
HAL Id: inria-00536827
https://inria.hal.science/inria-00536827

Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelism and Tree Regular Constraints
Joachim Niehren, Mateu Villaret

To cite this version:
Joachim Niehren, Mateu Villaret. Parallelism and Tree Regular Constraints. International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, 2002, Tblisi, Georgia. pp.311–326.
�inria-00536827�

https://inria.hal.science/inria-00536827
https://hal.archives-ouvertes.fr

Parallelism and Tree Regular Constraints

Joachim Niehren1 and Mateu Villaret2⋆

1 Programming Systems Lab, Universität des Saarlandes, Saarbrücken, Germany.
2 IMA, Universitat de Girona, Campus de Montilivi, Girona, Spain.

Abstract. Parallelism constraints are logical descriptions of trees. Parallelism
constraints subsume dominance constraints and are equal inexpressive power to
context unification. Parallelism constraints belong to theconstraint language for
lambda structures (CLLS) which serves for modeling naturallanguage seman-
tics. In this paper, we investigate the extension of parallelism constraints by tree
regular constraints. This canonical extension is subsumedby the monadic second-
order logic over parallelism constraints. We analyze the precise expressiveness of
this extension on basis of a new relationship between tree automata and logic. Our
result is relevant for classifying different extensions ofparallelism constraints, as
in CLLS. Finally, we prove that parallelism constraints andcontext unification
remain equivalent when extended with tree regular constraints.

Keywords: computational logic, tree automata, unification.

1 Introduction

Parallelism constraints[11, 13] are logical descriptions of trees, i.e., of ground terms
such asf(f(a, b), a). Parallelism constraints constitute a purely conjunctivelanguage.
They can talk about the mother, ancestor, and parallelism relation of a tree:

1.

π1
π3

2π 4π

Fig. 1.Parallelism

The parallelism relationπ1/π2∼π3/π4 holds for
nodesπ1, . . ., π4 of some tree (see Fig. 1) ifπ1 is
an ancestor ofπ2, π3 an ancestor ofπ4, while tree
segment betweenπ1 andπ2 is structurally equal to
the segment betweenπ3 andπ4.

2. The labeling relationπ:f(π1, . . . , πn) requires that
nodeπ is labeled withf and has the childrenπ1,
. . ., πn in this order.

Parallelism constraints subsumedominance constraints[18, 2] for which efficient
satisfiability tests exists [1]. Dominance constraints arewidely used throughout com-
putational linguistics (see e.g. [21, 10]). They can express the ancestor relationπ1C∗π2

between nodesπ1 andπ2 of some tree (which is equivalent toπ1/π2∼π1/π2).
Parallelism constraints are equal in expressive power to the equational language

of context unification(CU) [5, 22, 23, 17] as proved in [19]. Whether CU is decidable

⋆ This work has been partially supported by the SFB 378 of the DFG and the CICYT projects
DENOC (BFM2000-1054-C02) and CADVIAL (TIC2001-2392-C03-01).

(and thus the satisfiability of parallelism constraints) isa prominent open problem in
unification theory. So far, only fragments could be proved decidable.

Parallelism constraints belong to CLLS – the constraint language for lambda struc-
tures which serves for modeling natural language semantics[11, 12]. CLLS extends par-
allelism constraints in several directions: there are lambda binding and beta reduction
constraints [3, 4], but also anaphoric binding and group parallelism constraints. These
extensions are used in applications but their expressiveness has never been studied.

In this paper, we investigate the canonical extension P+R ofparallelism with tree
regular constraints. The formulas of P+R are conjunctions of parallelism constraints P
with regular constraints R. LetA be a tree automaton:

– A tree regular restrictiontree(π)∈L(A) is valid in a tree with nodeπ if the subtree
rooted byπ belongs to the language recognized by tree automatonA.

The extended language P+R is sufficiently restricted so thatprocessing methods for
pure parallelism constraints still apply: Given an extended constraint of P+R, we can
first enumerate theminimal solved forms(i.e., the most general unifiers) of the pure
parallelism part by saturation [13] and then test all minimal solved forms for compati-
bility with the tree regular part. We obtain a semi-decisionprocedure for P+R; even if
we could decide the satisfiability of parallelism constraints we might still have to check
infinitely many minimal solved forms for compatibility.

The language P+R is obviously subsumed by the monadic second-order logic over
parallelism constraints. But it is less clear to which precise logical fragment P+R cor-
responds. This is the question, we will answer in this paper.

The basic idea is to exploit the classical relationship between tree automata and the
weak monadic second-order logic of the binary tree (WS2S) [25, 9], which states that
regular constraints R and formulas of WS2S have the same expressive power. But un-
fortunately, this result cannot be lifted to extensions of parallelism constraints as the
languages P+R and WS2S have different models. We propose to consider the mona-
dic second-order logic over dominance constraints (SDom) instead of WS2S. Both lan-
guages talk about the ancestor relation of trees. But WS2S isinterpreted over the infinite
binary tree while SDom models ground terms.

We establish a new relationship between tree automata and the logic SDom on basis
of the old techniques for WS2S: We show that tree regular constraints R are equal in
expressiveness to formulas of SDom (Section 3). We then liftour new result to the
respective extensions of parallelism constraints: We prove that the languages P+R and
P+SDom can be inter-translated (Section 4). This answers the question raised above.
Our result also shows that the languages SDom and WS2S have equal expressiveness.
We thereby generalize and complement an earlier insight of Rogers [2, 15] who noticed
that the first-order theory of dominance constraints can be expressed in WS2S.

Finally, we reconsider the relationship between CU and parallelism constraints (which
have the same expressiveness [19]). We show that P+R is equalin expressive power to
CU with tree regular constraints (Section 5). This languagein turn is equivalent to linear
second order unification (LSOU) with tree regular constraints [16]. It is open whether
CU+R is decidable (even if we freely assume that CU is decidable). But the situation is
better for the special case of string unification with regular constraints [24] which can
be decided in PSPACE [8].

2

Our contributions are relevant for classifying extensionsof parallelism constraint, as
for instance provided by CLLS. A forthcoming paper [20] proves, for instance, that the
monadic second-order dominance logic SDom can express lambda binding constraints.
The results of this paper thus imply that the extension of parallelism with lambda bind-
ing constraints (as provided by CLLS) can be expressed in P+Rand CU+R.

2 Parallelism Constraints

We assume a finitesignatureΣ of function symbols ranged over byf, g. Each function
symbol comes with an arityar(f) ≥ 0. We assume at least one constanta ∈ Σ, i.e. a
function symbol of arity0 and at least one binary function symbol.

A (finite, ranked, rooted) treeτ overΣ is a ground term built from function symbols
in Σ, i.e.τ ::= f(τ1, . . . , τn) wheren = ar(f) andf ∈ Σ. We identify a node of a tree
with the word of positive integersπ that addresses it seen from the root:

nodes(f(τ1, . . . , τn)) = {ǫ} ∪ {iπ | 1 ≤ i ≤ n, π ∈ nodes(τi)}

The empty wordǫ is called theroot of the tree, whileiπ is nodeπ of the i-th subtree.
We freely identify a treeτ with the functionτ : nodes(τ) → Σ that maps every node
of τ to its node label. For a treeτ equal tof(τ1, . . . , τn) we set:

τ (π) = f(τ1, . . . , τn)(π) =

{

f if π = ǫ
τi(π

′) if π = iπ′, 1 ≤ i ≤ n

If τ is a tree with nodeπ then we writeτ.π for the subtree ofτ rooted byπ. Furthermore,
we writeτ [π/τ ′] for the tree obtained by replacing the subtree ofτ at nodeπ by τ ′.

Let τ be a tree with nodesπ, π′, π1, . . . , πn. Thelabeling relationπ:f(π1, . . . , πn)
holds inτ if π is labeled byf in τ and has the sequence of childrenπ1, . . . , πn in that
order from the left to the right. This is ifτ (π) = f andπ1 = π1, . . ., πn = πn where
n = ar(f).

The dominance relationπC∗π′ is valid in τ if π is an ancestor ofπ′, i.e. if π is
aboveπ′ in τ , resp. ifπ is a prefix ofπ′. Strict dominanceπC+π′ holds inτ if πC∗π′

but notπ=π′ in τ . Disjointnessπ⊥π′ is valid in τ if neitherπC∗π′ norπ′C∗π in τ .
We now define the parallelism relation. We consider more general tree segments

than in the introduction (Fig. 1) where several holes are permitted (see Fig. 2).

2ππ1

π

Fig. 2. Segmentπ/π1, π2

Definition 1. A segmentσ of a treeτ is a tuple
of nodes inτ – written asπ/π1, . . . , πn – where
π dominates allπi which in turn are pairwise
disjoint. We callπ the root of the segment and
π1, . . . , πn its holes. The segmentπ/ is the seg-
ment with 0 holes.

A segment can be seen as an occurrence of a context: Let{•1, . . . , •n, . . .} be an
infinite set ofhole markers. A contextγ with n holes overΣ is a tree overΣ and hole

3

markers{•1, . . . , •n} such that each of the hole markers occurs exactly once inγ. For
instance,f(•2, g(•1)) is a context with two holes. Every segmentσ of a treeτ with n
holes defines a unique context withn holes:

contextτ (π/π1, . . . , πn) = (τ [π1/•1] . . . [πn/•n]).π

The substitutions[πi/•i] remove the subtrees below the segment holes. The order in
which the substitutions are performed does not matter sinceall holesπi of a segment
are pairwise disjoint. Note also, that the rootπ of a segment is never removed fromτ
since it dominates all holesπi.

Definition 2. Parallelismσ1∼σ2 is valid in a treeτ if the segmentsσ1 andσ2 of τ are
occurrences of the same context, i.e. iffcontextτ (σ1) = contextτ (σ2).

We now define the purely conjunctive language ofparallelism constraints. We as-
sume an infinite setVnode of node variablesX, Y, Z.

P ::= X:f(X1, . . . , Xn) | S1∼S2 | P1 ∧ P2

S ::= X/X1, . . . , Xm

A parallelism constraintP is a conjunction of labeling and parallelism literals. Theyare
interpreted over the respective relations of some tree in the usual Tarski’an manner. We
usesegment termsS of the formX/X1, . . . , Xm to describe segments withm holes,
given that the values ofX andX1, . . . , Xm satisfy the conditions imposed on the root
and holes of segments in Definition 2. A parallelism literalS1∼S2 requires thatS1 and
S2 denote segments.

Note that dominance literalsXC∗Y can also be expressed even though they are
not directly part of the language. This follows from Definition 2 which forces roots of
segments to dominate holes so that the following equivalence XC∗Y ↔ X/Y ∼X/Y
gets valid.

Parallelism constraints are useful to model the meaning of natural language ellipses
[11]. Here they avoid the over-generation problem of the previous approach based on
higher-order unification [7]. Consider the sentence simplistic example:Peter sings and
so does Bill. The meaning of this sentence is represented by the formula:

and(sing(peter), sing(bill))

which is a tree. A simplified compositional semantics could construct the following
tree description from the syntactic structure of the sentence. NodeX1 stands for the
semantics of the source clausePeter sings, Y0 for the semantics of the target clauseso
does Bill. The semantics of the complete sentence starts at nodeZ:

Z:and(X0, Y0) ∧ conjunction of source and target
X0C∗X1 ∧ X1:sing(X2) ∧ X2:peter ∧ source clause
Y0C∗Y1 ∧ Y1:bill ∧ target clause
X0/X2∼Y0/Y1 ellipses description

The parallelism literalX0/X2∼Y0/Y1 states that the semantics of the source clause
without peter is equal to the semantics of the target clause up tobill. In the given solu-
tion, the termsX0/X2 andY0/Y1 denote the two occurrences of the contextsing(•1).

4

For a less trivial example consider the sentencepeter sings a song and so does bill.
It has two readings (there is a song that both sing, or both sing different songs). It is
possible and appropriate to represent both readings with a single constraint.3

To keep this section self-contained let us quickly recall some model theoretic no-
tions. We writevar(P) for the set of free variables of a constraintP . A variable assign-
mentto the nodes of a treeτ is a total functionα : V → nodes(τ) whereV is a finite
subset of node variables. Asolutionof a constraintP thus consists of a treeτ and a
variable assignmentα : V → nodes(τ) such thatvar(P) ⊆ V . As usual, we require
that all literals of a constraintP are validated by every solutionτ, α of P . We write
τ, α |= P if τ, α is a solution ofP . A formulaP is valid in a treeτ if τ, α |= P holds
for all α whose domain subsumesvar(P). We writeα|V ′ for the restriction of a variable
assignmentα : V → nodes(τ) to the variables inV ′.

3 Tree Regular Constraints

We next introduce tree regular constraints and show how to express them in logics. A
tree regular constraintsR has the form:

R ::= tree(X) ∈ L(A) | R1 ∧ R2

Interpreted over a treeτ , the termtree(X) denotes the subtree ofτ rooted byX, while
L(A) stands for the tree language accepted by tree automatonA overΣ.

But which properties of trees can be expressed by tree regular constraints? Can we
express, for instance, a first-order dominance formula which requires that nof labeled
node intervenes between nodesX andY ? Such formulas are needed in an application
of CLLS [14].

3.1 Monadic Second-Order Dominance Logic

We next define themonadic second-order dominance logic(SDom) to be the monadic
second-order logic over dominance constraints, i.e. of ground terms. Note that monadic
second-order logics were already investigated for many other graph structures (e.g. [6]).

We assume an infinite setVset of monadic second-order variablesA, B that denote
sets of nodes. The formulasD of SDom have the form:

D ::= XC∗Y | X:f(X1, . . . , Xn) | X ∈ A | D ∧ D′ | ¬D | ∃X. D | ∃A. D

Beyond of conjunctions of dominance and labeling literals,there are membership con-
straints, existential quantification over nodes and sets, negation, and thus universal
quantification.

The logic SDom is interpreted over ground terms. Every ground termτ now defines
a two sorted domain:domainτ = nodes(τ) ⊎ 2nodes(τ). Variables assignments to a tree
τ are functionsα : V → domainτ defined on a finite setV ⊆ Vnode ⊎ Vset which

3 One can use dominance constraints to leave the scope of the quantifiera songunderspecified
so that parallelism constraints correctly model its interaction with the ellipses.

5

map node variables to nodes and set variables to sets of nodes, i.e. for all X, A ∈ V :
α(X) ∈ nodes(τ) andα(A) ∈ 2nodes(τ).

The language SDom is closely related to the weak monadic second-order logic of
the complete binary tree (WS2S) [25, 9]. This was first noticed by Rogers in 1995 [2].
The models of SDom are ground terms while the only model of WS2S is the infinite
binary tree. The later is simpler in that all its nodes have first and second successors
(children). This allows to found WS2S on the two successor functions while SDom
must rely on the labeling relation.

Still, one can encode all ground terms in the infinite binary tree and thereby encode
SDom into WS2S. This was used in [15] to encode the first-ordertheory of dominance
constraints in WS2S [15]. The current section generalizes and complements these ear-
lier result.

Proposition 1. Every tree regular constraintR is equivalent to some formulaD in the
monadic second-order dominance logic over the same signature.

Proof. Let A be a tree automaton andX a node variable. We show how to express
tree(X) ∈ L(A) through an equivalent formulaD of SDom. LetQ be the set of states
of A andQfin the set of its final states. We consider all statesq ∈ Q as second-order
variables, whose set value contains all those nodesY such thattree(Y) has a run into
stateq in A. We then require that the value oftree(X) has a run into a final state, i.e.
thattree(X) ∈ q for some final stateq ∈ Qfin.

D = ∃Q.(
∨

q∈Qfin

X ∈ q ∧
∧

q∈Q

∀Y. (Y ∈ q ↔ stepA(Y, q)))

wherestepA(Y, q) step means that there is a single automaton step proving thatthe
value oftree(Y) has a run intoq.

stepA(Y, q) =
∨

f(q1,...,qn)→q∈A ∃Y1 . . . ∃Yn. (Y :f(Y1, . . . , Yn) ∧

Y1 ∈ q1 ∧ . . . ∧ Yn ∈ qn)

Note that all states ofAmay belong to the set of free set variables of formulastepA(Y, q)
so that the values of all setsq ∈ Q are defined by mutual recursion.

The converse of the above proposition is wrong. For instance, one cannot express
XC∗Y equivalently by tree regular constraintsR since satisfiable tree regular con-
straints can always be satisfied such that all variables denote disjoint nodes. Neverthe-
less, a weakened converse modulo satisfaction equivalencestill holds.

Theorem 1. Every tree regular constraintR is satisfaction equivalent to some formula
D of the monadic second-order dominance logic over the same signature, and vice
versa.

This theorem establishes a bidirectional relationship between dominance logics and
tree automata. The one direction is already proved (Proposition 1). The proof of the
other direction relies on standard encoding techniques known from WS2S. For every
formula of SDom, we have to construct a tree automaton that recognizes all its solu-
tions converted into some tree format (Corollary 1 below). This format is obtained by
encoding information about the values of node variables into extended node labels of
some extended signature.

6

3.2 Extending Node Labels

This trick is to encode a solution pairτ, α into a single tree which looks like the treeτ
except that it contains all information about the variable assignmentα in extended node
labels. Given a formulaD of SDom, one can then recognize all encoded solutions ofD
by a tree automaton.

We first illustrate the encoding of pairsτ, α at an example. Letτ be the treef(a, b)
with nodesnodes(τ) = {ǫ, 1, 2} andα be the variable assignment given byα(X) = ǫ,
α(Y) = 1, α(Z) = 2, andα(A) = {1, 2}. We then encodeτ, α by the following tree
with extended node labels:

(f, [X=1, Y=0, Z=0, A=0])

(b, [X=0, Y=0, Z=1, A=1])(a, [X=0, Y=1, Z=0, A=1])

In the general case, we encode pairsτ, α : V → Σ into trees over the signature of
extended labelsΣV :

ΣV = {(f, c) | f ∈ Σ, c : V → {0, 1}}

The second components of extended labels(f, c) are finite characteristic functions with
domainV . The arity of a label(f, c) in ΣV is equal to the arity off . As in the preceding
example, we will use the record notation[Z1=B1, . . . , Zn=Bn] to represent the finite
characteristic functionc : {Z1, . . . , Zn} → {0, 1} with c(Z1) = B1, . . ., c(Zn) = Bn.

We encode a pairτ, α : V → nodes(τ) through theα-extensionextα(τ). The trees
extα(τ) andτ have the same set of nodes; a nodeπ of extα(τ) is given the label(f, c)
if and only if the same node ofτ is given the labelf and for allX, A ∈ V :

π = α(X) iff c(X) = 1 and π ∈ α(A) iff c(A) = 1

We illustrate the encoding at the example of non-intervenance which is crucial for ap-
plications [14, 20]. We present a tree automaton which accepts trees where nof -labeled
node intervences properly betweenX andY :

¬ ∃Z. (XC+Z ∧ ZC+Y ∧ ∃Z1∃Z2. Z:f(Z1, Z2))

Since automata are closed under complementation, it is sufficient to construct an au-
tomaton positive intervenance. The signature isΣV whereV = {X, Y }. The accep-
tance state isqabove(X). For allg ∈ Σ we have the following rules:

(g, [X=0, Y =0])(qbelow(Y), . . . , qbelow(Y)) → qbelow(Y)

(g, [X=0, Y =1])(qbelow(Y), . . . , qbelow(Y)) → qabove(Y)

(g, [X=0, Y =0])(. . . , qabove(Y), . . .) → qabove(Y) if f 6= g
(f, [X=0, Y =0])(. . . , qabove(Y), . . .) → qabovef

(g, [X=0, Y =0])(. . . , qabovef
, . . .) → qabovef

(g, [X=1, Y =0])(. . . , qabovef
, . . .) → qabove(X)

(g, [X=0, Y =0])(. . . , qabove(X), . . .) → qabove(X)

7

The stateqbelow(Y) recognizes all trees whereY =0 for all nodes. The stateabove(Y)
recognizes trees containing a node whereY =1; abovef recognizes trees which contain
a properf -labeled ancestor of some node withY =1. Finally,qabove(X) accepts all trees
whereX=1 occurs properly above an f-ancestor of whereY =1.

We also need to check thatX=1 andY =1 are seen at most once in a node label.
This can be done by intersection with another tree automaton.

3.3 Constructing Tree Automata

We now construct tree automata for general formulas of SDom.The following lemma
will be useful. We omit its simple proof.

Lemma 1. If extα1
(τ1) = extα2

(τ2) thenα1 = α2 andτ1 = τ2.

Proposition 2. For all second-order dominance formulasD and finite setsV of vari-
ables there exists a tree automatonA over the signatureΣV which accepts those trees
overΣV that encode tree-assignment-pairsτ, α|V such thatτ, α |= D:

L(A) = {extα|V
(τ) | τ, α |= D}

Proof. We can assume without loss of generality thatvar(D) ⊆ V . Otherwise, we can
apply the proposition toD′ =df ∃var(D) − V. D which satisfiesvar(D′) = V since
var(D)−(var(D)−V) ⊆ V . The automatonA for D′ recognizes the required language
L(A) = {extα|V

(τ) | τ, α |= D′} = {extα|V
(τ) | τ, α |= D}. Let aV -extension of

a treeτ be someα-extension ofτ with α : V → domainτ . We next construct an
automatonAextV which only accepts those trees overΣV that areV extensions of
some tree inΣ. This automaton has to check for every first-order variableX ∈ V and
acceptable treesτ that there exists exactly one node inτ whose characteristic function
mapsX to 1. The automatonA∅ accepts all trees ofΣ. For the general case, letV1 ⊆ V
whereV1 is the set of first order variables we defineAextV =

⋂

X∈V1
Aext{X}

. It only
remains to define the automataAext{X}

for singleton sets{X}. LetV = {Z1, . . . , Zn}.
The rules are:

(f, [. . . , X=0, . . .])(qnone, . . . , qnone) → qnone

(f, [. . . , X=1, . . .])(qnone, . . . , qnone) → qonce

(f, [. . . , X=0, . . .])(qnone, . . . , qnone, qonce, qnone, . . . , qnone) → qonce

The automaton counts how oftenX=1 was seen. It starts withqnone and increments to
qonce when the first occurrences comes, and rejects starting from the second occurrence.
The only finial state ofAext{X}

is qonce.
We next construct automataAD over the signatureΣV that check the validity ofD.

The proposition is then always satisfied withA = AD ∩ AextV . The construction is by
induction on formulasD.

1. CaseD = X=Y . We construct the following automaton that checks whetherX=1
andY =1 occur simultaneously at some same. The only final statesqequal of AD

indicates this case. The stateqall can reached without restrictions.

(f, [. . . , X=0, . . . , Y =0, . . .])(qall, . . . , qall) → qall

(f, [. . . , X=1, . . . , Y =1, . . .])(qall, . . . , qall) → qequal

(f, [. . . , X=0, . . . , Y =0, . . .])(. . . , qequal, . . .) → qequal

8

2. CaseD = XC+Y . We construct the following automaton that checks whether
Y =1 is seen properly belowX=1. The final state ofAD is qabove(X).

(f, [. . . , X=0, . . . , Y =0, . . .])(qall, . . . , qall) → qall

(f, [. . . , Y =1, . . .])(qall, . . . , qall) → qabove(Y)

(f, [. . . , X=0, . . .])(. . . , qabove(Y), . . .) → qabove(Y)

(f, [. . . , X=1, . . .])(. . . , qabove(Y), . . .) → above(X)
(f, [. . .])(. . . , qabove(X), . . .) → qabove(X)

3. CaseD = XC∗Y . Tree automata are closed under union, so letAD=AXC+Y ∪
AX=Y .

4. CaseD = ∃X.D′. We can assume without loss of generality thatX /∈ V . Let
AD′ be the automaton forD′ but over the extended signatureΣV ⊎{X}. We call a
treeτ overΣV anX-projection of a treeτ ′ overΣV ⊎{X} if τ is obtained fromτ ′

by restricting all characteristic functions in node labelsof τ ′ to V . We can easily
define the automatonAD such that it accepts allX-projections of trees inL(AD′).

5. Other cases: The constructions for labelingX:g(X1, . . . , Xn) and membership lit-
eralsX ∈ A are obvious. ConjunctionsD1 ∧ D2 and negation¬D can be reduced
to complementation and intersection of tree automata. Second-order quantification
∃A.D can be encoded as in the first-order case.

We can now prove that tree regular constraints can indeed express second order
monadic dominance formulas modulo satisfaction equivalence (but not equivalence).
This completes the proof of Theorem 1.

Corollary 1. For every monadic second-order formulaD of SDom there exists a satis-
faction equivalent tree regular constraintR over the same signature.

Proof. We can assume w.l.o.g. thatD is closed. LetV = ∅ and letA be a tree automa-
ton according to Proposition 2 that satisfies:L(A) = {τ | τ |= D}. We don’t need any
variable assignment to interpretD sinceD is closed. LetX, Y be fresh variables. The
following conditional equivalence is valid in all trees:

∀Y. XC∗Y → (D ↔ tree(X) ∈ L(A))

If a treeτ, α satisfies the assumption∀Y. XC∗Y thenα(X) must be the root ofτ . In
this case,tree(α(X)) ∈ L(A) is equal toτ ∈ L(A) which isτ |= D. Next note that
the assumption∀Y. XC∗Y can be met while solvingtree(X) ∈ L(A) resp.D. Thus,
D is satisfaction equivalent to tree regular constrainttree(X) ∈ L(A).

4 Extensions of Parallelism Constraints

Our next goal is to lift Theorem 1 to extensions of parallelism constraints. This means
that we want to reduce satisfiability of a conjunctionP ∧ R to the satisfiability of some
conjunctionsP ′ ∧ D and vice versa.

Theorem 2. The satisfiability problems of parallelism plus tree regular constraintsP ∧
R resp. parallelism constraints plus monadic second-order dominance formulasP ′ ∧D
are equal modulo non-deterministic polynomial time transformations.

9

Note that the signatures are part of the input of both satisfiability problems, i.e. the
satisfaction equivalent formulas need not be defined over the same signature.

The one direction still follows immediately from Proposition 1 (which is modulo
equivalence). But we cannot directly apply Theorem 1 to prove the converse. This weak-
ness is due to the notion of satisfaction equivalence used there in contrast to ordinary
equivalence.

Proposition 3. Every conjunctionP ∧ D of a parallelism constraint with a formula of
SDom is satisfaction equivalent to some formula

∨n

i=1 Pi ∧ Ri with parallelism plus
tree regular constraints.

The proof captures the rest of this section. The idea is to describe a solutionτ, α of
P ∧ D by talking about a large tree that containsτ andextα(τ) simultaneously. The
translation keeps the parallelism constraintP in order to describeτ while it expresses
the dominance formulaD through a tree regular constraint aboutextα(τ). The intended
relationship betweenτ andextα(τ) is enforced by additional parallelism constraints
(Lemma 2).

We first introduce formulasextV (X, Y) for finite setsV of variables. The free vari-
ables ofextV (X, Y) are those inV ∪ {X, Y }. A pair τ ′, α satisfiesextV (X, Y) if the
tree belowα(Y) in τ ′ is theα|V extension of the tree belowα(X) in τ ′, i.e.:

τ ′, α |= extV (X, Y)
iff

τ ′.α(Y) = extα|V
(τ ′.α(X))

α α
YX

=τ

τ

=extα|V(τ)
X) τ τ)Y.α(.α(’ ’

’

’

Every solutionτ ′, α of extV (X, Y) indeed contains occurrences ofτ = τ ′.α(X)
and its extensionextα|V

(τ) = τ ′.α(Y) simultaneously. Note thatα|V must map to
nodes ofτ by definition of extensions, while the unrestricted assignmentα may map to
arbitrary nodes ofτ ′.

From now on, let us identify the labelsf and (f, c) wherec is the constant0-
valued function. Through this identification, we turnΣ into a subset ofΣV . This has
an important consequence: ifV contains only first-order variables then the treesτ and
extα(τ) have the same structure with finitely many exceptions: for all Z ∈ V the node
α(Z) belowα(X) and its correspondent belowα(Y) carry distinct labels. The number
of exceptions is bounded by size ofV . This property would fails if we permitted second-
order variables inV : a single second-order variableA ∈ V whereα(Y) contains all
nodes ofτ makes all corresponding node labels ofτ andextα|V

(τ) distinct.

Lemma 2. LetV be a set of first-order variables. Every formulaextV (X, Y) is equiv-
alent to some positive existentially quantified formula

∨n

l=1 ∃Zl
1 . . .∃Zl

kl
Pl.

Proof. We construct a formulaE of the above form by induction on the since ofV . If
V = ∅ then we setE =df X/∼Y/. Otherwise, we guess node labels for all variables in
V and all relationships between them: properly above, properly below thei-th children,
equal, or disjoint. These areO(|V |2 ∗ M) guesses whereM is the maximal arity of

10

function symbols inΣ. We then translate deterministically for all possible choices. Let
X1, . . . , Xn be some maximal set of top-most situated variables that takedistinct values
(according to our guesses). We define:

E =df ∃Y1, . . . ,∃Yn. X/X1, . . . , Xn ∼ Y/Y1, . . . , Yn ∧
n
∧

i=1

Ei

The formulasEi are still to be defined. Letci : V → {0, 1} be the function that map
all variables to1 that take the same value asXi and all others to0 (according to our
guesses). Letfi be the guessed node label of arityni for the variableXi andV j

i be the
set of variables lying below thej-th child ofXi. We then define:

Ei =df ∃X1
1 . . .∃Xni

n . Xi:fi(X
1
i , . . . , Xni

i) ∧

∃Y 1
1 . . . ∃Y ni

n . Yi:(fi, ci)(Y
1
i , . . . , Y ni

i) ∧
∧ni

j=1 ext
V

j
i
(Xj

i , Y j
i) ⊓⊔

Proof (of Proposition 3).We consider a formulaP ∧ D wereD does not contain
free second-order variables w.l.o.g. Otherwise, we can produce a satisfaction equivalent
formula of the same form by existential quantification.

Let X be a fresh variable andV = var(P∧D) ∪ {X} a set of first-order variables.
We next define a formulaE that we will prove satisfaction equivalent toP ∧ D:

E =df P ∧ ∃Y. extV (X, Y) ∧ tree(Y) ∈ {extα|V
(τ) | τ, α |= D}

First note thatE can be rewritten into a satisfaction equivalent disjunction of the re-
quired form

∨n

i=1 Pi ∧ Ri. We can expressextV (X, Y) by a disjunction of parallelism
constraints up to satisfaction equivalence (Lemma 2) and state the membership condi-
tion ontree(Y) by a tree regular constraint (Proposition 2).

It remains to show thatE is satisfaction equivalent toP ∧ D. For the one direction,
supposeτ ′, α′ |= E. We show thatτ ′.α′(X), α′

|V |= P ∧ D. First note thatα′
|V maps

to nodes belowα′(X) sinceτ ′, α′ |= extV (X, Y). Second note thatα′
|V can interpret

all variables ofP ∧ D by definition ofV . Third, we show thatτ ′.α′(X), α′
|V solves

P : By assumption,τ ′, α′ |= E and thusτ ′, α′
|V |= P . But sinceP contains parallelism

literals only, we can restrict this solution to the subtree of τ ′ to whichα′
|V maps; thus:

τ ′.α′(X), α′
|V |= P . Forth, we show thatτ ′.α′(X), α′

|V solvesD. Sinceτ ′, α′ satisfies
the membership restriction ontree(Y) there exists a solutionτ, α |= D such that:

τ ′.α′(Y) = extα|V
(τ)

Sinceτ ′, α′ |= extV (X, Y) we also knowτ ′.α′(Y) = extα′
|V

(τ ′.α′(X)). The previous

two equations combine intoextα|V
(τ) = extα′

|V
(τ ′.α′(X)) such that the uniqueness

Lemma 1 yieldsα′
|V = α|V andτ ′.α′(X) = τ . Fromτ, α |= D, we getτ, α|V |= D,

and hence,τ ′.α′(X), α′
|V |= D.

For the other direction, we assume thatP ∧ D is satisfiable and construct a solution
of E. Let τ, α be a solution ofP ∧ D. We defineτ ′ = f(τ, extα|V

(τ), . . .) wheref
is some function symbol of arity at least2. (The children ofτ starting from position3
can be chosen arbitrarily.) Letπ1 be the first child of the root ofτ ′. It then holds that
τ ′, α[X 7→ π1] |= E whereby the existentially quantified variableY can be mapped to
the second child ofτ ′. ⊓⊔

11

5 Relation to Context Unification

Parallelism constraints and context unification have the same expressiveness [19]. We
now show that this result can be lifted when extending both languages with tree regular
constraints.

We first recall the definition of context unification with treeregular constraints. The
version of context unification we use is quite rich but can be reduced to the standard
version.

Context unification is equation solving in the algebra of contexts where contexts
may have one or arbitrary many holes. We consider contextsγ with n holes asn-ary
functions on trees:

γ(τ1, . . . , τn) = γ[•1/τ1] . . . [•n/τn]

Contexts of arity0 can be identified with trees. We assume a set ofcontext variables
F, G with aritiesar(F) ≥ 0 which contains infinitely many variables for all arities. The
arity of F determines the number of holes of the value ofF . We next definecontext
termst overΣ wheref ∈ Σ, ar(f) = n, andar(F) = m.

t ::= f(t1, . . . , tn) | F (t1, . . . , tm) | •i

An n-ary context term is a context term with hole markers•1, . . . , •n each of which
occurs exactly once. Ann-ary context term denotes a context withn holes. Acontext
equationis a pairt1 = t2 betweenn-ary context terms.

Context unificationis the problem of solving finite conjunctions of context equa-
tions. For instance, the context equationF (x, b)=f(a, G(b)) is solved by the variable
assignmentβ with β(F) = f(•1, •2), β(G) = •1 andβ(x) = a. The problem can be
freely restricted in several ways: It is sufficient to have a single equation and context
variables of arity1 only.

A tree variablex is a context variable of arity 0. The extension of context unification
with tree regular constraints allows for membership literals x ∈ L(A) to be added to
equation sets whereA is a tree automaton overΣ.

Theorem 3. The extensions of parallelism constraints and context unification with tree
regular constraints are equivalent modulo polynomial timereductions.

As shown by Levy and Villaret there is a third equivalent problem which is linear
second-order unification (LSOU) with tree regular constraints [16].

The proof of Theorem 3 is non-trivial but can be obtained by extending the proof in
[19]. We show both implications independently. We first translate CU+R to P+R. Here,
we simplify the argument of [19]. Suppose w.l.o.g that we aregiven a single equation
t1 = t2 and a single tree regular constraintx ∈ L(A). We first introduce fresh node
variables for all subterm positions in the equationt1 = t2. We then collect parallelims,
labeling, and membership literals in four steps.

1. We collect labeling literals for all subterms int1 = t2 that have the formf(s1, . . . , sn).
Let X be the node variable for the position of such a subterm andX1, . . . , Xn the
node variables for the positions of the subtermss1, . . . , sn. We then add the label-
ing literal:

X:f(X1, . . . , Xn)

12

2. We collect parallelism literals for all context variables occuring int1 = t2. So let
F (s1, . . . , sn) be an occurences of some context variableF in t1 = t2, X be the
node variable of this occurence andX1, . . . , Xn the node variables of the subterms
s1,..., sn. LetF (s′1, . . . , s

′
n) be a second possibly equal occurences of same context

variableF in t1 = t2, Y be the node variable of this occurence andY1, . . . , Yn the
node variables of the subtermss′1, . . . , s

′
n. We then add the parallelism literal:

X/X1, . . . , Xn ∼ Y/Y1, . . . , Yn

3. Suppose thatx occurs in the equationt1 = t2 at some position with node variable
X. We then add:

tree(X) ∈ L(A)

4. We ensure that both sides of the equationt1 = t2 denote equal values. LetX1 and
X2 be the node variables of the subterm positions oft1 andt2. We then add the
parallelims literal:

X1/ ∼ X2/

Example 1.For instance, the context equationF (f(x)) = f(F (a)) with regular con-
straint:x ∈ L(A)

X0 X1 X2 Y0 Y1 Y2

↓ ↓ ↓ ↓ ↓ ↓
F (f(x)) = f(F (a))

We first introduce node variables for all sub-
term positions. The above constraint is then trans-
lated as follows where the lines contain the lit-
erals of the subsequent steps:

1. X1:f(X2) ∧ X2:a ∧ Y0:f(Y1) ∧ Y2:a ∧
2. X0/X1 ∼ Y1/Y2 ∧
3. tree(X2) ∈ L(A) ∧
4. X0/ ∼ Y0/

In step 2 of this example we have freely omitted parallelism literals between equal seg-
ment terms:X0/X1 ∼ X0/X1 andY1/Y2 ∼ Y1/Y2. These literal enforce dominance
relationsX0C∗X1 andY1C∗Y2 that are entailed byX0/X1 ∼ Y1/Y2 anyway.

Lemma 3. A context equation with tree regular constraintst1 = t2 ∧ x ∈ L(A) is
satisfiable if and only if its translation is.

We give an inverse reduction which maps P+R to CU+R. The difficulty of this
reduction is raised by the different views on trees: While parallelism constraints talk
about nodes and segments, context unification deals with trees and contexts. So how
can we speak about the nodes of a tree in context unification? The idea is that we speak
about the context between the root of the tree and this node.

We now encode an extended parallelism constraintE = P ∧ R with the set of node
variableV = vars(E). Let xall be a tree variable which is supposed to denote a model
of E. For every node variableX ∈ V let FX be a unary context variable, denoting the
context from the root ofxall to nodeX, and a first-order variablex denoting the tree
belowX in xall. We express these relationships through the context equationseV :

eV =df

∧

X∈V

xall=FX(x)

13

⌊X : f(X1, . . . , Xn)⌋ =df FX1
(•1)=FX(f(•1, x2, . . . , xn))

∧ . . . ∧ FXn(•1)=FX(f(x1, . . . , xn−1, •1))
⌊X : a⌋ =df x=a

⌊X/X1, . . . , Xn ∼ Y/Y1, . . . , Yn⌋ =df ∃F (FX1
(•1)=FX(F (•1, x2, . . . , xn)) ∧

FY1
(•1)=FY (F (•1, y2, . . . , yn) ∧
∧ . . . ∧

FXn(•1)=FX(F (x1, x2, . . . , •1)) ∧
FYn(•1)=FY (F (y1, y2, . . . , •1))) (F fresh)

⌊E1 ∧ E2⌋ =df ⌊E1⌋ ∧ ⌊E2⌋
⌊tree(X) ∈ L(A)⌋ =df x ∈ L(A)

Fig. 3. Reduction of P+R to CU+R

The translations⌊E⌋ of the literals ofE is given in Figure 3.

Lemma 4. An extended parallelism constraintP ∧ R with variable setV is satisfiable
if and only the system of context equationeV ∧ ⌊P ∧ R⌋ is.

Conclusion

We have presented a new relationship between tree regular constraints and the second-
order monadic dominance logic. We have lifted this relationship to the respective exten-
sions of parallelism constraints, P+R and P+SDom. We have also proved that CU with
tree regular constraints is equivalent to parallelism and tree regular constraint. To sum-
marize, the following four languages have equivalent satisfiability problems (modulo
non-elementary time reductions):

P + SDom = P + R = CU + R = LSOU + R

The first three equations are contributed by the present paper while the last equation
was proved before [16]. Our result is relevant for classifying different extensions of
parallelism constraints, as in the constraint language forlambda structures (CLLS).
For instance, we will show in a forthcoming paper [20] that parallelism constraints
plus lambda binding constraints of CLLS can be expressed in P+SDom and thus in all
equivalent languages.

References

1. Ernst Althaus, Denys Duchier, Alexander Koller, Kurt Mehlhorn, Joachim Niehren, and Sven
Thiel. An efficient algorithm for the configuration problem of dominance graphs. In12th
ACM-SIAM Symposium on Discrete Algorithms, pages 815–824, 2001.

2. R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization of the theory of
finite trees.Journal of Logic, Language, and Information, 4:5–39, 1995.

3. Manuel Bodirsky, Katrin Erk, Alexander Koller, and Joachim Niehren. Beta reduction con-
straints. InRTA’01, volume 2051 ofLNCS, pages 31–46, 2001.

14

4. Manuel Bodirsky, Katrin Erk, Alexander Koller, and Joachim Niehren. Underspecified beta
reduction. InACL’01, pages 74–81, 2001.

5. Hubert Comon. Completion of rewrite systems with membership constraints. Symbolic
Computation, 25(4):397–453, 1998. Extends on a paper at ICALP’92.

6. Bruno Courcelle. The monadic second-order logic of graphs XIII: Graph drawings with edge
crossings.Computational Intelligence, 244(1-2):63–94, 2000.

7. Mary Dalrymple, Stuart Shieber, and Fernando Pereira. Ellipsis and higher-order unification.
Linguistics & Philosophy, 14:399–452, 1991.

8. Volker Diekert, Claudio Guterrez, and Christian Hagenah. The existential theory of equations
with rational constraints in free groups is pspace-complete. InSTACS 2001, volume 2010 of
LNCS, pages 170–182, 2001.

9. John Doner. Tree acceptors and some of their applications. Journal of Computer System
Science, 4:406– 451, 1970. Received December 1967, Revised May 1970.

10. Denys Duchier and Claire Gardent. Tree descriptions, constraints and incrementality. In
Computing Meaning, volume 77 ofStudies In Linguistics And Philosophy, pages 205–227.
Kluwer Academic Publishers, 2001.

11. Markus Egg, Alexander Koller, and Joachim Niehren. The constraint language for lambda
structures.Logic, Language, and Information, 10:457–485, 2001.

12. Katrin Erk, Alexander Koller, and Joachim Niehren. Processing underspecified semantic
representations in the constraint language for lambda structures. Journal of Language and
Computation, 2002. To appear.

13. Katrin Erk and Joachim Niehren. Parallelism constraints. InRTA’00, volume 1833 ofLNCS,
pages 110–126, 2000.

14. Alexander Koller and Joachim Niehren. On underspecifiedprocessing of dynamic semantics.
In 18th Int. Conf. on Computational Linguistics, pages 460–466, July 2000.

15. Alexander Koller, Joachim Niehren, and Ralf Treinen. Dominance constraints: Algorithms
and complexity. InLACL’98, volume 2014 ofLNAI, 2001.

16. Jordi Levy and Mateu Villaret. Linear second-order unification and context unification with
tree-regular constraints. InRTA’00, volume 1833 ofLNCS, pages 156–171, 2000.

17. Jordi Levy and Mateu Villaret. Context unification and traversal equations. InRTA’01,
volume 2051 ofLNCS, pages 167–184, 2001.

18. Mitchell P. Marcus, Donald Hindle, and Margaret M. Fleck. D-theory: Talking about talking
about trees. InProceedings of the 21st ACL, pages 129–136, 1983.

19. Joachim Niehren and Alexander Koller. Dominance constraints in context unification. In
Logical Aspects of Computational Linguistics (1998), volume 2014 ofLNAI, 2001.

20. Joachim Niehren and Mateu Villaret. On lambda binding, parallelism constraints and context
unification, 2002. Available athttp://www.ps.uni-sb.de/Papers.

21. J. Rogers and K. Vijay-Shanker. Obtaining trees from their descriptions: An application to
tree-adjoining grammars.Computational Intelligence, 10:401–421, 1994.

22. M. Schmidt-Schauß. A decision algorithm for stratified context unification. Technical Report
F-rep.-12, FB Informatik, J.W. Goethe Universität Frankfurt, 1999.

23. Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations with two
context variables is decidable. InCADE-16, LNAI, pages 67–81, 1999.

24. Klaus U. Schulz. Makanin’s algorithm for word equations- two improvements and a gener-
alization. InProceedings of the First International Workshop of Word Equations and Related
Topics, volume 572 ofLNCS, Tübingen, Germany, 1992.

25. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a
decision problem of second-order logic.Mathematical Systems Theory, 2(1):57–81, 1967.

15

