
HAL Id: inria-00537237
https://inria.hal.science/inria-00537237

Submitted on 17 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The SIGMOD 2010 Programming Contest: A
Distributed Query Engine

Clément Genzmer, Volker Hudlet, Hyunjung Park, Daniel Schall, Pierre
Senellart

To cite this version:
Clément Genzmer, Volker Hudlet, Hyunjung Park, Daniel Schall, Pierre Senellart. The SIGMOD 2010
Programming Contest: A Distributed Query Engine. SIGMOD record, 2010. �inria-00537237�

https://inria.hal.science/inria-00537237
https://hal.archives-ouvertes.fr


The SIGMOD 2010 Programming Contest
A Distributed Query Engine

Clément Genzmer 1 Volker Hudlet 2 Hyunjung Park 3

Daniel Schall 2 Pierre Senellart 4

1 Facebook, USA 2 TU Kaiserslautern, Germany
3 Stanford University, USA 4 Télécom ParisTech, France

ABSTRACT

We report on the second annual ACM SIGMOD pro-

gramming contest, which consisted in building an effi-

cient distributed query engine on top of an in-memory

index. This article is co-authored by the organizers of

the competition (Clément Genzmer, Pierre Senellart) and

the students who built the two leading implementations

(Volker Hudlet, Hyunjung Park, Daniel Schall).

1. CONTEXT

For the second year in a row, a programming contest

was organized in parallel with the ACM SIGMOD 2010

conference. Undergraduate and graduate student teams

from over the world were invited to compete to develop

an efficient distributed query engine over relational data.

Students had several months to work on their implemen-

tation, which was judged for their overall performance on

a variety of workloads. The teams responsible for the five

best systems were invited to present their work during

the SIGMOD 2010 conference, and the winning team

(one-man team cardinality formed of Hyunjung Park,

Stanford University), was awarded a prize of $5,000.

In addition to encouraging students to be active in the

database research community, the aim is to build over the

years, throughout a series of contests, an open source in-

memory distributed database management system. Thus,

the candidates of this year’s contest relied on the in-

memory index implementation produced as the outcome

of last year’s competition.

We first describe in more detail the task the contestants

were involved in, as well as the workload their implemen-

tation was evaluated on. We then report on the outcome

of the competition, before describing the key ideas of the

systems ranked first and second.

2. TASK DESCRIPTION

As previously mentioned, the task was to program

a simple distributed relational query engine. Contes-

tants had to provide a binary library conforming to a

specific interface, along with the corresponding source

code. Each submission was evaluated on a dedicated

cluster of eight machines, over a series of eight secret

query loads. The input provided to the implementation

for each workload was the description of which nodes of

the cluster stored (parts of) which tables, possibly hori-

zontally partitioned, as well as a set of queries, expressed

in a simple subset of SQL. The goal was then to provide

the correct output to these queries, as fast as possible.

The final score of each submission was computed as a

monotonous function of the total time used for running

all workloads. Workloads where the submission crashed,

did not return the correct output, or ran over the time

limit of five to ten minutes (depending on the workload),

were assigned penalties.

All queries were simple select-project-join queries, of

the form:

SELECT alias.attribute, ...

FROM table AS alias, ...

WHERE condition1 AND ... AND conditionN

where a condition might be any of:

• alias.attribute = constant

• alias.attribute > constant

• alias1.attribute1 = alias2.attribute2

A parser for this subset of SQL was provided.

Attribute values were either character strings or inte-

gers, and tables were stored in text files on disk. All

tables had at least one column indexed in memory, the

implementation of the index being provided based on last

year’s contest. Before the actual starting of each work-

load, the contestants were given a predefined number of

seconds to perform some preprocessing steps over the

data. At this point, their implementation received a set

of queries which was representative of the workload.

Among the eight benchmarks, five were of a reason-

ably small scale and were designed to test the workability

of the binary provided by the contestants. The last three

were designed to test the performance (up to 150,000



queries, and up to 1,000,000 tuples stored on a given

node). Contestants were given a one-line description of

each workload, though the actual structure of the input

data was not disclosed. The benchmarking tool would

initiate 50 parallel connections on a master node and then

would start issuing the queries.

The full description of the task is available at http:

//dbweb.enst.fr/events/sigmod10contest/.

3. THE COMPETITION

The initial description of the task was made available

in December 2009 along with all necessary interfacing

code, though some addition and fixes came over the fol-

lowing months as bugs or imprecisions were pointed out

by contestants. Starting from February 2010, contestants

had access to the evaluation cluster and could check the

score of their submission and their ranking. Students

had then up to April to work on their implementation.

Then, a shortlist of five finalist teams, whose submis-

sion had the best performance, was selected and these

teams could use the remaining time before the beginning

of the conference, in June, to continue improving their

implementation.

Setting up the evaluation cluster, eight dedicated PCs

running a 64bit version of Linux on a single-core CPU,

was not completely straightforward. First, it was criti-

cal to ensure the security of the machines and the non-

disclosure of the contents of the benchmarks, whereas

contestants were allowed to run arbitrary code on the clus-

ter. The solution chosen was to run each submission as a

new unprivileged Linux user without any write access to

any part of the disk (except for a temporary directory that

was emptied after each evaluation), and to set up a strict

firewall that prevented any information leaking outside

the cluster. Second, for scores to be meaningful, evalua-

tion times had to be reproducible from one run to another.

This led us to use dedicated servers rather than virtualiza-

tion, to clear all system caches across runs, and to ensure,

as much as possible, that no concurrent processes were

active on the cluster nodes. Third, it turned out that con-

testants encountered problems (crashes, timeouts) while

running their submissions on the evaluation workloads

that they were not able to reproduce on their test bench-

marks. To help them with debugging, we provided them

with stack traces and other similar crash information,

from the execution log of the evaluation. This, however,

could not be automated, because of potential leaks of de-

tailed information about the content of the benchmarks,

and resulted in a time-consuming task for the organizers.

A total of 29 teams took part in the competition, from

23 different institutions in 13 countries. An amazing

collective effort was put in this contest, with some teams

literally dedicating months of working time to the com-

petition. As a result, leading implementations are impres-

sively sophisticated and efficient.

The five finalist teams and their score, computed at the

end of the competition, are listed in Table 1. Note that

only the top two teams managed to pass all benchmarks

in the allocated time. Both of these implementations

are interesting: the winning one, cardinality’s, is gener-

ally faster, but is actually slower than the second-ranked,

namely dbis’s, on the last workload, which is also the

most difficult one.

More details about the results of the competition can

be found at the following URL: http://dbweb.enst.

fr/events/sigmod10contest/results/.

4. KEY IDEAS BEHIND LEADING IM-

PLEMENTATIONS

We present in this section the general ideas behind the

two systems we implemented. When not stated other-

wise, the description applies to both.

Given the task, query planner and executor are two

main components to build. Undoubtedly, both of them

can make an enormous impact on the overall perfor-

mance. Here we discuss key decisions on designing and

implementing these components in more detail. We re-

fer to a textbook on database management systems such

as [2] for precisions on some of the techniques used.

Query Planning

In order to determine the most efficient physical query

plan, we implemented cost-based query optimization.

Our objective is to minimize total resource consumption

rather than response time because of the many concur-

rent queries running at the same time. The cost model

focuses on network transfer as well as sequential and

random disk reads. Incorporating CPU cost would be a

natural next step, but we believe that its impact on the

quality of the selected plan will be marginal given the

performance of the main-memory index and the limited

class of supported SQL queries. Also, calibrating param-

eters for complex models would have been more difficult

due to restricted access to the evaluation cluster.

Finalist teams employed various plan search strate-

gies. Team cardinality enumerates all possible physical

query plans and estimates their costs. Because plans are

built bottom-up, a dynamic programming technique is ap-

plied in order to avoid building and evaluating the same

subplan multiple times. During plan enumeration, unin-

teresting subplans are pruned according to heuristics that

favor index-based operators. These heuristics not only

reduce the size of search space but also complements the

rather simple cost model. Note that time and space con-

sumption of this exhaustive search is bounded because

the contest specifies that at most five tables are joined.

On the other hand, team dbis first performs an exhaustive

search for all possible join orders and then refines the

http://dbweb.enst.fr/events/sigmod10contest/
http://dbweb.enst.fr/events/sigmod10contest/
http://dbweb.enst.fr/events/sigmod10contest/results/
http://dbweb.enst.fr/events/sigmod10contest/results/


Table 1: Final score, corresponding time, and proportion of the eight workloads processed

Team Institution Country Score Time Workloads

1. cardinality Stanford University USA 88 3min 18s 8/8

2. dbis TU Kaiserslautern Germany 98 5min 45s 8/8

3. spbu Saint-Petersburg University Russia 108 >12min 17s 7/8

4. insa INSA Lyon France 119 >22min 20s 7/8

5. bugboys KAUST Saudi Arabia 142 >30min 19s 5/8

Naïve implementation 207 >45min 31s 2/8

plan with optimal join order using heuristics. Once the

optimal join order is chosen, the query planner starts

with a basic plan using table scans and block nested-loop

joins. Subsequently, alternative plans are derived using

as many index-based operators as possible. In this step,

a block nested-loop join can be replaced by a merge join

when two primary key columns are joined. Likewise, if

one or both join columns are indexed, a hash join can be

used by treating the given index as a hash-based access

structure. A similar procedure applies for access opera-

tors; a table scan is substituted by an index scan followed

by an optional table seek based on the offset retrieved

from the index.

Exploiting partitioning information during query plan-

ning turns out to be a crucial observation for passing all

benchmarks. Clearly, certain queries can be answered

by accessing only relevant partitions because all tables

are range-partitioned based on the primary key column.

For example, primary key joins do not cover all possible

partition pairs, but are processed only between partition

pairs whose ranges overlap. Similarly, conditions on the

primary key column can eliminate out-of-range partitions.

Because accessing multiple partitions usually involves

network transfer, skipping one partition can decrease the

running time significantly. If partitioning information

indicates that a condition is unsatisfiable, we generate a

query plan with a no-op operator that produces an empty

result set.

Statistics of each partition are gathered during the pre-

processing step. We obtain partition sizes and estimate

the cardinality and average column sizes by sampling

a few first pages in each partition. Also, we count the

number of distinct values for indexed columns. Other

than these basic statistics, we do not maintain detailed

information about data distribution and rely on fixed se-

lectivity factors depending on the type of predicates.

Query Execution: Single Node

Tables stored on disk are accessed through memory-

mapped I/O. This strategy has two main advantages.

First, we can deploy a high performance buffer pool with

little implementation effort because the page cache in the

Linux kernel provides this function for us. Even though

a naïve approach using an input file stream library also

utilizes the page cache, we cannot read the page cache

directly. Consequently, excessive memory copy between

kernel and user spaces cannot be avoided. Second, we

can access columns spanning multiple pages efficiently.

Unlike most traditional databases, underlying data files

are stored in the comma-separated values (CSV) format.

Thus, addressing a column would be complicated un-

less there is a contiguous address space for an entire file.

Note that despite these advantages, this strategy would

not have been practical on 32-bit architectures where

available address space is considerably smaller.

Query execution uses a simple pull-based, Volcano-

style, iterator model [1] where each operator implements

Open(), GetNext(), and Close() interfaces. A tuple passed

by GetNext() is always represented as a vector of pointer-

length pairs. Because we avoid memory copy as much as

possible, these pointers usually reference either memory-

mapped files or communication buffers.

Query Execution: Multiple Nodes

Send and receive operators fulfill the communication

among the master and slave nodes. A receive operator

generates a request message by serializing the subplan

rooted at its child and ships the message to its correspond-

ing send operator. Upon receiving a request message, the

send operator constructs the subplan, executes it, and

sends its result back as a response message. Each send

operator runs on its own worker thread for concurrent

execution. Some finalist teams maintained a thread pool

with a fixed number of worker threads. However, a naïve

approach without a thread pool also performs well be-

cause only hundreds of threads are created and destroyed

each second in this setting.

The send and receive operators exchange messages

over TCP/IP connections, so efficient TCP communi-

cation is vital to the performance. The first challenge

to minimize TCP overhead is to amortize TCP connec-

tion setup and tear-down cost across multiple request-

response pairs. Finalist teams addressed this challenge in

slightly different ways, but the main idea is to maintain

established TCP connections for reuse. Some teams keep

a single TCP connection between each pair of nodes,



while the others initiate a new TCP connection whenever

there is no reusable connection. In the contest setting,

the latter works better because receive operators do not

have to wait for the single TCP connection to be avail-

able. Another challenge is to reduce per-message TCP

overhead in order to increase application throughput. To

achieve this goal, we pack each message into fewer TCP

segments by setting the TCP_CORK option on all TCP

connections. The Linux kernel does not transmit partial

TCP segments as long as the TCP_CORK option is set and

a 200-millisecond timer does not expire. As a result,

more network bandwidth is utilized by request and re-

sponse messages rather than TCP/IP headers. These two

techniques yield a substantial performance improvement;

benchmark 6 runs more than four times faster.

Message compression is another natural way to save

network bandwidth. For request messages, we adopted

a variable-length integer code that serializes smaller in-

tegers into fewer bytes. This simple encoding is quite

effective for request messages because serialized query

plans contain many small integers such as node ids and

column ids. An optimized variable-length encoding im-

plementation decreases the running times of benchmarks

6 and 7 by more than 20%. For response messages, we

experimented with a couple of lossless compression al-

gorithms. Even though we observed good compression

ratios and some performance improvements using our

test dataset and queries, we failed to decrease any bench-

mark running time. This result is not surprising because

the cost of message compression can be more expensive

than the benefit depending on workload and hardware

configuration. Clearly, we need a more sophisticated

algorithm that determines which messages to compress

in order for this technique to work well across various

workloads.

5. CLOSING REMARKS

The SIGMOD 2009 and 2010 programming contests

were a chance for many students (at both the undergradu-

ate and graduate levels) to discover and design parts of

the architecture of a distributed database management

system. The contest was used in several universities as

part of the curriculum or as an optional alternative to

other assignments. This programming contest will run

again next year, organized by Stavros Harizopoulos and

Mehul Shah from HP Labs. It is our hope that this com-

petition will help foster the next generation of database

researchers and practitioners.

6. ACKNOWLEDGMENTS

We are very grateful to the sponsors of the program-

ming contest: NSF, Microsoft (platinum sponsors); Ama-

zon, INRIA Saclay (gold sponsors); Exalead, Yahoo!

(silver sponsors). We would also like to acknowledge our

advisory board: Serge Abiteboul, Magdalena Balazinska,

Samuel Madden, and Michael Stonebraker.

7. REFERENCES

[1] Goetz Graefe. Volcano - an extensible and parallel

query evaluation system. IEEE Trans. Knowl. Data

Eng., 6(1):120–135, 1994.

[2] Raghu Ramakrishnan and Johannes Gehrke.

Database Management Systems. McGraw-Hill, New

York, USA, third edition, 2002.


	Context
	Task Description
	The Competition
	Key Ideas behind Leading Implementations
	Closing Remarks
	Acknowledgments
	References

