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Parallelism and Tree Regular Constraints

Joachim Niehrehand Mateu Villaret*

L Programming Systems Lab, Univeégitles Saarlandes, Sadrtken, Germany.
2 IMA, Universitat de Girona, Campus de Montilivi, Girona, &p.

Abstract. Parallelism constraints are logical descriptions of trédearallelism
constraints subsume dominance constraints and are egexgbiassive power to
context unification. Parallelism constraints belong todbastraint language for
lambda structures (CLLS) which serves for modeling natlaajuage seman-
tics. In this paper, we investigate the extension of pdrsitteconstraints by tree
regular constraints. This canonical extension is subsibyélde monadic second-
order logic over parallelism constraints. We analyze tlezize expressiveness of
this extension on basis of a new relationship between treerata and logic. Our
result is relevant for classifying different extensiongafallelism constraints, as
in CLLS. Finally, we prove that parallelism constraints aswhtext unification
remain equivalent when extended with tree regular congsai

Keywords: computational logic, tree automata, unification.

1 Introduction

Parallelism constraint$l1, 13] are logical descriptions of trees, i.e., of grouadris
such asf(f(a,b), a). Parallelism constraints constitute a purely conjundiéweguage.
They can talk about the mother, ancestor, and parallelitatioa of a tree:

1. The parallelism relationr; /mo~m3 /74 holds for
nodesry, ..., 4 Of some tree (see Fig. 1)if; is
an ancestor of5, w3 an ancestor of-4, while tree
segment betweer, andmrs is structurally equal to
the segment betweery andr,.

2. The labeling relation: f (1, . .., 7, ) requires that
noder is labeled withf and has the children,
..., ™, in this order.

Fig. 1. Parallelism
Parallelism constraints subsurdeminance constraintfd 8, 2] for which efficient
satisfiability tests exists [1]. Dominance constraints\aigely used throughout com-
putational linguistics (see e.g. [21, 10]). They can expths ancestor relatiory, <* 7
between nodes; andr, of some tree (which is equivalent tq /mo~my /7).
Parallelism constraints are equal in expressive power ¢oetijuational language
of context unification(CU) [5, 22,23, 17] as proved in [19]. Whether CU is decidable

* This work has been partially supported by the SFB 378 of th&@Rd the CICYT projects
DENOC (BFM2000-1054-C02) and CADVIAL (TIC2001-2392-C03).



(and thus the satisfiability of parallelism constraintsgiprominent open problem in
unification theory. So far, only fragments could be provecidable.

Parallelism constraints belong to CLLS — the constraingleage for lambda struc-
tures which serves for modeling natural language semgitlcd 2]. CLLS extends par-
allelism constraints in several directions: there are ldanbinding and beta reduction
constraints [3, 4], but also anaphoric binding and groumltelism constraints. These
extensions are used in applications but their expressbgeings never been studied.

In this paper, we investigate the canonical extension P+padadllelism with tree
regular constraints. The formulas of P+R are conjunctidrzasallelism constraints P
with regular constraints R. Led be a tree automaton:

— Atree regular restrictionree(r)cL(.A) is valid in a tree with node if the subtree
rooted byr belongs to the language recognized by tree automdton

The extended language P+R is sufficiently restricted sgitatessing methods for
pure parallelism constraints still apply: Given an extahdenstraint of P+R, we can
first enumerate theninimal solved formgi.e., the most general unifiers) of the pure
parallelism part by saturation [13] and then test all miris@ved forms for compati-
bility with the tree regular part. We obtain a semi-decisfpocedure for P+R; even if
we could decide the satisfiability of parallelism constraiwe might still have to check
infinitely many minimal solved forms for compatibility.

The language P+R is obviously subsumed by the monadic semrded logic over
parallelism constraints. But it is less clear to which psediogical fragment P+R cor-
responds. This is the question, we will answer in this paper.

The basic idea is to exploit the classical relationship leetwtree automata and the
weak monadic second-order logic of the binary tree (WS25)92 which states that
regular constraints R and formulas of WS2S have the samessipe power. But un-
fortunately, this result cannot be lifted to extensions afghielism constraints as the
languages P+R and WS2S have different models. We proposengider the mona-
dic second-order logic over dominance constraints (SDostead of WS2S. Both lan-
guages talk about the ancestor relation of trees. But WSi2&ipreted over the infinite
binary tree while SDom models ground terms.

We establish a new relationship between tree automata ardglt SDom on basis
of the old techniques for WS2S: We show that tree regulartcainés R are equal in
expressiveness to formulas of SDom (Section 3). We theroliftnew result to the
respective extensions of parallelism constraints: We @tbat the languages P+R and
P+SDom can be inter-translated (Section 4). This answergjtiestion raised above.
Our result also shows that the languages SDom and WS2S haskeqgressiveness.
We thereby generalize and complement an earlier insighbgeRs [2, 15] who noticed
that the first-order theory of dominance constraints candpesssed in WS2S.

Finally, we reconsider the relationship between CU andlfedisam constraints (which
have the same expressiveness [19]). We show that P+R is iecqgrgressive power to
CU with tree regular constraints (Section 5). This languadearn is equivalent to linear
second order unification (LSOU) with tree regular consts[i6]. It is open whether
CU+R is decidable (even if we freely assume that CU is ded&jaBut the situation is
better for the special case of string unification with regalanstraints [24] which can
be decided in PSPACE [8].



Our contributions are relevant for classifying extensiofygarallelism constraint, as
for instance provided by CLLS. A forthcoming paper [20] pesyfor instance, that the
monadic second-order dominance logic SDom can expresgiairibding constraints.
The results of this paper thus imply that the extension cédipelism with lambda bind-
ing constraints (as provided by CLLS) can be expressed in&RCU+R.

2 Parallelism Constraints

We assume a finiteignatureX’ of function symbols ranged over by g. Each function
symbol comes with an arityr(f) > 0. We assume at least one constarg X, i.e. a
function symbol of arity0 and at least one binary function symbol.

A (finite, ranked, rooted) tree over .’ is a ground term built from function symbols
inX,i.e.T == f(m,...,m) wheren = ar(f) andf € X. We identify a node of a tree
with the word of positive integers that addresses it seen from the root:

nodes(f(71,...,7n)) = {e} U{im | 1 <i < n, m € nodes(7;)}

The empty wordk is called theroot of the tree, whileir is noder of the i-th subtree.
We freely identify a tree- with the functionr : nodes(7) — X that maps every node
of 7 to its node label. For a treeequal tof (74, ..., 7,) we set:

f ifr=c¢
7(m) = f(r, o)) = {Ti(ﬂ’/) if r=in’, 1<i<n

If 7 is atree with node then we writer. for the subtree of rooted byr. Furthermore,
we write 77 /7’] for the tree obtained by replacing the subtree @t noder by 7.

Let T be a tree with nodes, «’, 71, . .., m,. Thelabeling relationz: f (71, ..., m,)
holds int if 7 is labeled byf in 7 and has the sequence of children . .., 7, in that
order from the left to the right. This is if(7) = f andw; = «1, ..., 7, = mn where
n = ar(f).

The dominance relationr<t*#’ is valid in 7 if 7 is an ancestor of’, i.e. if 7 is
abover’ in 7, resp. ifr is a prefix ofr’. Strict dominancer<™ =’ holds int if m<*7’
but notr=x"in 7. Disjointnessr L« is valid in 7 if neitherm<*7/ nor 7’ <*m in 7.

We now define the parallelism relation. We consider more g#riece segments
than in the introduction (Fig. 1) where several holes arenitéed (see Fig. 2).

Definition 1. A segment of a treer is a tuple

of nodes inr — written asr /7y, ..., 7, —where n

7w dominates allr; which in turn are pairwise

disjoint. We callr the root of the segment and HMZ
71,. .., Ty, its holes. The segment is the seg-

ment with O holes. Fig. 2. Segmentr /1,

A segment can be seen as an occurrence of a contex{eket. . e, ...} be an
infinite set ofhole markersA contexty with n holes overY' is a tree ove.’ and hole



markers{e,, ..., e,} such that each of the hole markers occurs exactly onge kFor
instance f(e2, g(e1)) is a context with two holes. Every segmenbf a treer with n
holes defines a unique context wittholes:

context, (7/7m1, ..., ) = (T[m1/®1] ... [7n/®s]). 7

The substitutiongr; /e;] remove the subtrees below the segment holes. The order in
which the substitutions are performed does not matter safideolesw; of a segment

are pairwise disjoint. Note also, that the raobf a segment is never removed fram
since it dominates all holes,.

Definition 2. Parallelismo;~0o5 is valid in a treer if the segments; ando, of T are
occurrences of the same context, i.ecdifitext, (1) = context, (o2).

We now define the purely conjunctive languagepefallelism constraintsWe as-
sume an infinite sé¥,,,q. of node variablesX,Y, Z.

P .= Xf(Xl,,Xn) ‘ SlNSQ ‘ P1 AN P2
S:u=X/Xy,..., Xm

A parallelism constrainP is a conjunction of labeling and parallelism literals. T'lzeg
interpreted over the respective relations of some treegrufual Tarski'an manner. We
usesegment term§' of the form X/ X, ..., X,, to describe segments with holes,
given that the values ok and X1, ..., X,, satisfy the conditions imposed on the root
and holes of segments in Definition 2. A parallelism lite¥ak- S5 requires thats; and
S, denote segments.

Note that dominance literalX¥ <*Y can also be expressed even though they are
not directly part of the language. This follows from Definiti2 which forces roots of
segments to dominate holes so that the following equivaléfa*Y « X/Y~X/Y
gets valid.

Parallelism constraints are useful to model the meaningtfral language ellipses
[11]. Here they avoid the over-generation problem of theviogs approach based on
higher-order unification [7]. Consider the sentence sistigliexamplePeter sings and
so does Bill The meaning of this sentence is represented by the formula:

and(sing(peter), sing(bill))

which is a tree. A simplified compositional semantics coubastruct the following
tree description from the syntactic structure of the secgeNodeX; stands for the
semantics of the source clauBeter singsY, for the semantics of the target claus®e
does Bill The semantics of the complete sentence starts at Aiode

Z:and(Xg, Yp) A conjunction of source and target
Xo<* Xy A Xip:sing(Xa) A Xo:peter A source clause

Yo<*Y: A Yi:bill A target clause

Xo/Xo~Yo /Y1 ellipses description

The parallelism literalX,/ X.~Y, /Y states that the semantics of the source clause
without peter is equal to the semantics of the target clause ugltoln the given solu-
tion, the termsX,/ X andY; /Y7 denote the two occurrences of the contéxg(e,).



For a less trivial example consider the sentepetr sings a song and so does bill
It has two readings (there is a song that both sing, or botl giffierent songs). It is
possible and appropriate to represent both readings withgéesconstraing

To keep this section self-contained let us quickly recatheanodel theoretic no-
tions. We writevar(P) for the set of free variables of a constraintA variable assign-
mentto the nodes of a tree is a total function : V' — nodes(7) whereV is a finite
subset of node variables. golutionof a constraintP thus consists of a tree and a
variable assignment : V' — nodes(7) such thawar(P) C V. As usual, we require
that all literals of a constrainP are validated by every solution o of P. We write
T,a | Pif 7, «is a solution ofP. A formula P is valid in a treer if 7, = P holds
for all « whose domain subsumesr(P). We writeay+ for the restriction of a variable
assignmenty : V' — nodes(7) to the variables ifv".

3 Tree Regular Constraints

We next introduce tree regular constraints and show how poess them in logics. A
tree regular constraintg has the form:

R:=tree(X) € L(A) | R1 N Ry

Interpreted over a tree, the termtree(X) denotes the subtree ofrooted by X, while
L(A) stands for the tree language accepted by tree autorvhtorer X

But which properties of trees can be expressed by tree negolestraints? Can we
express, for instance, a first-order dominance formula whéguires that ng' labeled
node intervenes between nod€sandY ? Such formulas are needed in an application
of CLLS [14].

3.1 Monadic Second-Order Dominance Logic

We next define thenonadic second-order dominance log&Dom) to be the monadic
second-order logic over dominance constraints, i.e. afiggderms. Note that monadic
second-order logics were already investigated for mangrajtaph structures (e.g. [6]).

We assume an infinite s&t.; of monadic second-order variables B that denote
sets of nodes. The formuld® of SDom have the form:

D:=X<Y | X:f(Xy,...,Xn) | X€A|D A D'|-D|3X.D|3A.D

Beyond of conjunctions of dominance and labeling literdisye are membership con-
straints, existential quantification over nodes and setgation, and thus universal
quantification.

The logic SDom is interpreted over ground terms. Every gdoienm~ now defines
a two sorted domairdomain, = nodes(7) & 2"°%s(7)_ Variables assignments to a tree
7 are functionse : V' — domain, defined on a finite S&¢¥ C Vigae W Vset Which

% One can use dominance constraints to leave the scope of émgifipra songunderspecified
so that parallelism constraints correctly model its intéicn with the ellipses.



map node variables to nodes and set variables to sets of riceder all X, A € V :
a(X) € nodes(7) anda(A) € 2nodes(7),

The language SDom is closely related to the weak monadimseaaer logic of
the complete binary tree (WS2S) [25, 9]. This was first natibg Rogers in 1995 [2].
The models of SDom are ground terms while the only model of B/82the infinite
binary tree. The later is simpler in that all its nodes hav& fand second successors
(children). This allows to found WS2S on the two successactions while SDom
must rely on the labeling relation.

Still, one can encode all ground terms in the infinite binaeg tand thereby encode
SDom into WS2S. This was used in [15] to encode the first-aittsory of dominance
constraints in WS2S [15]. The current section generalinescmplements these ear-
lier result.

Proposition 1. Every tree regular constraink is equivalent to some formul@ in the
monadic second-order dominance logic over the same sigmatu

Proof. Let A be a tree automaton antl a node variable. We show how to express
tree(X) € L(.A) through an equivalent formul® of SDom. LetQ be the set of states
of A andQs, the set of its final states. We consider all states Q as second-order
variables, whose set value contains all those nadfissich thatree(Y") has a run into
stateq in 4. We then require that the value tke(X) has a run into a final state, i.e.
thattree(X) € ¢ for some final statg € Q.

D=3Q.(\/ Xeqn \W. (Y €qe stepy(Y,q)))
qE€Qfin qeQ

wherestep 4 (Y, ¢) step means that there is a single automaton step provingheat
value oftree(Y') has a run inta.

step 4 (Y, q) = \/f(ql_’”_’qn)ﬂqu vy ... 3V, (YVif (Y, ., Y) A
Yieqag AN ... NY, Eq)

Note that all states ofl may belong to the set of free set variables of formstig 4 (Y, q)
so that the values of all sejs= @ are defined by mutual recursion.

The converse of the above proposition is wrong. For instaoce cannot express
X<*Y equivalently by tree regular constrainis since satisfiable tree regular con-
straints can always be satisfied such that all variablestdatisjoint nodes. Neverthe-
less, a weakened converse modulo satisfaction equivatgitideolds.

Theorem 1. Every tree regular constraink is satisfaction equivalent to some formula
D of the monadic second-order dominance logic over the sagresire, and vice
versa.

This theorem establishes a bidirectional relationshipibeh dominance logics and
tree automata. The one direction is already proved (Prtiposl). The proof of the
other direction relies on standard encoding techniquesvkrfioom WS2S. For every
formula of SDom, we have to construct a tree automaton tragrizes all its solu-
tions converted into some tree format (Corollary 1 belowjisTformat is obtained by
encoding information about the values of node variables @xtended node labels of
some extended signature.



3.2 Extending Node Labels

This trick is to encode a solution pair « into a single tree which looks like the tree
except that it contains all information about the variatdsignmenty in extended node
labels. Given a formuld® of SDom, one can then recognize all encoded solutior3 of
by a tree automaton.

We first illustrate the encoding of pairsa at an example. Let be the treef (a, b)
with nodesnodes(7) = {¢, 1, 2} anda be the variable assignment givendyX) = e,
oY) =1,a(Z) = 2,anda(A) = {1,2}. We then encode, « by the following tree
with extended node labels:

(f, [X=1, Y=0, Z=0, A=0])
(a, [X=0, Y=1, Z=0, A=1]) (b, [X=0, Y=0, Z=1, A=1])

In the general case, we encode paira : V' — X into trees over the signature of
extended label&y :

Zv={(f,0) | f€ Te:V —{0,1}}

The second components of extended labgls) are finite characteristic functions with

domainV'. The arity of alabe(f, ¢) in Xy, is equal to the arity of . As in the preceding

example, we will use the record notati@i, =By, . . ., Z,=B,,] to represent the finite

characteristic function : {Z1,...,Z,} — {0,1} with ¢(Z1) = By, ..., ¢«(Z,) = Bi.
We encode a pair, o : V' — nodes(7) through then-extensiorext, (7). The trees

ext, (7) andr have the same set of nodes; a nadef ext,, () is given the labe( f, ¢)

if and only if the same node ofis given the labef and forallX, A € V :

m=a(X)iff ¢(X)=1 and mea(A)iff c(A) =1

We illustrate the encoding at the example of non-intervemamhich is crucial for ap-
plications [14, 20]. We present a tree automaton which asdeges where ng-labeled
node intervences properly betwe&nhandY:

- 3dZ. (X<]+Z A ZaYY A 1Z,37;. ZIf(Zl,Zg))

Since automata are closed under complementation, it ic&uffito construct an au-
tomaton positive intervenance. The signaturelis whereV = {X,Y}. The accep-
tance state ig,po.e(x)- FOr allg € 2’ we have the following rules:

(97 [XZO, Y:OD(Qbelow(Y)7 BREE) qbelow(Y)) — Gbelow(Y)

(97 [XZO’ Y:”)(Qbelow(Y)7 ceey qbelow(Y)) — Gabove(Y)

(97 [X:07 YZOD( -+ Qabove(Y)s - - ) ~ Qabove(Y) if f 7& g
(f’ [X:07 YZO])( -+ Qabove(Y)s - - ) — {abovey

(gv [XZO,YzOD(~~~a(Iabovef7~~~) - qabovef

(9, [X:LYZOD(~“’(Iabovefv"') — Gabove(X)

(97 [XZO’ YZOD( -+ Qabove(X)s - - ) — Gabove(X)

7



The stateyeow(y) recognizes all trees wheté=0 for all nodes. The statabove(Y')
recognizes trees containing a node wherel; above; recognizes trees which contain
a properf-labeled ancestor of some node with=1. Finally, ¢,pove(x) accepts all trees
where X =1 occurs properly above an f-ancestor of whire 1.

We also need to check thaf=1 andY =1 are seen at most once in a node label.
This can be done by intersection with another tree automaton

3.3 Constructing Tree Automata

We now construct tree automata for general formulas of SDHme. following lemma
will be useful. We omit its simple proof.

Lemma 1. If ext,, (71) = exta, (72) thena; = ay andr = 7».

Proposition 2. For all second-order dominance formulds and finite setd” of vari-
ables there exists a tree automatdrover the signature_y, which accepts those trees
over Xy that encode tree-assignment-paitsyy, such thatr, o = D:

L(A) = {exta, (1) | 7,0 = D}

Proof. We can assume without loss of generality that D) C V. Otherwise, we can
apply the proposition td’ =4¢ Ivar(D) — V. D which satisfiesrar(D") = V since
var(D)—(var(D)—V) C V. The automatond for D’ recognizes the required language
L(A) = {exta,, (1) | T,a |F D'} = {exta,, (1) | 7, = D}. Let aV-extension of
a treet be somea-extension ofr with o : V' — domain,.. We next construct an
automatonA.,,, which only accepts those trees ouBy, that areV extensions of
some tree in¥. This automaton has to check for every first-order variable vV and
acceptable trees that there exists exactly one noderinvhose characteristic function
mapsX to 1. The automatom, accepts all trees of. For the general case, et C V'
whereV; is the set of first order variables we defide,.,, = ﬂXevl Aext 5, - It Only
remains to define the automat,. ., for singletonset§ X }. LetV = {Z,,..., Z,}.
The rules are:

(f? [ X XZO? . ’])(qnonea cee inone) — {none
(f7 ["'aX:1>"'])(QHone7---inone) — (once
(fa [ o, X=0,.. '])(Qnonev -« +y Gnone, Gonce; gnone - - - 7Qnone) — {once

The automaton counts how oftéa=1 was seen. It starts witf},,n. and increments to
gonce When the first occurrences comes, and rejects starting fierag¢cond occurrence.
The only finial state omext{x} IS Gonce-

We next construct automatéy, over the signaturé.y, that check the validity oD.
The proposition is then always satisfied with= Ap N A, . The construction is by
induction on formulasD.

1. CaseD = X=Y. We construct the following automaton that checks whetherl
andY'=1 occur simultaneously at some same. The only final statgs of Ap
indicates this case. The statg can reached without restrictions.

(fa [ . 'aX:Oa .. _’Y:O7 .. '])(QB”? o .. 7Qall) — {qall
(f, [ . .,X:L .. .,Y:L .. .])(qa”, Ce 7qa”) — qequa|
(f, [, X=0,...,Y=0,...])(..., dequals - - -) = Gequal



2. CaseD = X<1Y. We construct the following automaton that checks whether
Y'=1is seen properly below =1. The final state 04 p iS gapove(x)-

(f7 [ c, X=0,...,Y=0,.. '])(Qth o5 Gall) = Qall
(f - Y=L, qan) — Gabove(Y)
(fa [ o, X=0,.. ])( -+ Qabove(Y)) - - ) — Gabove(Y)
(fo[- o, X=1,...D( -, Gabove(y), - - -) — above(X)
(f7 ["’])("'aQabove(X)v"') — Gabove(X)
3. CaseD = X<*Y. Tree automata are closed under union, sodgtAx 4+y U

AX:y.

4. CaseD = 3JX.D’. We can assume without loss of generality that¢ V. Let
Ap: be the automaton fob’ but over the extended signatu&, ¢ x;. We call a
treer over Xy an X-projection of a tree”’ over X'y xy if 7 is obtained fromr’
by restricting all characteristic functions in node labels’ to V. We can easily
define the automatad ,, such that it accepts al -projections of trees it (Ap-).

5. Other cases: The constructions for labeliigy(X;, . . ., X,,) and membership lit-
eralsX € A are obvious. Conjunction®; A D5 and negation-D can be reduced
to complementation and intersection of tree automata.f®@eooder quantification
JA.D can be encoded as in the first-order case.

We can now prove that tree regular constraints can indeetesssecond order
monadic dominance formulas modulo satisfaction equiagibut not equivalence).
This completes the proof of Theorem 1.

Corollary 1. For every monadic second-order formulaof SDom there exists a satis-
faction equivalent tree regular constraift over the same signature.

Proof. We can assume w.l.o.g. thBtis closed. Lef” = () and letA be a tree automa-
ton according to Proposition 2 that satisfi€$:4) = {7 | 7 = D}. We don't need any
variable assignment to interprét since D is closed. LetX, Y be fresh variables. The
following conditional equivalence is valid in all trees:

VY. XY — (D < tree(X) € L(A))

If a treeT, « satisfies the assumptiofy. X <*Y thena(X) must be the root of. In

this casetree(a(X)) € L(A) is equal tor € £(A) which isT = D. Next note that
the assumptiolvY. X <*Y can be met while solvingree(X) € L(A) resp.D. Thus,
D is satisfaction equivalent to tree regular constraie¢(X) € L£(A).

4 Extensions of Parallelism Constraints

Our next goal is to lift Theorem 1 to extensions of parallalisonstraints. This means
that we want to reduce satisfiability of a conjunctiBm R to the satisfiability of some
conjunctionsP’ A D and vice versa.

Theorem 2. The satisfiability problems of parallelism plus tree regudanstraintsP A
Rresp. parallelism constraints plus monadic second-ordenhance formula®’ A D
are equal modulo non-deterministic polynomial time transfations.



Note that the signatures are part of the input of both sabiditiaproblems, i.e. the
satisfaction equivalent formulas need not be defined oweséime signature.

The one direction still follows immediately from Propositi 1 (which is modulo
equivalence). But we cannot directly apply Theorem 1 to pttbre converse. This weak-
ness is due to the notion of satisfaction equivalence userg ih contrast to ordinary
equivalence.

Proposition 3. Every conjunctiorP? A D of a parallelism constraint with a formula of
SDom is satisfaction equivalent to some formyfa, P, A R; with parallelism plus
tree regular constraints.

The proof captures the rest of this section. The idea is toriesa solutiorr, o of
P A D by talking about a large tree that containgndext, (7) simultaneously. The
translation keeps the parallelism constrathin order to describe while it expresses
the dominance formul® through a tree regular constraint abext,, (7). The intended
relationship betweem andext, (7) is enforced by additional parallelism constraints
(Lemma 2).

We first introduce formulasxty (X, Y') for finite setsl” of variables. The free vari-
ables ofexty (X, Y) are those i/ U {X,Y'}. A pair 7/, « satisfiesxty (X, Y) if the
tree belown(Y') in 7' is thea,y extension of the tree below(X) in 7', i.e.:

a T a

7 aEexty(X,Y) X Y
iff
.a(Y) = exta, (7".a(X)) a9

Every solutionr’, o of exty (X,Y") indeed contains occurrencesof= 7’.a(X)
and its extensiorxt,,, (7) = 7’.a(Y) simultaneously. Note that,, must map to
nodes ofr by definition of extensions, while the unrestricted assigntn. may map to
arbitrary nodes of’.

From now on, let us identify the labelg and (f, c) wherec is the constan®-
valued function. Through this identification, we tukhinto a subset ofy,. This has
an important consequence:lif contains only first-order variables then the treesnd
ext, (7) have the same structure with finitely many exceptions: foZat V' the node
a(Z) belowa(X) and its correspondent belaw(Y") carry distinct labels. The number
of exceptions is bounded by sizeldf This property would fails if we permitted second-
order variables irV/: a single second-order variahle € V wherea(Y') contains all
nodes ofr makes all corresponding node labelsradndext,, ,, (7) distinct.

Lemma 2. LetV be a set of first-order variables. Every formuety (X, Y") is equiv-
alent to some positive existentially quantified formyla , 32 . .. BZ}WPZ.

Proof. We construct a formuld& of the above form by induction on the sincelof If

V = ( then we sefy =4 X/~Y/. Otherwise, we guess node labels for all variables in
V' and all relationships between them: properly above, pigfeiow thei-th children,
equal, or disjoint. These a@(|V|> x M) guesses wheré/ is the maximal arity of

10



function symbols in¥. We then translate deterministically for all possible desi. Let
X4,..., X, be some maximal set of top-most situated variables thatdizkiact values
(according to our guesses). We define:

E=g3y,..., 3. X/X1,...,. X, ~Y/Y1, ..., Y, A /\E
i=1

The formulasE; are still to be defined. Leat; : V' — {0, 1} be the function that map
all variables tol that take the same value a5 and all others td) (according to our
guesses). Lef; be the guessed node label of arityfor the variableX; andV; be the

set of variables lying below thgth child of X;. We then define:

IV 3V Y (fi ) (YY) A AT exty (XTYY) O

Proof (of Proposition 3)We consider a formuld® A D were D does not contain
free second-order variables w.l.0.g. Otherwise, we cadyre a satisfaction equivalent
formula of the same form by existential quantification.

Let X be a fresh variable and = var(PAD) U {X} a set of first-order variables.
We next define a formul#& that we will prove satisfaction equivalent A D:

E=q P N FY. exty(X,Y) A tree(Y) € {exty,, (7) | T, = D}

First note thatF can be rewritten into a satisfaction equivalent disjunciid the re-
quired form\/]_, P; A R;. We can expressxty (X,Y") by a disjunction of parallelism
constraints up to satisfaction equivalence (Lemma 2) aate $he membership condi-
tion ontree(Y') by a tree regular constraint (Proposition 2).

It remains to show thak is satisfaction equivalentt8 A D. For the one direction,
suppose’, o’ |= E. We show that’.o/(X), o]y, = P A D. First note thatv|;, maps

to nodes belowe’(X) sincer’, o |= exty (X,Y’). Second note that;;, can interpret
all variables of? A D by definition of V. Third, we show that’.a’(X), o, solves
P: By assumptiony’, o’ = F and thusr’, a(v = P. But sinceP contains parallelism
literals only, we can restrict this solution to the subtrée‘oto which O‘fv maps; thus:
7".0/(X), o}y, = P. Forth, we show that'.a/(X), of,, solvesD. Sincer’, o satisfies
the membership restriction aree(Y) there exists a solution, « = D such that:

. (Y) = exta,, (1)

Sincer’, o’ |= exty (X, Y) we also knowr’.o/ (V) = ety (7'.a/(X)). The previous
two equations combine intext,,,, (1) = exta;v(r’.o/(X)) such that the uniqueness
Lemma 1 yieIdsa"V = ajy and7’.o/(X) = 7. From7,a = D, we getr, oy = D,
and hencer’.o/ (X), O‘iV E D.

For the other direction, we assume tiiat\ D is satisfiable and construct a solution
of E. Letr, o be a solution of? A D. We definer’ = f(7,extq,, (7),...) where f
is some function symbol of arity at lea&t (The children ofr starting from positiors
can be chosen arbitrarily.) Let; be the first child of the root of’. It then holds that
7, a[X — m] E E whereby the existentially quantified varialifecan be mapped to
the second child of'. O

11



5 Relation to Context Unification

Parallelism constraints and context unification have tmeesexpressiveness [19]. We
now show that this result can be lifted when extending batlglages with tree regular
constraints.

We first recall the definition of context unification with tresgular constraints. The
version of context unification we use is quite rich but can éduced to the standard
version.

Context unification is equation solving in the algebra ofteats where contexts
may have one or arbitrary many holes. We consider contextith »n holes as-ary
functions on trees:

(11, Th) =[O /T1] - [0/ T
Contexts of arity0 can be identified with trees. We assume a seatasftext variables
F, G with aritiesar(F) > 0 which contains infinitely many variables for all arities.€'h
arity of F' determines the number of holes of the valueFofWe next definecontext
termst over X wheref € X, ar(f) = n, andar(F') = m.

t= f(tl,...,tn) ‘ F(tl,...,tm) |.i

An n-ary context term is a context term with hole markess. . ., e, each of which
occurs exactly once. An-ary context term denotes a context wittholes. Acontext
equationis a pairt; = t, betweem-ary context terms.

Context unificatioris the problem of solving finite conjunctions of context equa
tions. For instance, the context equatiBt, b)=f(a, G(b)) is solved by the variable
assignmeng with (F) = f(e1,e2), 5(G) = e; and3(z) = a. The problem can be
freely restricted in several ways: It is sufficient to haverggke equation and context
variables of arityl only.

A tree variablex is a context variable of arity 0. The extension of contexfination
with tree regular constraints allows for membership liera € £(.A) to be added to
equation sets wherd is a tree automaton over.

Theorem 3. The extensions of parallelism constraints and contexteatifin with tree
regular constraints are equivalent modulo polynomial tiraductions.

As shown by Levy and Villaret there is a third equivalent gesb which is linear
second-order unification (LSOU) with tree regular consti[16].

The proof of Theorem 3 is non-trivial but can be obtained bigeding the proof in
[19]. We show both implications independently. We first slate CU+R to P+R. Here,
we simplify the argument of [19]. Suppose w.l.0.g that wegiven a single equation
t1 = t and a single tree regular constraintc £(.A). We first introduce fresh node
variables for all subterm positions in the equatien= t,. We then collect parallelims,
labeling, and membership literals in four steps.

1. We collectlabeling literals for all subtermstin= ¢, that have the fornf (s1, . .., s, ).
Let X be the node variable for the position of such a subterm@nd. ., X, the
node variables for the positions of the subtesms . ., s,,. We then add the label-
ing literal:

X:f(Xy1,...,Xpn)

12



2. We collect parallelism literals for all context variableccuring int; = ¢,. So let
F(s1,...,s,) be an occurences of some context variablen t; = ¢, X be the
node variable of this occurence aid, . . ., X,, the node variables of the subterms
S1,..., Sn. LEtF(s), ..., s!) be asecond possibly equal occurences of same context
variableF in t; = t9, Y be the node variable of this occurence &fd. . .,Y,, the
node variables of the subterrf, . . ., s,. We then add the parallelism literal:

X/X1,.. ., Xo~Y/Y1, .. Yy

3. Suppose that occurs in the equatiofy = ¢, at some position with node variable

X. We then add:
tree(X) € L(A)

4. We ensure that both sides of the equatipe- ¢, denote equal values. L&, and
X5 be the node variables of the subterm positiong;0dnd¢,. We then add the
parallelims literal:

X1/~ X5/

Example 1.For instance, the context equatiéit f(z)) = f(F'(a)) with regular con-
straint:z € L(A)

We first introduce node variables for all sub-X0 X, X, Yo Vi Y,
term positions. The above constraint is then trans Il L1l
lated as follows where the lines contain the lit- F( f( )= f( F( a))
erals of the subsequent steps:

1. X1:f(X2) A Xa:a A Yoif (Y1) A Yaia A

2. Xo/X1 ~Y1/Ya A

3. tree(Xa) € L(A) A

4. Xo/~Yo/
In step 2 of this example we have freely omitted paralleligerdls between equal seg-
ment termsXy/X; ~ Xo/X1 andY; /Y, ~ Y1 /Y. These literal enforce dominance
relationsX,<*X; andY; <*Y- that are entailed by, /X7 ~ Y;/Y> anyway.

Lemma 3. A context equation with tree regular constrain{s= to A x € L(A) is
satisfiable if and only if its translation is.

We give an inverse reduction which maps P+R to CU+R. The difficof this
reduction is raised by the different views on trees: Whileaflalism constraints talk
about nodes and segments, context unification deals wigéls tied contexts. So how
can we speak about the nodes of a tree in context unificatiba?dea is that we speak
about the context between the root of the tree and this node.

We now encode an extended parallelism const&int P A R with the set of node
variableV' = vars(FE). Letz,;; be a tree variable which is supposed to denote a model
of E. For every node variabl& € V let F'xy be a unary context variable, denoting the
context from the root of:,; to nodeX, and a first-order variable denoting the tree
below X in x,;;. We express these relationships through the context ennsatj :

ev =a [\ zaur=Fx(z)
Xev
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| X : f(X1,...,Xn)| =ar Fx,(e1)=Fx(f(e1,z2,...,25))
VANAN FXn/(.l):Fx(f(l'h...71'7171,.1))
| X :a| =ar z=a

I_X/X17~--7Xn ~ Y/Yh...,YnJ =4 IF (Fx, (e1)=Fx (F(e1,%2,...,%n)) A

Fy, (o1)=Fy (F(®1,y2,...,yn) A
VANPVAN
Fx, (e1)=Fx(F(z1,%2,...,01)) A
Fy, (e1)=Fy(F(y1,y2,...,1)))  (F fresh
|E1 A E2| =as | Er1] A [ E2]
[tree(X) € L(A)| =ar x € L(A)

Fig. 3. Reduction of P+R to CU+R

The translation$ E | of the literals ofE is given in Figure 3.

Lemma 4. An extended parallelism constraifit A R with variable sel/ is satisfiable
if and only the system of context equatign A |P A R] is.

Conclusion

We have presented a new relationship between tree reguiatramts and the second-
order monadic dominance logic. We have lifted this relaghdp to the respective exten-
sions of parallelism constraints, P+R and P+SDom. We haeembved that CU with
tree regular constraints is equivalent to parallelism aed tegular constraint. To sum-
marize, the following four languages have equivalent abgity problems (modulo
non-elementary time reductions):

P+SDom=P+R =CU+R=LSOU +R

The first three equations are contributed by the presentrpapiée the last equation
was proved before [16]. Our result is relevant for classifydifferent extensions of
parallelism constraints, as in the constraint languagddmbda structures (CLLS).
For instance, we will show in a forthcoming paper [20] thatgbalism constraints
plus lambda binding constraints of CLLS can be expressed80®m and thus in all
equivalent languages.
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