable constructors that take xq, resp. po only once.
To be precise, we define g and gq with

fj(£7x07 g,l‘g) = gj(£7x07 g)

for all 7 > 0. Therefore
Ji(p.po.q.p0) = gi(p.po.q) -
This shows the appropriateness of the right hand side.

6 The Entailment Check

In this section, we show how to decide entailment between existentially quantified con-
straints in the greatest model M.

For the purpose of this section we assume that the signature contains at least
two elements, since otherwise the domain of the models under consideration
will be singleton, and hence every equation will hold.

Initially, we are given the question whether
IX'¢ oy AX (2)

holds, where X, X’ are finite sets of variables. We may assume without loss of generality
that ¢’ is satisfiable in 9, since otherwise (2) holds vacuously. Hence by Theorem 4.3 we
can assume ¢’ to be in normal form. For the purpose of entailment checks it is convenient
to exclude certain forms of degenerate membership constraints. Hence, we furthermore

15



require that for all membership constraints 2 € p of ¢’ the definition of p is disjunctive. A
normal form meeting this additional condition is called a branching normal form. Note
that a branching normal form contains only membership constraints x € p for which p™
is not singleton. We can always transform a normal form into an equivalent branching
normal form by introducing new existentially quantified variables:

o A membership constraint z € p, where p™ is singleton, is equivalent to a corre-
sponding equation. For example, if € contains p = f(q) and ¢ = g(p), then = € p is
in M equivalent to Fy(z = f(y) Ay = g(z)).

e A membership constraint x € p, where the definition of p is of the form p = f(q)
and where p™ is not singleton, is replaced by Jy(z = f(y) Ay € q).

Both rules maintain normal forms (modulo existential quantification) and terminate,

since the second rule applies only when p™ is not a singleton. Note that by Lemma 5.3,
p™ is non-singleton iff the definition of p depends on a definition which is disjunctive, or
which is T.

Taking the definition of Inf, EFven and Odd as given in the introduction, we transform
the existentially quantified normal form

Jy(a € Inf ANy € Odd)
into the existentially quantified branching normal form
JyFz(a = suce(x) Ay = suce(z) A z € Even) .
The next lemma states that membership constraints in a branching normal form can not
contribute to equalities:

Lemma 6.1 Let ' A ¢/ be in branching normal form. Then ' Ay Ewm 0 iff 0’ Em 0.

Hence, we assume without loss of generality in (2) that ¢ is in branching normal form.
Since we may in (2) assume without loss of generality that X' is disjoint to V(¢),we may
drop the existential quantifier on the left hand side. The normal form ¢’ can be written
as 0" An' A ', Since 8 is an idempotent substitution and since we may assume X to be
disjoint to V&', we arrive at the problem

AW Em 3X0'9
where ' A ¢/ is in branching normal form.

Before we state the entailment theorem we consider the special case of a right hand side
consisting of equations only. We say that some 6 is complete for some n if

blx=y and z=f(x)en and y=f(y)en implies = =y.
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For instance, x = v Ay = v is complete for & = f(x,y) Ay = f(v,2) Av = f(y,z).
We define the quantor é:rqb (read: there is at most one x such that ¢) as an abbreviation
for:

VyrVys(dlz ¢ ] A dla < y2] = y1 = ua)

The generalization 3X to a finite set X of variables is straightforward. This quantor has
the important property that:

YAX G AYIX (6 A ) [= V(o — ). (3)

We can now express an important property of normal forms which is in some sense a
counterpart to Proposition 4.2. This lemma has been given in [Mah88] as an axiom of
infinite trees.

Lemma 6.2 For every 1 we have =o ¥3C(n) 7 .

Lemma 6.3 (Determined Equations) Let 6 be complete forn', let § contain no trivial
equation x = x and let Ay’ be satisfiable in M. Then ' |Em 0 iff V(0) C C(7').

For instance,

= fle,y)ANy=flo,2)ANv=fly,2) Fma=vAy=0v.

This does not hold, if we drop the third equation form the assumption.

Proof. If V(#) € C(n'), then we can find a valuation which satisfies ' but not 6 as
follows: If § contains @ = y, where both = and y are not constrained in 7', then we may
choose arbitrary different values for x and y. If § contains # = y, where one variable (say
x) is not constrained and the other (say y) is constrained in n’ by, say, y = f(y), then we
choose for x a value which has a root symbol different from f. This is always possible
since we assume our signature to contain at least two elements. In both cases, we use
Proposition 4.2 to get a solution of " which does not satisfy 8.

Let V(8) C C(n'). By Lemma (6.2)
o VAC(0') (4)
We may assume without loss of generality that 6 is arranged to be an idempotent sub-

stitution. We now show that #r’ is in normal form up to multiple occurrences of atomic
constraints. Assume that

r=fly)na=g(z) SOy
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Since § A ' is satisfiable, f equals g. Since 6 is complete for 7', we obtain § = y = z.
Since 6 is an idempotent substitution and since g, Z are in the codomain of § this implies
y = z. Hence by Proposition 4.2

o Y3C(00)(0 A 01') |= Y3C(07)(0" A ) = Y3C () (O A7) (5)
The last implication is justified by V(#) C C(n'), hence V(8n') C C(n'). Now, the claim
follows by (3) from (4) and (5). O

A proof of a more general lemma (in the context of feature constraints) has been given
in [ST92Db].

Before we state the entailment theorem we have to introduce some more notation. We
call @ X-directed if 6 contains no equation z =y with 2 € X and y € X.

For a constraint ¢ we define ¢X to be the subset of atomic constraints which constrain
only variables from X, and ¢~* to be the subset of atomic constraints which constrain
only variables alien to X. Since every constraint is either equivalent to T or constrains

a variable, we have ¢ H, ¢ A ¢,

Definition 6.4 Let ' Ay’ be in branching normal form. The constraint 3X(60 Ay A u)
is in normal form relative to ' A u’ if

1. 0 is X-directed,
2. 0 is complete for n’ An, and O A’ is satisfiable in M,
3. C(') and C(u) are disjoint,

4. 0 A A pois in normal form.

For instance,
Ju(v=zAz=yAy=fly)Az€p) (6)

is in normal form relative to
w=fly) Ny = fla) hw=h(z) Az€q. (7)

This does not hold if we drop # = y from (6), since then clause 2 of Definition 6.4 is
violated.

Theorem 6.5 (Entailment) Let n' Ay’ be in branching normal form, let X be disjoint

to V(' Ap') and let AX (O A A ) be in normal form relative to ' Ay’ Then g’ Ay’ Em
IX (0 AnAp) iff the three following statements hold:
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1V(O) S Cly)

2. for every x € p in p=X there is an x € q in ' with ¢™ C p™,

3. 07X Cony.

For instance (7) =a¢ (6) holds provided that ¢™ C p™.

Proof. By clause (1) of Definition 6.4, V(0~") is disjoint from X. Since furthermore
V(= X) is disjoint from X, 0’ A i/ = IX (0 A A p) is equivalent to the conjunction of
the three statements

WA B 078 (8)
A e opm (9)
WA e XN AN A ALY (10)

By Lemma 6.1 and 6.3, (8) is equivalent to condition 1 of the theorem. This relies on
clause 2 of Definition 6.4.

Using clause 3 of Definition 6.4 and the fact that X is disjoint to V(n' A ¢'), (9) is
equivalent to condition 2 of the theorem.

Since 8 is X-directed, V(fn') is disjoint from X. Hence condition (3) of the theorem
implies that V(=) is disjoint from X, and hence (10) is equivalent to the conjunction

of

VAT
N AR e 3XOF A A EY) (12)

If condition 3 and 1 of the theorem hold, then by (8) we have ' Ay o ' A0~ ==~
By clause (4) of Definition 6.4, the formula 6% A % A pX is in normal form. Hence, by
Proposition 4.2, (12) holds.

On the other hand, assume that (10) holds and that = = f(y) € n *. If O’ does not
contain an equation for x, or contains an equation = = ¢(z) with g # f, then the same
holds for »’ by condition 1 of the theorem and since 8 A ' is satisfiable in 9. This
contradicts our assumption that entailment holds. Hence, there is an @ = f(Z) in 6y’
Since 6 is complete for n A %', it is also complete for n A §n'. Hence 0 = y = z, that is
since 6 is an idempotent substitution, 8y = 6z. Since g, Z are in the codomain of § and
since # is idempotent, § = Z, hence z = f(z) € 6r'. O

Next we show how to transform a constraint 3X¢ into normal form relative to " A u'.
First, we transform the equational part of ¢ using the rules of Figure 5. This rules are
equivalence transformations relative to 5’ in all Z7 structures. The rules terminate with
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r-decon ~ OAn 6 is substitution
r-decomp y=zA0A7n and x = f(y) Ao = f(z) Sy Aoy
7 r=yAfOAnp
relim =y ARy T F YT EVEA)
rclash 6 Ay 0 is su}?stmj‘r]on ) ,
Y wnd 2 = f(g) Nx = a(2) C O £
: =yAbA
orient ;iz/\ﬁ/\z t@X,yeX

Figure 5: Relative Simplification of Equations.

either 1 or with § A7, such that the clauses 1 and 2 of Definition 6.4 hold. Let u be the
membership part of ¢. Now we simplify u relative to n A ' as explained in Section 4.
Finally, we simplify constraints of the form z € p A € ¢ and check for membership in
empty sets, as explained in Section 4. If this does not lead to L, we arrive at a relative
normal form.

As an example of equational simplification, the constraint

Ju(z =vAv=f(v))

I
~~
~
2

>

n

II-
=
=

—

o

simplifies relative to z = f(y) Ay =

Jv(v=zAa=zAy=zAz= f(z)).

7 Equations for Intersections

We need an algorithm that extends a deterministic equation system & containing defini-
tions of p and ¢ by an appropriate definition for p N g¢.

In the terminology of model theory, we will extend the formula € to a formula £, such
that every Z7 —-model of £ extends conservatively to a Z7 -model of £, and such that
x €pNq Hg @ € pAz € gholds for all new set expressions pMq. Thereby appropriateness
of definitions of set expressions inherits from & to &'

This extension can be achieved by iterated applications of the non-deterministic rewrite
rules in Figure 6 that are easily proven correct in the above sense. Note that the rules
maintain determinism of equation systems.

The first rule possibly creates the need for adding further equations to £ in order to
have definitions for all set expressions which appear on the right hand sides in €. This
completion process can be organised in a terminating manner, by adding p N ¢ to € only
under the assumption that p, ¢ and all set expressions on the right hand sides of £ are
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p=hP)U. ..U fulP) U fug1(Prgr) U ... in &
o £ g = hH(@g)U...U fn((ﬁ) U gnt1(Gny1) U ... in &
E U {e} with f; # gi for all 7,k > n + 1.
eispNg = HBiNG)U...U fu(PaNT)
L £ if ¢ =T and p = def, are contained in &
it 2 EU{e} and e is the equation pNqg = def,.

Figure 6: Computation of Intersections

defined in £. More precisely, only binary intersections of set expressions on the right
hand side have to be added. These are at most n? equations, where n is the number of
defined set expressions in .

For example we can extend an equations system £ containing the above definitions for
Fven and Nat with an equation for Fven N Nat. First the first rule adds the equation

FEven N Nat = 0 U suce(Odd N Nat ).
A further application the same rule adds

Odd N Nat = suce (Fven N Nat) .

8 Deciding the Subset Relation

We will decide the subset relation p* C ¢* for A = m or A = M using the memorization
technique. Note that this includes a subset check for sets recognized by deterministic top
down tree automata as well as for Z7 definable sets.

Therefore we define the following fragment of new constraints:
' i=pCq|TITAT,

The memorization technique is carried out by rewriting expressions of the form I' O T".
We say that 'y simplifies to I'y relative to £ if there is a I such that 'y O T rewrites to
[y O relative to E.

Without loss of generality we make two assumptions on €. First we assume that p* = ()
iff p= 1 in &€, and that set expressions which are used on the right hand side of £ do
not denote the empty set in A. Second, we assume that p* = Z7 iff p = T in £. Both
conditions can be assured for M as well as for m, for finite as well as for infinite signatures.

The rules of the rewrite system are presented in Figure 7.
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if pC qisnot in ', the equations
: oI p=fip) U ... U fu(pn)
un foldl pCgnT _ bl
f M ATOpCqg AT q:f](q1)U...Uf,,,,.(q,,,,)U... .
arein&and 'y = ;i CH A ... APn CGn.

pCgATOT

memol W 1pr q is in F’.
) R ifp=...Uf(p)U... isiné&,
clash3 % but the definition of ¢ in £ is not of form
g=...UflggU... or ¢q=T.
pCqgATOT if p = Tisin &, but the definition of ¢
clash4 1ar isnot g = T.

Figure 7: Deciding the Subset Relation with Memorization

Theorem 8.1 (Correctness and Completeness) The rewrite system of I'igure 7 ter-
minates. If Ty simplifies to T'y relative to € then To |= 4 'y holds. A constraint T'y # L
that can not be simplified is valid.

Termination and the last statement are trivial. The clash rules are correct by the as-
sumptions on &£. It remains to show that the rules un foldl and memol are correct. This
can be done in analogy to Section 5.

In the following example we apply memorization to prove that Fven C Nai holds in 9
as well as in m. We assume that the signature contains a constructor different from succ

and 0:

Even € Nat O T unfold1
Odd C Nat O Even C Nat unfold1
Fven C Nat O Even C Nat A Odd_C Nat
T O Fven C Nat A Odd C Nat

memol

As a second example we consider Inf C Zero with € containing Zero = 0. In the case
of m the definition of Inf is replaced by Inf = 1 and the subset relation holds. In
the case of M we do not replace the definition of Inf. The clash 3 rule applies, and the
subset relation is refuted.

In order to prove Theorem 8.1 analogously to Section 5, we have to exchange the con-
straint @ € ¢ by p C ¢, the Main Lemma by Lemma 8.3 and the assumptions about z in
n by assumptions for the definitions of p in £.
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The relation ‘rewrites to in one un foldl or memol step’ is denoted as >¢ and its reflexive
and transitive closure by [>%. The following theorem is symmetric to Theorem 5.1 but
holds for m and 9.

Theorem 8.2 (Correctness) For every computation:
[oTy b IhOTY
the following two invariants are valid:

Only the second statement requires a proof. Therefore we claim the following lemma
that is symmetric to the Main Lemma.

Lemma 8.3 Let € be an equation system, p, g, r and s finile sequences of set expressions
and (ff)k finite sequences of derivable constructors. We assume for all j the following
equations in &:

ri = JfHr3) and — p; = Jfi(pa) U ...

k k

In this case the following entailment with respect to the least and the greatest model of €
hold:
|:{m.’9n} sCqg - rCp.

There are models where this lemma is wrong. For instance consider the equation system
p = f(p) and r = f(r) with the model »* = {f(f(f(...)))} and p* = 0. Then
T =4 7 Cp does not hold.

Proof. We mainly use the representations of m and 9t from Lemma 3.1. For the case of

M we assume s™ C ¢™ and proof by induction r™ C pf A7) for each m > 0.

The induction base m = 0 is trivial. The induction step is done by

pSTAT S U (AT AT
O UpfE(r™, s™)
.-

for all j. The second inclusion holds by induction hypothesis and assumption:

pfm(AT) »)
qgm(AT) D)

sl

Q2
U
®

E
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For the case of m we assume s™ C ¢™.

m > 0.

By induction we prove rE" AN - p™ for each

The induction step is done by

mt1 FmA EMA
D < b, D A
C Ufr(p™ ™)
c p”

for all 7. The second inclusion holds by induction hypothesis and assumption:

pEALD o pm
$FTAD T q"
O
Proof of Theorem 8.2. For simplicity we assume Iy = T, which is sufficient to

conclude Theorem 8.1.

We call the expression s C¢Or Cp appropriate with respect to £ iff there are finite se-
quences of derivable constructors (ff)k such that for all j the equations

ri = U f]k(F 5) and p; = ka]k(ﬁ: q) U ...

are in £ TyOT is appropriate even for arbitrary £. We will show that unfold and
memo steps relative to £ maintain appropriateness relative to £. Therefore I'y O 17 is
appropriate relative to € and Lemma 8.3 yields

Fmoy I = T

It remains to prove that the unfoldl and memol rule maintain appropriateness. First
we consider the un foldl rule. It reduces r' Cp' to s’ C ¢’ in

SCGAY CPOFCH be 3CGASCJOFCHAY Cp.

We will show that there are constructors qf and ¢’* with

ri o= Urgh(r,r',5,5)  and  p; = Upgf(p.0.0,4) U ...
o= Upg®(r,r',s,s')  and  p' = Upd*(p.rsa.q) U

By the application condition of the un fold rule, there is a sequence of derivable con-
structors (f'%);, with

ro= U () and po= U ) U
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By the appropriateness of the left hand side there are sequences of derivable constructors

r; = U f;‘(rb/’) and pi = Uk f]k([)a%[‘/) U

It is easy to find definable constructors g;-“ and ¢'* with

frE sy = ghi(rr's,
flk(sl) — g’k(f,r 3
This 1mplies B
fEpyap) = g5 (pp.a.q)
M) = g"p.r'.a.q)
which proves the appropriateness of the right hand side. The considerations for the
memo 1 rule are similar. a

9 Conclusion and Further Work

We have presented a rule-based algorithm which allows for satisfiability and entailment
tests of equational and membership constraints. The development of an abstract machine
in the style of [ST92b] and the calculation of precise complexity bounds is up to further
research.

The constraint system presented here can possibly be extended in various directions.
One immediate question is the decidability of the first-order theory of a deterministic
equation system with maximal fixpoint solution; i.e., the decidability of arbitrary first-
order formulae built up from equational and membership constraints. We conjecture a
positive answer, encouraged by the decidability result [CD91] for the first-order theory
of tree automata.

Another extension of this work could increase the expressive power of the equation sys-
tems by weakening the restriction that they be deterministic. The relaxation of the
determinism condition will cause problems in the entailment check.

Finally, it will be interesting to apply the methods developed here to the other formalism
modeling cyclic data structures: feature trees [ST92a, BS92, AKPS92].
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