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Alexis Angelidis

University of Otago, New Zealand

Abstract
Sweepers and swirling-sweepers are operations for modeling by space deformation. The artist describes a defor-
mation as paths through which tools are moved. The movement of a tool causes a deformation of the working
shape along the path of the tool. This is in accordance with a clay modeling metaphor, easy to understand and
predict. It is desirable that deformations for modeling are ‘foldover-free’, that is parts of deformed space can-
not overlap so that the deformations are reversible. Both sweepers and swirling-sweepers satisfy this criteria. In
addition, swirling-sweepers preserve the shape’s volume.

1. Introduction

In Computer Graphics, in the context of interactive shape
modeling, a common characteristic of popular techniques is
the possibility for the artist to operate on a shape by modify-
ing directly the shape’s mathematical description. But with
the constant increase of computing power, it is realistic and
more effective to insert some interface between the artist and
the mathematics describing a shape.

Space deformation is a family of techniques that permits
describing operations on a shape independently from that
shape’s description. With this separation, new shape descrip-
tions can easily benefit from existing space deformation, and
further development can be carried in parallel. While space
deformation has been used for solving a wide range of prob-
lems in Computer Graphics, they are missing a framework
specific to interactive shape modeling. Sweepers is a frame-
work for defining shape operations, in which the basis of
operations is simply gesture.

Shapes produced with sweepers are coherent because
sweepers are foldover-free: there is no ambiguity as to which
points of space belong to the shape. A non foldover-free de-
formation would produce a self intersection of the shape,
which cannot be cured with any space deformation. Sweep-
ers were introduced in [AWC04], and are presented in Sec-
tion 4.

In addition to gesture as the basis of creation and shape
coherency, another concept familiar to most users is the
preservation of material. A shape modeling technique that
preserves volume would take even more advantage of user

a priori knowledge of shapes. Swirling-sweepers is a tech-
nique that preserves a shape’s volume independently from
its description. In conjunction with any other sweeper
operation, the volume of a shape can be increased, de-
creased or preserved. Swirling-sweepers were introduced in
[ACWK04] and are presented in Section 5.

Sweeper and swirling-sweeper operations are indepen-
dent from any shape description, since they are deformation
of space. In order to visualize their effect on a shape, we
propose in Section 6 a shape description which is suitable
for the task of interactive shape modeling, and animation to
some extent [AW04].

2. Modeling with deformation

A shape is the result of repeated deformation of the space
in which the initial shape is embedded. A convenient for-
malism can be used for specifying any modeling operation
by deformation: the modeling equation gives the final shape
S(tn) as a function the initial shape S(t0):

S(tn) = {
n−1
Ω

i=0
fti 7→ti+1(p)|p ∈ S(t0)} (1)

where
n−1
Ω

i=0
fki 7→ki+1(p) = fkn−1 7→kn ◦ · · · ◦ fk0 7→k1(p)

The operator Ω expresses the finite repeated composition of
functions. Each function fti 7→ti+1 : R

3 7→ R
3 is a deformation

that transforms every point p of space at time ti into a point of
space at time ti+1. Sections 3, 4 and 5 will focus on defining
functions fti 7→ti+1 .
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Normal Deformation: Computing accurate normals to the
surface is very important, since the normals’ level of qual-
ity will dramatically affect the visual quality of the shape.
Let us recall that in order to compute the new normals,
the previous normals are multiplied by the co-matrix† of
the Jacobian [Bar84]. The Jacobian of f at p is the matrix
J( f ,p) = ( ∂ f

∂x (p), ∂ f
∂y (p), ∂ f

∂z (p)). Let us also recall that the
following expression is a convenient way to compute the co-
matrix of J = (~jx,~jy,~jz), where the vectors~jx,~jy and~jz are
column vectors:

JC =
(

~jy ×~jz,~jz ×~jx,~jx ×~jy
)

(2)

3. Related work

This section overviews several existing space deformation
techniques, organized in three groups: axial deformations,
lattice-based deformations and tool-based deformations. For
the sake of clarity, we present existing space deformations
aligned with the axes~ex,~ey and~ez and within the unit cube
[0,1]3, whenever possible. But a mere change of coordi-
nates enables the artist to place the deformation anywhere
in space. Note that affine transformations are the simplest
case of space deformations.

3.1. Axial space deformations

Axial space deformations are a subset of space deformations
whose control-points are geometrically connected along a
curve. The curve may be initially straight or bent. To com-
pare existing deformation techniques from the same point of
view, we use~ez as the common axis of deformation, which
leads to slight reformulation in a few cases.

3.1.1. Global and local deformations of solid primitives

A. Barr defines space tapering, twisting and bending via ma-
trices whose components are functions of one space coordi-
nate [Bar84]. We denote (x,y,z)> the coordinates of a point.
We show in Figures 1, 2, and 3 the effects of these opera-
tions, and we give their formula in the form of 4× 4 homo-
geneous matrices to be applied to the coordinates of every
point in space to be deformed.

3.1.1.1. Tapering operation: The function r is monotonic
in an interval, and is constant outside that interval.









r(z) 0 0 0
0 r(z) 0 0
0 0 1 0
0 0 0 1









Figure 1: Taper deformation of a super-ellipsoid shape. A descrip-
tion of the shape can be found in [Gla89].

† Matrix of the co-factors

3.1.1.2. Twisting operation: The function θ is monotonic
in an interval, and is constant outside that interval.









cos(θ(z)) −sin(θ(z)) 0 0
sin(θ(z)) cos(θ(z)) 0 0

0 0 1 0
0 0 0 1









Figure 2: Twist deformation of a super-ellipsoid.

3.1.1.3. Bending operation: This operation bends space
along the axis y, in the 0 < z half-space. The desired radius
of curvature is specified with ρ. The angle corresponding to
ρ is θ = ẑ/ρ. The value of ẑ is the value of z, clamped in the
interval [0,zmax].









cosθ 0 sinθ ρ−ρcosθ− ẑsinθ
0 1 0 0

−sinθ 0 cosθ ρsinθ− ẑcosθ
0 0 0 1









Figure 3: Bend deformation of a super-ellipsoid.

A. Barr observes that rendering the deformed shape with
rays of light is equivalent to rendering the undeformed shape
with curves of light. The curves of light are obtained by ap-
plying the inverse of the deformation to the rays. Because
the deformation he proposes are not local, the portions of
the rays to deform can be quite large.

3.1.2. A generic implementation of axial procedural
deformation techniques

C. Blanc extends A. Barr’s work to mold, shear and pinch
deformations [Bla94]. Her transformations use a function of
one or two components. She calls this function the shape
function. Examples are shown in Figures 4, 5, and 6.









r(z) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Figure 4: Pinch deformation of a super-ellipsoid.
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







r(tan−1(x,y)) 0 0 0
0 r(tan−1(x,y)) 0 0
0 0 1 0
0 0 0 1









Figure 5: Mold deformation of a super-ellipsoid.









1 0 0 s(z)
0 1 0 0
0 0 1 0
0 0 0 1









Figure 6: Shear deformation of a super-ellipsoid.

3.1.3. A generalized de Casteljau approach to 3d
free-form deformation

Y.K. Chang and A.P. Rockwood propose a polynomial de-
formation that efficiently achieves “Barr”-like deformations
and more [CR94], using a Bézier curve with coordinate sets
defined along~ez at the curve’s control knots (z0,z1 . . . ,zn) ∈
[0,1]n+1. A reference straight segment, z ∈ [0,1], is de-
formed by specification of coordinate sets (ci,~ui,~vi,~wi)
along that segment. The shape follows the deformation of
the segment, as shown in Figure 7.

x
y

z

x
y

z

c

c
c

c

0

1

2

3

x
y

z

x
y

z

straight initial control points deformed
axis shape and handles shape

Figure 7: Example of the deformation of Y.K. Chang and
A.P.Rockwood applied to a super-ellipsoid. There is no need to de-
fine a pair of handles for the end control point.

To compute the image q of a point p of the original shape,
the matrix transforming a point to a local coordinate set is
needed:

Mi =









ui,x vi,x wi,x ci,x
ui,y vi,y wi,y ci,y
ui,z vi,z wi,z ci,z
0 0 0 1









(3)

where ~wi = ci+1 − ci , and~ui,~vi are the handles.

Using this matrix, the deformation of a point is obtained re-
cursively with the de Casteljau algorithm for evaluating a
Bézier curve:

f j
i (p) = (1−pz) f j−1

i (p)+pz f j−1
i+1 (p) (4)

where f 0
i (p) = Mi ·p

The original generalized de Casteljau algorithm presented
by Y.K. Chang and A.P. Rockwood is a recursion on affine
transformations rather than on points. They remark that their
recursion simplifies to the classic de Casteljau algorithm
when the affine transformations are degenerate, and use the
degenerate case in all their examples. As we show in Fig-
ure 8, this method is capable of performing “Barr”-like de-
formations and more.

initial stretch taper

swell twist bend

Figure 8: Deformation of a super-ellipsoid.

3.1.4. Axial deformation

The limitation of the methods presented so far is the ini-
tial rectilinear axis. If the shape is initially excessively bent,
the manipulation of an initially straight control axis will not
induce a predictable behavior of the shape. F. Lazarus et
al. develop an extension of axial-based deformations using
an initially curved axis [LCJ94]. Let us define a parametric
curve c(u). A point p in space is attached to local coordinates
along the curve. The origin of this local coordinate system is
c(up), the closest point to p on the curve, and the axes are
those of an extended Frenet frame that discards vanishing
points [Blo90]. To find the closest point to p on curves, B.
Crespin proposes an efficient algorithm based on subdivi-
sion [Cre99]. The axes are computed by propagating along
the curve a frame defined at one extremity of the curve. The
axes consist of three vectors: a tangent~t(u), a normal ~n(u)
and a binormal~b(u). The propagated frame is computed as
follows:

• the unit tangent at the origin is given by the equation of
the curve:
~t(0) =

dc(0)
du /‖ dc(0)

du ‖.
• the normal and binormal are given by the Frenet frame, or

can be any pair of unit vectors such that the initial frame
is orthonormal.

To compute the next frame, a rotation matrix is needed. The
purpose of this matrix is to minimize torsion along the curve.
Numerous constructions of the rotation matrix require a sim-

c© The Eurographics Association 2005.
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ple formula:

R =





axx+θ axy+bz azx−by
axy−bz ayy+θ ayz+bx
azx+by ayz−bx azz+θ



 (5)

where
(ax,ay,az)

> =
~t(ui)×~t(ui+1)

‖~t(ui)×~t(ui+1)‖
α = 1−θ

θ =~t(ui) ·~t(ui+1) β =
√

1−θ2
(6)

axx = αa2
x axy = αaxay bx = βax

ayy = αa2
y ayz = αayaz by = βay

azz = αa2
z azx = αazax bz = βaz

(7)

Given a frame at parameter ui, the next axes of a frame at
ui+1 are computed as follows:

• the tangent is defined by the equation of the curve:
~t(ui+1) =

dc(ui+1)
du /‖ dc(ui+1)

du ‖.
• the normal is given by the rotation of the previous normal:

~n(ui+1) = R ·~t(ui).
• the binormal is given by a cross product:~b(ui+1) =~t(ui)×

~n(ui).

The choice of the size of the step, ui+1 −ui, depends on the
trade-off between accuracy and speed. B. Crespin extends
the axial deformation to surface deformation [Cre99].

3.1.5. Wires: a geometric deformation technique

K. Singh and E. Fiume introduce wires, a technique which
can easily achieve a very rich set of deformations with curves
as control features [SF98]. Their technique is inspired by
armatures used by sculptors.

A wire is defined by a quadruple (R,W,s,r): the reference
curve R, the wire curve W, a scaling factor s that controls
bulging around the curve, and a radius of influence r. The
set of reference curves describes the armature embedded in
the initial shape, while the set of wire curves defines the new
pose of the armature.

On a curve C, let pC denote the parameter value for which
C(pC) is the closest point to p. Let us also denote C′(pC) the
tangent vector at that parameter value.

The reference curve, R, generates a scalar field F : R
3 7→

[0,1]. The function F which decreases with the distance to
R, is equal to 1 along the curve and equals 0 outside a neigh-
borhood of radius r. The algorithm to compute the image q
of a point p influenced by a single deformation consists of
three steps, illustrated in Figure 9:

• Scaling step. The scaling factor is modulated with F. The
image of a point p after scaling is: ps = R(pR) + (p −
R(pR))(1+ sF(p)), where pR denotes the parameter value
for which R(pR) is the closest to p.

• Rotation step. Let θ be the angle between the tangents
R′(pR) and W′(pR). The point ps is rotated around axis
R′(pR)× W′(pR) about center R(pR) by the modulated
angle θ F(p). This results in point pr

• Translation step. Finally, a translation is modulated to pro-
duce the image
pde f = pr +(W(pR)−R(pR)).

R’(p  )R

W’(p  )R RW(p  )

p
sp

r

R(p  )

p

R

3.translate

R
q

1.scaling

2.rotation

W

F>0F=0

Figure 9: Top: deformation of a point by a single wire. Bottom:
deformation of a shape with multiple wires (courtesy of [SF98]).

They propose different blending methods in the case when
a point is subject to multiple wires. These methods work by
taking weighted combinations of the individually deformed
point. Let us denote pi the deformation of p by wire i. Let
∆pi = pi −p. The simplest deformation is:

pde f = p+ ∑n
i=1 ∆pi‖∆pi‖

m

∑n
i=1 ‖∆pi‖m

Reference curves Wire curves
Figure 10: Blending weights based on summed displacement mag-
nitudes. This blending is not free from artifacts: notice the creases
around the intersection in the upper-right figure.

The scalar m is defined by the artist. This expression is
not defined when m is negative and ‖∆pi‖ is zero. To fix
this, they suggest to omit the wires for which this is the case.
Their second solution is to use another blending defined for
both positive and negative values of m:

c© The Eurographics Association 2005.
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pde f = p+
∑n

i=1 ∆pi ∏ j 6=i ‖∆p j‖
|m|

∑n
i=1 ∏ j 6=i ‖∆p j‖|m|

Reference curves Wire curves
Figure 11: Blending weights based on multiplied displacement
magnitudes. The deformation is defined at the intersection of the
reference curves.

In order to use unmoved wires as anchors that hold the
surface, they use Fi(p) instead of ∆pi as a measure of prox-
imity:

pde f = p+ ∑n
i=1 ∆piFi(p)m

∑n
i=1 Fi(p)m

Reference curves Wire curves
Figure 12: Blending weights based on influence function. The un-
moved wire holds space still. This blending is not free from artifacts:
notice the creases around the intersection in the upper-right figure.

Other capabilities of wires can be found in the original
paper [SF98]. Note that the expensive part of the algorithm
is computing the distance from each curve to each deformed
surface point.

3.1.6. Blendeforming: ray traceable localized
foldover-free space deformation

As explained in the introduction, there are practical rea-
sons for which a space deformation should be foldover-free.
D. Mason and G. Wyvill introduce blendeforming [MW01].
A deformation is specified by moving a point or the con-
trol points of a curve along a constrained direction. Space
follows the deformation of these control features in a pre-
dictable manner.

They define the blendeforming deformation as a bundle
of non-intersecting streamlines. The streamlines are par-
allel, and described by a pair of functions: bx,y : R

2 7→
[−dmax,dmax] and bz : [0,1] 7→ [0,1]. Function bx,y controls
the amount of deformation for each individual z-streamlines,
and the choice of function bz affects the maximum com-
pression of space along the streamlines. The deformation of
point p = (x,y,z)> is

pde f = (x,y,zde f )
> (8)

where zde f = z+bx,y(x,y) bz(z)

It is the definition of bz together with a corresponding thresh-
old dmax that prevents foldovers, as shown in Figure 13. The
following function is a possible choice for bz(z), used in the
example:

bz(z) =

{

16z2(1− z)2 if z ∈ [0,1]
0 otherwise

(9)

with dmax =
3
√

3
16

' 0.324

Functions permitting larger values for dmax can be found in
the original paper. Since bx,y is independent of z, any func-
tion with values in [−dmax,dmax] can be used for it, regard-
less of the slope. Because the amplitude of the effect of a
blendeforming function is bounded by the dmax threshold,
it is obvious that modeling an entire shape uniquely with
blendeforming functions can be rather tedious. In the orig-
inal paper, the authors also propose bending blendeforming
functions, defined in cylindrical coordinates.

x

y

z

x

y

z

x

y

z

(a) (b) (c)
Figure 13: (a) Initial scene: two parallel planes. (b) Blende-
forming, with bx,y(x,y) = (x2 − x + y2 − y − 1/2)2. The value of
dmax guarantees that the two planes will never intersect. (c) With
dmax < d, foldover occurs: the lower plane intersects the higher
plane.

3.2. Lattice-based space deformations

The limitation of axial-based or surface-based space defor-
mation is the arrangement of the controls along a curve or on
a surface. Note that this statement is untrue only for wires,
which permits the blending of the controls [SF98]. Lattice-
based space deformations are techniques that allow control
points to be connected along the three dimensions of space.
There are two ways of understanding lattice-based deforma-
tion, related to the manner in which the artist expresses the
deformation. Let us denote the space deformation function
by f .

In the first interpretation of lattice-based deformations, the
artist provides pairs of points: a source point and a desti-
nation point, (pi,qi). The deformation f will interpolate or
approximate the pairs in this way f (pi) = fp(pi) ≈ qi. The
function fp is a position field. A position field does not have
any physical equivalent to which the artist or scientist can
relate, and requires a certain amount of imagination to be
visualized.

In the second interpretation of lattice-based deformations,
the artist provides a source point and a displacement of that

c© The Eurographics Association 2005.
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point, (pi,~vi). The deformation f will interpolate or approx-
imate the pairs in this way f (pi) = pi + f~v(pi)≈ pi +~vi. The
function f~v is a vector field. There is a convenient physical
analogy to a vector field. Vector fields are used in fluid me-
chanics to describe the motion of fluids or to describe fields
in electromagnetics [Rut90, Gri]. This analogy is of great
help for explaining and creating new space deformations.

While the effect of using either a position field or a vector
field is equivalent, the vector field also gives more insight
in the process of deforming space: in lattice-based space de-
formations, the path that brings the source point onto the
desired target point is a straight translation using a vector.
In this section on lattice-based space deformation, we will
therefore consider the construction of a vector field rather
than a position field whenever possible.

3.2.1. Free-form deformation of solid geometric models

The effect of Free-Form Deformation (FFD) on a shape is
to embed this shape in a piece of flexible plastic. The shape
deforms along with the plastic that surrounds it [SP86].

The idea behind FFD is to interpolate or approximate vec-
tors defined in a 3d regular lattice. The vectors are then used
to translate space. In their original paper, T. Sederberg and
S. Parry propose to use the trivariate Bernstein polynomial
as a smoothing filter. Let us denote by ~vi jk the (l + 1)×
(m + 1)× (n + 1) control vectors defined by the artist. The
smoothed vector field is a mapping p ∈ [0,1]3 7→ R

3.

~v(p) =

∑l
i=0

(

i
l

)

(1− x)l−ixi
(

∑m
j=0

(

j
m

)

(1− y)m− jy j

(

∑n
k=0

(

k
n

)

(1− z)n−kzk
))

~vi jk

(10)

Then the deformation of a point is a translation of that point

pde f = p+~v(p) (11)

In order for the deformation to be continuous across the faces
of the FFD cube, the boundary vectors should be set to zero.
A drawback of using the Bernstein polynomial is that a con-
trol vector ~vi jk has a non-local effect on the deformation.
Hence updating the modification of a control vector requires
updating the entire portions of shape within the lattice. For
this reason, J. Griessmair and W. Purgathofer propose to use
B-Splines [GP89].

In commercial software, the popular way to let the artist
specify the control vectors is to let him move the control
points of the lattice, as shown in Figure 14(c). A drawback
often cited about this interface is the visual self occlusion
of the control points. This problem increases with the in-
crease in resolution of the lattice. Another drawback is the
manipulation of control points, which requires high skills in
spacial apprehension from the artist. Clearly, practical FFD
manipulation through control-points can only be done with
reasonably small lattices.

(a) (b) (c) (d)
Figure 14: FFD. (a) Lattice of size 33. (b) Initial shape. (c) The
popular interaction with an FFD lattice consists of displacing the
control points. (d) The discrete vectors.

3.2.2. Extended free-form deformation (EFFD)

Due to the practical limit of the size of the FFD-lattice, the
major restriction of an FFD is strongly related to the ar-
rangement of control-points in parallelepipeds. The paral-
lelepipeds are also called cells. To provide the artist with
more control, S. Coquillart proposes a technique with non-
parallelepipedic and arbitrarily connected cells. The tech-
nique is called Extended Free-Form Deformation (EFFD)
[Coq90].

To model with EFFD, the artist first builds a lattice by
placing the extended cells anywhere in space, and then ma-
nipulates the cells to deform the shape. An extended cell is
a small FFD of size 44. The transformation from the cell’s
local coordinates s = (u,v,w)> to world coordinates is:

p(s) =

∑3
i=0

(

i
3

)

(1−u)3−iui
(

∑3
j=0

(

j
3

)

(1− v)3− jv j

(

∑3
k=0

(

k
3

)

(1−w)3−kwk
))

pi jk

(12)

The eight corners pi jk∈{0,3}3 of a cell are freely defined by
the artist. The position of the remaining 44 − 8 are con-
strained by the connection between cells, so that continuity
is maintained across boundaries. This is done when the artist
connects the cells. Because the lattice is initially deformed,
finding a point’s coordinates s in a cell is not straightforward.
The local coordinates of a point p in a cell are found by solv-
ing Equation (12) in s using a numerical iteration. This can
be unstable in some cases, although the authors report they
did not encounter such cases in practice. Once s is found,
the translation to apply to p is found by substituting in Equa-
tion (12) the control points pi jk with the control vectors~vi jk.
Note that specifying the control points, the cells and the con-
trol vectors is rather tedious, and results shown in the paper
consist essentially of imprints.

3.2.3. Free-form deformations with lattices of arbitrary
topology (SFFD)

R.A. MacCracken and K.I. Joy have established a method
that allows the user to define lattices of arbitrary shape and
topology [MJ96]. The method is more stable than EFFD
since it does not rely on a numerical iteration technique.

Their method is based on subdivision lattices. We will re-
fer to it as SFFD, for subdivision FFD. The user defines a

c© The Eurographics Association 2005.
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control lattice, L: a set of vertices, edges, faces and cells. A
set of refinement rules are repeatedly applied to L, creating
a sequence of increasingly finer lattices {L1,L2, . . .Ll}. The
union of cells define the deformable space. After the first
subdivision, all cells can be classified into cells of different
type: type-n cells, n ≥ 3. See [MJ96] for the rules.

Although there is no available trivariate parameterization
of the subdivision lattice, the correspondence between world
coordinates and lattice coordinates is possible thanks to the
subdivision procedure. The location of a vertex embedded
in the deformable space is found by identifying which cell
contains it. Then, for a type-3 cell, trilinear parameterization
is used. For a type-n cell, the cell is partitioned in 4n tetra-
hedra, in which the vertex takes a trilinear parameterization.
Each point is tagged with its position in its cell.

Once a point’s location is found in the lattice, finding the
point’s new location is straightforward. When the artist dis-
places the control points, the point’s new coordinates are
traced through the subdivision of the deformed lattice.

3.2.4. Direct manipulation of free-form deformations
(DMFFD)

The manipulation of individual control points makes FFD
and EFFD tedious methods to use. Two groups of re-
searchers, P. Borrel and D. Bechmann, and W.M. Hsu et
al. propose a similar way of doing direct manipulation of
FFD control points (DMFFD) [BB91, HHK92]. The artist
specifies translations~vi at points pi in the form (pi,~vi). The
DMFFD algorithm finds control vectors that satisfy, if pos-
sible, the artist’s desire. Let us define a single input vector~v
at point p. The FFD Equation (10) must satisfy

~v = B(p)(~vi jk) (13)

Let ν = (3(l + 1)(m + 1)(n + 1)). The matrix B is the 3×ν
matrix of the Bernstein coefficients, which are functions of
point p. Note that their method is independent of the cho-
sen filter: instead of the Bernstein polynomials, W.M. Hsu
et al. use B-Splines and remark that Bernstein polynomials
can be used. P. Borrel and D. Bechmann on the other hand
found that using simple polynomials works just as well as
B-Splines. The size of the vector of control vectors (~vi jk)
is 3(l + 1)(m + 1)(n + 1). When the artist specifies µ pairs
(pi,~vi), the FFD Equation (10) must satisfy a larger set of
equations:







~v1
...

~vµ






= B ·







~vi jk
...

~vi jk






where B =







B(p1)
...

B(pµ)






(14)

This set of equations can either be overdetermined or under
determined. In either case, the matrix B cannot be inverted
in order to find the~vi jk. The authors use the Moore-Penrose
pseudo-inverse, B+. If the inverse of B> ·B exists, then

B+ = (B> ·B)−1 ·B> (15)

It is however preferable to compute the Moore-Penrose
pseudo-inverse using singular value decomposition (SVD).
The µ×ν matrix B can be written

B = U ·D ·V> (16)

where U is an µ × µ orthogonal matrix, V is an ν × ν or-
thogonal matrix and D is an µ×ν diagonal matrix with real,
non-negative elements in descending order.

B+ = V ·D−1 ·U> (17)

Here, the diagonal terms of D−1 are simply the inverse of
the diagonal terms of D.

The size of the basis, or, equivalently the number of con-
trol points, has a direct effect on the locality of the deforma-
tion around the selected point. In their approach, P. Borrel
and D. Bechmann pursue the reasoning even further, and de-
fine a technique suitable for n-dimensional objects [BB91].
In the context of shape animation, i.e. in R

4 with time as the
fourth dimension, the Bernstein, B-Splines or simple poly-
nomials are inappropriate. They propose to use a basis that
does not change the initial time, t0, and final time, t f , of an
object:

Bt(p, t) =
(

(t − t0)(t − t f ) , (t − t0)(t − t f )t , (t − t0)(t − t f )t
2 , ...

)>

3.2.5. Simple constrained deformations for geometric
modeling and interactive design (scodef)

In simple constrained deformations (scodef), P. Borrel and
A. Rappoport propose to use DMFFD with radial basis func-
tions (RBF) [BR94]. The artist defines constraint triplets
(pi,~vi,ri): a point, a vector that defines the desired image
of the point, and a radius of influence. Let φi(p) denote the
scalar function φ(

‖p−pi‖
ri

) for short. The motivation of us-
ing RBF is to keep the deformation local, in the union of
spheres of radius ri around the points pi. A naive vector field
would be:

~v(p) =
n

∑
i=1

~viφi(p) (18)

Unless the points pi are far apart enough, Equation (18) will
not necessarily satisfy the artist’s input~v(pi) =~vi if the func-
tions φi overlap. However, this can be made possible by sub-
stituting the vectors~vi with suitable vectors ~wi.

~v(p) =
n

∑
i=1

~wiφi(p) (19)

These vectors ~wi can be found by solving a set of 3n equa-
tions:

~vi = (~w1 . . .~wn) ·







φ1(pi)
...

φn(pi)






where i ∈ [1,n] (20)
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Let us take the transpose, and arrange the n equations in
rows. The following equation is the equivalent of Equa-
tion (14), but with radial basis functions:









~v>1
...

~v>n









=







φ1(p1) . . . φn(p1)
...

φ1(pn) . . . φn(pn)






·









~w>
1
...

~w>
n









(21)

where i ∈ [1,n]

Let Φ be the n×n square matrix of Equation (21). This ma-
trix takes the role of B in Equation (14). Since Φ can be
singular, the authors also use its pseudo-inverse Φ

+ to find
the vectors ~wi.

3.2.6. Dirichlet free-form deformation (DFFD)

With DFFD, L. Moccozet and N. Magnenat-Thalmann pro-
pose a technique that builds the cells of a lattice automati-
cally [MMT97], relieving the artist from a tedious task. The
lattice cells are the cells of a Voronoï diagram of the control
points, shown in Figure 15. The location of a point within a
cell is neatly captured by the Sibson coordinates. The naive
deformation of a point p is given by interpolating vectors
defined at the control points with the Sibson coordinate.

p +=
n

∑
i=1

ai

a
~vi (22)

Where ai is the volume of cell i stolen by p, and a is the vol-
ume of the cell of p. This interpolation is only C0. They use
a method developed by G. Farin [Far90] to define a contin-
uous parameterization on top of the Sibson coordinates. The
interpolation is made of four steps:

• build the local control net
• build Bézier abscissa
• define Bézier ordinates such that the interpolant is C1

• evaluate the multivariate Bernstein polynomial using Sib-
son coordinates.

p3

p4

p2

p1

p5

a

p3

p1

p2

p5

p4
p

(a) (b)

a
a

a
a

a5

4

3
2

1

p3

p2

p1

p5

p4

(c) (d)
Figure 15: 2D illustration of the Sibson coordinates (a) Voronoï
cells of the control points. (b) Voronoï diagram is updated after the
insertion of point p. (c) The areas stolen by the point p from its nat-
ural neighbors give the Sibson coordinates ai/a. (d) Local control
net, with Bézier abscissa.

3.2.7. Preventing self-intersection under free-form
deformation

In FFD, EFFD and DMFFD, if the magnitude of a control-
vector is too high, the deformation may produce a self-
intersection of the shape’s surface (see a self-intersection in
Figure 13). Once the shape’s surface self-intersects, there is
no space deformation that can remove the self-intersection.
The appearance of this surface incoherency is the result of
a space foldover: the deformation function is a surjection of
R

3 onto R
3, not a bijection. J. Gain and N. Dodgson present

foldover detection tests for DMFFD deformations that are
based on uniform B-Splines [GD01]. They argue that a nec-
essary and sufficient test is too time consuming, and present
an alternative sufficient test. Let us define qi jk, the deformed
control points of the lattice. If the determinants of all the fol-
lowing 3×3 matrices are all positive, there is no foldover.

φi jk = s det
(

qi±1 jk −qi jk,qi j±1k −qi jk,qi jk±1 −qi jk

)

where the sign s is 1 if (i±1, j±1,k±1) are
clockwise, else −1.

(23)

The idea underlying the test is that the determinant of three
column vectors is the volume of the parallelepiped defined
by these vectors. A negative volume detects a possible singu-
larity in the deformation. A technique for efficiently testing
several determinants at once can be found in the original pa-
per.

This test can then be used to repair the DMFFD. Let us
define (pi,~vi), the pairs of points and vectors defining the
DMFFD. If a foldover is detected, the DMFFD is recursively
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split into two parts: (pi,~vi/2) and (pi +~vi/2,~vi/2). The pro-
cedure eventually converges, and the series of DMFFDs ob-
tained are foldover-free and can be applied safely to the
shape.

3.3. Tool-based space deformations

Lattice-based techniques are capable of building a wide
range of vector fields. But when dealing with a problem in
animation, modeling or visualization, a technique tailored
for that specific problem will be more suitable. This sec-
tion is about techniques that focus on a particular unre-
solved problem of space deformation, and solve it in an orig-
inal way.

3.3.1. Interactive space deformation with hardware
assisted rendering

Y. Kurzion and R. Yagel present ray deflectors [KY97]. The
authors are interested in rendering the shape by deforming
the rays, as opposed to directly deforming the shape. To de-
form the rays, one needs the inverse of the deformation that
the artist intends to apply to the shape. Rather than defining
a deformation and then trying to find its inverse, the authors
directly define deformations by their inverse. Their tool can
translate, rotate and scale space contained in a sphere, lo-
cally and smoothly. Moreover they define a discontinuous
deformation that allows the artist to cut space, and change a
shape’s topology. A tool is defined within a ball of radius r
around a center c. Let ρ be the distance from the center of
the deflector c and a point p.

ρ = ‖p− c‖ (24)

3.3.1.1. Translate deflector: To define a translate deflec-
tor, the artist has to provide a translation vector,~t. The effect
of the translate deflector will be to transform the center point,
c, into c+~t.

fT(p) =

{

p−~t(1− ρ2

r2 )2 if ρ < r
p otherwise

(25)

where θ ∈ R

3.3.1.2. Rotate deflector: To define a rotate deflector, the
artist has to provide an angle of rotation, θ, and a vector,~n,
about which the rotation will be done. The reader can find
the expression of a rotation matrix, Rθ′,~n,c, in Appendix ??.
Let us call θ′ an angle of rotation that varies in space:

θ′ = −θ(1− ρ2

r2 )4

fR(p) =

{

Rθ′,~n,c ·p if ρ < r
p otherwise

(26)

where ‖~t‖ ∈ [0,
3
√

3r
8

]

3.3.1.3. Scale deflector: To define a scale deflector, the
artist has to provide a scale factor s. The scale deflector acts
like a magnifying glass.

fS(p) =

{

p− (p− c)(1− ρ2

r2 )4s if ρ < r
p otherwise

(27)

where s ∈ [−1,1]

3.3.1.4. Discontinuous deflector: To define a discontinu-
ous deflector, the artist has to provide a translation vector,~t.
The deflector is split into two halves, on each side of a plane
going through c and perpendicular to~t. In the half pointed at
by~t, the discontinuous deflector will transform c, into c +~t,
while in the other half, the discontinuous deflector will trans-
form c, into c−~t. The effect will be to cut space. The defor-
mation applied to the rays is:

fD(p) =











p−~t(1− ρ2

r2 )2 if ρ < r and 0 < (p− c) ·~t
p+~t(1− ρ2

r2 )2 if ρ < r and (p− c) ·~t < 0
p otherwise

(28)

where θ ∈ R

Since this deformation is discontinuous on the disk separat-
ing the two halves of the deformation, a ray crossing that
disk will be cut in two, as we show in Figure 16(c). Thus
a shape intersection algorithm will have to march along the
ray from the two sides of the ray, until each curve crosses the
separating disk. This deformation assumes that the shape’s
representation has an inside and outside test. Note that other
authors have extended FFD for dealing with discontinu-
ities [SE04].

(a) (b) (c)
Figure 16: (a) Discontinuous deflector as observed by the artist.
Two arbitrary rays are shown. (b) Simple case, where the ray of
light crosses only one hemisphere. (c) When the ray of light changes
hemisphere, the curve of light is subject to a discontinuity.

3.3.2. Geometric deformation by merging a 3D object
with a simple shape

P. Decaudin proposes a technique that allows the artist to
model a shape by iteratively adding the volume of simple
3D shapes [Dec96]. His method is a metaphor of clay
sculpture by addition of lumps of definite size and shape.
His deformation function is a closed-form, as opposed
to a numerical method that would explicitly control the
volume [HML99].
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Figure 17: Steps of the modeling of a cat (courtesy of [Dec96]).

Loosely speaking, this technique inflates space by blowing
up a tool in space through a hole. This will compress space
around the point in a way that preserves the outside volume.
Hence if the tool is inserted inside the shape, the tool’s vol-
ume will be added to the shape’s volume. On the other hand,
if the tool is inserted outside the shape, the shape will be
deformed but its volume will remain constant. This is illus-
trated for the 2D case in Figure 19. A restriction on the tool
is to be star-convex with respect to its center c . The defor-
mation function is‡ (see Figure 18):

f3D(p) = c+ 3
√

ρ(p)3 + r(p)3~n (29)

• ρ(p) is the magnitude of the vector~u = p− c.
• r(p) is the distance between c and the intersection of the

tool with the half-line (c,~u).
• ~n =~u/‖~u‖ is the unit vector pointing from c to p.

If the tool was not a star-convex in c, then r(p) would
be ambiguous. The deformation is foldover-free. It is con-
tinuous everywhere except at the center c. The effect of the
deformation converges quickly to the identity with the in-
creasing distance from c. The deformation can be considered
local, and is smooth everywhere except at c. An example in
3D is shown in Figure 17. A feature of this space deforma-
tion which is rare, is that it has an exact yet simple inverse
in the space outside the tool:

f−1
3D (p) = c+ 3

√

ρ(p)3 − r(p)3~n (30)

‡ The 2D case is obtained by replacing 3 with 2.

c

r
ρ

T

p
f(p)

Figure 18: The insertion of a tool at center c affects the position
of point p. See the deformation in Equations (29).

(a)

(b)

Figure 19: (a) Deformation of a shape (green) by blowing up a
tool (yellow) outside the shape. The shape’s area is preserved. (b)
Deformation of a shape by blowing up a tool inside the shape. The
shape’s area is increased by that of the tool.

3.3.3. Implicit free-form deformations (IFFD)

B. Crespin introduces Implicit Free-Form Deformations
(IFFD) [Cre99]. Note that though it is called implicit, the
deformation is explicit. IFFD is rather a technique inspired
by implicit surfaces, a vast branch of computer graphics
whose presentation is beyond the scope of this manuscript
[BBB∗97]. The field φ ∈ [0,1] generated by a skeleton mod-
ulates a transformation, M, of points. The deformation of
point p with a single function is:

f (p) = p+φ(p)(M ·p−p) (31)

He proposes two ways to combine many deformations si-
multaneously. Let use denote pi the transformation of p with
deformation fi. The first blending is shown in Figure 20. For
M, we have used a translation matrix.
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pde f = p+ ∑n
i=1(pi−p)φi(p)

∑n
i=1 φi(p)

Reference segments Translated segments
Figure 20: Blending weights based on summed displacement mag-
nitudes. The deformation is only defined where the amounts φ are
not zero, and is discontinuous at the interface ∑i φi = 0. This blend-
ing is useful when the deformed shape is entirely contained within
the field.

The second blending attempts to solve the continuity is-
sue, but requires the definition of supplementary profile
functions, γi. The purpose of the index i is to assign indi-
vidual profiles to skeletons.

pde f = p+ ∑n
i=1(pi−p)φi(p)γi(p)

∑n
i=1 φi(p)

Reference segments Translated segments
Figure 21: Blending weights based on displacement magnitudes
and profile functions. For control points, the technique works well.
For segments, there is a discontinuity near their intersection.

In order to produce Figure 21, the following γi function
was used:

γi(p) =







1− (1−σ2)2 if σ ∈ [0,1],
where σ = ∑n

i=1 φi(p)
1 otherwise

(32)

3.3.4. Twister

I. Llamas et al propose a method called twister in which
a twist transformation of points is weighted with a scalar
function [LKG∗03], i.e. in a similar way to IFFD but with
a transformation restrained to a twist. With this restriction,
they propose to weight single twists along the trajectory of
transformation rather than weighting the displacement. They
define a twist by transforming an orthonormal coordinate
system (o,~u,~v,~w) into (o′,~u′,~v′,~w′). The axis of the twist
is defined by a direction ~d and point a on the axis, while
the angle of rotation around the axis is α and the translation

factor along the axis is d:

~d = ~g
‖~g‖

where ~g = (~u′−~u)×(~v′−~v)+
(~v′−~v)×(~w′−~w)+
(~w′−~w)×(~u′−~u)

α = 2arcsin(
‖~u′−~u‖
2‖~d×~u‖

)

d = ~d · (o′−o)

a = o+o′−d~d
2 +

~d×(o−o′)
2 tan(α/2)

(33)

Their procedure for deforming a point p with a twist param-
eterized in t is:

1. Bring p into local coordinates: translate by −~a and then
rotate by a rotation that maps~d onto~z.

2. Apply the twist in local coordinates: translate by t d
along~z and rotate by t α around~z

3. Finally bring p back into world coordinates: rotate by a
rotation that maps~z onto~d and translate by~a

To weight the twist, they propose to use a piecewise scalar
function:

t(p) = cos2(π‖p−o‖/2r) (34)

For operations that require simultaneous twists, they propose
simply to add the displacement of the weighted twist. Details
for defining a two-point constraint can be found in the paper.

3.3.5. Scalar-field guided adaptive shape deformation
and animation (SFD)

J. Hua and H. Qin create a technique called SFD [HQ04].
They define a deformation by attaching space to the level-
sets of an animated scalar field. The artist is offered three
different techniques for animating a scalar field. Since there
are many ways of attaching a point to a level-set of a scalar
field, the authors choose the way that keeps the shape as rigid
as possible.

They define φ(t,p(t)), the scalar field which is animated
in time, t. Since a moving point, p(t), is attached to a level-
set of the scalar field, the value of φ at p is constant in time:

dφ
dt

= 0 (35)

The square of Equation (35) gives a constraint:

(
dφ
dt

)2 = 0 (36)

There are several ways of attaching a point to a level set
while the scalar field is moving. The simplest way would
be to make a point follow the shortest path, found when the
magnitude of the point’s speed, ‖~v(t)‖, is minimized. An-
other possibility, chosen by the authors, is to minimize the
variation of velocity, so that the deformation is as rigid as
possible. Instead of using the divergence of the speed to mea-
sure rigidity, they use an estimate by averaging the variation
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of speed between that point’s speed, ~v, and its neighbors’
speed,~vk:

(∇·~v)2 ≈ 1
k ∑

k
(~v−~vk)

2 (37)

Since this is a constrained optimization problem [Wei04],
there exists a Lagrange multiplier λ such that:

d
d~v

(
d
dt

φ(t,p(t)))2 +λ d
d~v

(∇·~v)2 =~0 (38)

According to the authors, λ is an experimental constant, used
to balance the flow constraint and speed variation constraint.
Its value ranges between 0.05 and 0.25. We rearrange this
equation and expand the derivative of φ with the chain rule:

d
d~v

(

(∇φ ·~v+
∂φ
∂t

)2 +λ(∇·~v)2
)

=~0 (39)

Let us define~̂v, the average of the velocity of all the adjacent
neighbors connected with edges to point p. If we substitute
(∇·~v)2 for its approximate given by Equation (37), and then
apply the derivative with respect to~v, we obtain:

(∇φ ·~v+
∂φ
∂t

)∇φ+λ(~v−~̂v) =~0 (40)

By solving the system of Equation (40), the updated position
is:

~v =~̂v−
~̂v ·∇φ+ ∂φ

∂t
λ+(∇φ)2 ∇φ (41)

The algorithm deforms a set of vertices in n sub-steps. If n is
set to one, the deformation takes one step:

for i = 1 to n do
for all pk in the list of vertices to update do

Update the scalar field φ(t +∆t,pk).
Deduce ∂φ

∂t =
φ(t+∆t,pk)−φ(t,pk)

∆t
Calculate ∇φ, possibly with finite differences.
Compute ~̂v according to neighbors’ velocities.
Deduce~v according to Equation (41).
Update vertex positions with pk(t +∆t) = pk(t)+~v ∆t

n
Improve surface representation using a mesh refine-
ment and simplification strategy.
if φ(t +∆t,pk(t +∆t)) ≈ φ(t,pk(t)) then

remove pk from the list of vertices to update.
end if

end for
end for

In the first step, since all the speeds are zero, we suggest that
they could be initialized with:

~v = −
∂φ
∂t

λ+(∇φ)2 ∇φ (42)

Firstly, this technique is not a very versatile space defor-
mation technique since it requires an explicit surface in order
to compute the divergence of the speed. Secondly, the advan-
tage of a large set of possible SFD shape operations (as large

as the set of possible animated scalar fields) is at the cost
of making the artist’s task rather tedious: specifying the ani-
mated field does not permit quick and repeated operations on
the shape. Also, results show the editing of imported shapes
rather than shapes entirely modeled from scratch.

3.4. Limitations

The large number of space deformation techniques can lead
quickly to the naive conclusion that in any shape model-
ing by deformation scenario, the limitation of a technique
may be simply circumvented by using another technique.
This reasoning presents several flaws. Firstly, from the point
of view of a programmer, the amount of effort required to
implement a space deformation Swiss-army knife for shape
modeling would be considerable. Secondly, from the point
of view of an artist, choosing quickly the most appropriate
space deformation would require a vast amount of knowl-
edge of the underlying mathematics of many techniques,
which is a skill that should not be required. Thirdly, from a
researcher’s point of view, all space deformation techniques
are not necessarily designed for the specific purpose of shape
modeling, and there are surely efficient ways of dealing with
specific problems. We will discuss this last point in the re-
mainder of this section, i.e. we will overview the suitability
of individual space deformation techniques for the purpose
of interactive shape modeling.

Firstly, the subset of space deformations, whose effect on
a shape is not local, makes these techniques unsuitable for
the task of modeling shapes, since an artist’s operation on a
visible portion of the shape will have effects on portions that
are further away [Bar84, Bla94, CR94, LCJ94].

Secondly, a large number of space defor-
mation techniques requires the artist to spec-
ify a rather large number of control parameters
[SP86, Coq90, MJ96, MMT97, HML99, HQ04]. We
believe that increasing the number of parameters does
not increase the amount of control by an artist, but rather
it makes the task longer and more tedious. Many tech-
niques illustrate their capabilities on imported models,
that were either digitized or pre-modeled with con-
ventional modeling techniques with a few exceptions
[Dec96, HHK92, LKG∗03]. We believe that the absence
of a model entirely developed in one piece with a single
technique is some evidence that the technique is tedious to
use for the dedicated purpose of modeling shapes.

Finally, many space deformation techniques do not pre-
vent a surface from self-intersecting after deformation, aside
from a few exceptions [Dec96, MW01, GD01]. A self-
intersecting surface is a rather annoying situation in model-
ing with deformation, since it is impossible for a space defor-
mation to remove a previously introduced self-intersection.
Thus we believe that space deformation operations for shape
modeling should satisfy all the following criteria:
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• Its effective span should be controllable.
• Its input parameters should be reduced to their strict min-

imum: a gesture.
• It should be predictable, in accordance with a metaphor.
• It should be foldover-free, and even revertible.
• It should be sufficiently fast for existing computing de-

vices.

To our knowledge, the literature does not contain techniques
satisfying all the above criteria. Rather than defining a set of
unrelated techniques, we will specify a framework in which
we will define deformation operations that satisfy the above.
We will illustrate the modeling capabilities of our framework
with techniques and examples.

4. Modeling with gesture

In the following, the input that defines transformations is
a gesture, obtained with a mouse or hand tracking device.
For the sake of simplicity, we will denote by f the function
fti 7→ti+1 .

4.1. Naive deformation

A simple space deformation can be defined with a transfor-
mation (translation, rotation, scale, etc.) whose effect is spa-
tially weighted. Thus two entities suffice:

• a transformation: 4 × 4 matrix M, defined by a gesture
(mouse move, tracked hand)

• the amount of transformation at p ∈ R
3: scalar field

ϕ(p) ∈ [0,1], defined for instance using the distance to
a shape. We call tool the field.

The most straightforward way of weighting M with ϕ is to
weight the displacement induced by M at p:

ḟ (p) = p+ϕ(p) (M ·p−p) (43)

This weighting of M produces however poor results in sev-
eral cases, including when M is a rotation matrix. To com-
pute fractions of a transformation, we rather use the for-
malism of M. Alexa [Ale02], i.e. the multiplication opera-
tor � which behaves essentially like · for scalars (see Ap-
pendix A). Note that although we use Alexa’s operator, we
do not necessarily evaluate it numerically as proposed in his
paper, since some cases reduce to more efficient and elegant
closed-form formulas, as we will show. Thus the transforma-
tion M can be weighted with ϕ as follows:

f̈ (p) = (ϕ(p)�M) ·p (44)

The deformation f̈ is however naive, since it can create a
foldover. For example, if M is a translation of large magni-
tude, it can map points within the support of ϕ onto points
outside from the support of ϕ, thus folding space onto itself
as shown in Figure 22(left).

Foldover Foldover−free

τ 0

...

t i+1

t i

τ

τ

τ

τ 1

2

3

s

Figure 22: 2D illustration of our solution to foldovers. Left: the
deformation maps space onto itself. Right: the deformation is de-
composed into small foldover-free steps.

4.2. Defining simple tools

To define a tool, a smooth function µ can be composed to
the distance to a shape. We chose to use the following C2

piecewise polynomial, in which λ controls the size of the
influence of the tool:

µλ(d) =

{

0 if λ ≤ d
1+( d

λ )3( d
λ (15−6 d

λ )−10) if d < λ (45)

Ball tool: The distance to a ball has a simple expression in
local coordinates:

dsphere(p)=

{

0 if ‖M−1
ti ·p‖2≤1

det(M
1
3
ti )(‖M−1

ti ·p‖−1) otherwise
(46)

If the artist wishes to apply a non-uniform scale to the
sphere, it would turn into an ellipsoid, and Equation (46)
would not be usable.

Filled ellipsoid tool: The ellipsoid is defined in local coor-
dinates as a unit sphere, whose position in world coordinates
is encoded in a possibly non-uniform matrix Mti . To com-
pute the distance to a filled ellipsoid, we use the numerical
method described in [Ebe01].

dellipsoid(p) =















0 if ‖M−1
ti ·p‖2 ≤ 1

min
q∈S

‖p−Mti ·q‖ otherwise,

where S is the unit sphere at the origin

(47)
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Mesh tool: It is convenient for an artist to choose or manu-
facture his own tools. For this purpose, we propose the pos-
sibility of baking pieces of clay in order to use them as tools.
By baking, we mean precomputing a data structure such that
the distance field can be computed efficiently. We propose
one way in [Ang05] (see Figure 23). More information on
distance computation can be found in [Gué01].

Figure 23: Example of customized tools deforming a sphere.

4.3. Single sweeper

As shown in Figure 22(right), if we decompose the trans-
formation into a series of s small enough transformations,
and apply each of them to the result of the previous one,
foldovers are avoided. The decomposition in s steps for a
general transformation is expressed as follows:

f (p) =
s−1
Ω

k=0
fk(p)

where fk(p) = (
ϕk(p)

s �M) ·p
and ϕk(p) = ϕ(( k

s �M−1) ·p)

(48)

The value returned by ϕk is that of the scalar field ϕ trans-
formed by k

s �M, a fraction of M. It can be shown that there
exists a finite number of steps such that the deformation is
foldover-free (see [Ang05]). We propose the following as a
lower bound to the required number of steps s:

max
p

‖∇ϕ(p)‖ max
l∈[1,8]

‖log(M) ·pl‖ < s (49)

where pl∈[1,8] are the corners of a box oustide which the
function ϕ equals zero.

4.4. Simultaneous sweepers

Applying more than one operation at the same time and the
same place has applications in modeling: for instance for
modeling a symmetric object, or to define a tool composed
of several tools. The simultaneous manipulation of tools also
allows the artist to pinch a shape. Let us consider n opera-
tions, defined with Mi∈[1,n] and ϕi∈[1,n]. The following is a
naive way to achieve simultaneous deformations, using the
formalism of M. Alexa (see Appendix A):

f (p) = (
n
⊕

i=1
ϕi(p)�Mi) ·p (50)

This function is naive because it adds the effect of each op-
eration. The following expression provides a normalized and

smooth§ combination of all the transformations at any point
p in space¶:
{

p if ∑k ϕk = 0
⊕n

i=1

((

1−∏k(1−ϕk)
∑k ϕk

ϕi

)

�Mi

)

·p otherwise
(51)

where:

• 1
∑k ϕk

is required to produce a normalized combination of
the transformations. This prevents for instance two trans-
lations of vector ~d producing translations of vector 2~d ,
which would send some points far away from the tools.
This unwanted behaviour was also identified by K. Singh
and E. Fiume [SF98].

• 1−∏n
k=1(1−ϕk(p)) smooths the deformation in the en-

tire space. Smoothness would be lost between the regions
where ∑k ϕk = 0 and ∑k ϕk 6= 0 if we only used the nor-
malization above.

Figure 25 shows a comparison between additive blending
of Equation (50) and the correct one of Equation (51). In
Figure 24, we show our blending in a scenarion similar to
existing blending methods, presented in Section 3.

Reference segments Translated segments
Figure 24: Blending with sweepers. The surface appears nice and
smooth, as opposed to surfaces in Figures 10,11,12, 25,21 and 20.

Equation (51) however may produces foldovers for simi-
lar reasons to the case of a single tool, with Equation (44). If
we decompose it into small steps, foldovers can be avoided:

f (p) =
s−1
Ω

k=0
fk(p)

where fk(p) =















p if ∑ j ϕk
j = 0

otherwise
⊕n

i=1

((

1−∏ j(1−ϕk
j)

∑ j ϕk
j

ϕk
i

)

�Mi

)

·p

and ϕk
j(p) = ϕ j((

k
s �M−1

j ) ·p)

(52)
Note that the value returned by ϕk

j is that of the scalar field
ϕ j transformed by k

s � M j , a fraction of M j . The follow-
ing expression is a lower bound to the required number of
steps, generalizing the single tool condition (see justification
in [Ang05]):

∑
j

max
p

(‖∇ϕ j(p)‖) max
l∈[1,8]

∣

∣

∣

∣

∣

∣
logM j ·pl j

∣

∣

∣

∣

∣

∣
< s (53)

§ as smooth as the ϕi.
¶ The operator

⊕

expresses a repetive sum:
⊕n

i=1 Mi = M1 ⊕

M2 ⊕·· ·⊕Mn.
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Figure 25: Blending of three scalar fields. To illustrate the be-
haviour of our blending in this figure, we directly combine the
scalar fields instead of using them to modulate a transformation.
(a) Adding the scalar fields. (b) By multiplying each field with
(1−∏(1−ϕk))/∑ϕk, the sum of the fields is normalized.

where pl j∈[1,8] are the corners of a bounding box oustide
which the function ϕ j equals zero.

Figure 26: Simultaneous sweepers

4.5. Fast single sweeper

In a single tool scenario, some transformations are conve-
nient to input by the artist: translations, non-uniform and
uniform scaling and rotations. With these simple transforma-
tions, the deformations of a point is much simpler to com-
pute, as there is a closed-form to the logarithm of simple
matrices. In this section, in addition to efficient expressions
for computing the number of required steps, we provide fast
deformation functions for a vertex and its normal. For de-
forming the normal, computing the Jacobian’s co-matrix is
not always required: JC ·~n leads to much simpler expres-
sions. Note that the normal’s deformations do not preserve
the normal’s length. It is therefore necessary to divide the
normal by its magnitude. We denote ~γk = (γx,γy,γz)

> the
gradient of ϕk at p and~γ the gradient of ϕ at p

If M is a translation: The use of � simplififies, using trans-

lation vector~d. The minimum number of steps is:

max
p

‖~γ(p)‖ ‖~d‖ < s (54)

The s vertex deformations are:

fk(p) = p+
ϕk(p)

s
~d (55)

The s normal deformations are:

gk(~n) =~n+
1
s
(~γk ×~n)×~d (56)

Figure 27: Translation

If M is a uniform scaling operation: Let us define the cen-
ter of the scale c, and the scaling factor σ. The minimum
number of steps is:

max
p

‖~γ(p)‖ σ log(σ)dmax < s (57)

where dmax is the largest distance between a point in the de-
formed area and the center c, approximated using a bounding
box. The s vertex deformations are:

fk(p) = p+(σ
ϕk(p)

s −1)(p− c) (58)

Let~χ =
log(σ)

s (p− c). The s normal deformations are:

gk(~n) =~n+(~γk ×~n)×~χ (59)

Figure 28: Scale

If M is a non-uniform scaling operation: Let us define the
center of the scale c , its direction of scale, unit vector~n, and
its scaling factor, σ. The minimum number of steps is:

max
p

‖~γ(p)‖ σ log(σ)dmax < s (60)

where dmax is the largest distance between a point in the de-
formed area and the plane of normal ~n passing through c.
The s vertex deformations are:

fk(p) = p+(σ
ϕk(p)

s −1)((p− c) ·~n)~n (61)

Let~χ =
log(σ)

s (p− c). The s normal deformations are:

gk(~n) =~n+σ
ϕk(p)

s ((~v+(~v ·~χ)~γk)×~n)×~v (62)

It is appropriate to remark here that the tool is also subject to
the scale, and that the influence function ϕt must be defined
in an appropriate way, as described in Section ??.

If M is a rotation: Let us define a rotation angle θ, center of
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rotation r and vector of rotation~v = (vx,vy,vz)
>. The mini-

mum number of steps is:

max
p

‖~γ(p)‖ θrmax < s (63)

where rmax is the distance between the axis of rotation and
the farthest point from it, approximated using a bounding
box. The s vertex deformations are:

fk(p) = p+(cos
ϕkθ

s
−1)~ξ×~n+ sin

ϕkθ
s

~ξ (64)

where~ξ =~v× (p− r)

The s normal deformations are:

gk(~n) = (~n ·~v)~v+~v× (cos(h)~n×~v− sin(h)~n)

+ θ~γ× (~n×~ξ
+((cos(h)−1)(~n×~ξ) ·~v

+ sin(h)~n ·~ξ)~v)

where h = ϕkθ
s

(65)

Figure 29: Rotation

4.6. Fast symmetric sweepers

For an operation symmetric about a plane, the transforma-
tion matrices are of the same type, thus blending them leads
to simple expressions. Let us consider two tools ϕ0 and ϕ1.
If the influence of both tools is zero at p, that is if ϕ0(p) = 0
and ϕ1(p) = 0, then the deformation is the identity. If the
influence of one tool is zero at p, that is if ϕ0(p) = 0 or
ϕ1(p) = 0, then the deformation equation is that of a sin-
gle tool. When both influences are not zero at p, that is if
ϕ0(p) 6= 0 and ϕ1(p) 6= 0, then the deformation induced at p
by the tools’ motion must be computed using Equation (51).
In the rest of this section, we have simplified the blending
equation for simple symmetric transformations of the same
type.

Translation: The number of steps is:

max
p

‖~γ(p)‖ (‖~d0‖+‖~d1‖) < s (66)

The deformation of a point is:

fk(p) = p+
1
s
(1− ϕ0 +ϕ1

ϕ0ϕ1
)(ϕ0~d0 +ϕ1~d1) (67)

Rotation, scale and non-uniform scale: The deformation
of a point is:

fk(p) = exp(
1
s
(1− ϕ0 +ϕ1

ϕ0ϕ1
)(ϕ0 logM0 +ϕ1 logM1))(68)

4.7. Results

Although a few simple transformations were combined
(translation, uniform scale and rotation), the set of possible
deformations is very high because of the arbitrary shape of
the tools, and also because many tools’ deformations can be
blended. The shapes shown in Figure 30 were modeled in
real-time in one hour at most, and were all made starting
with a sphere.

Figures 30(a) and 30(b) show the use of the multi-tool to
achieve smooth and symmetric objects. Figure 30(d) shows
that sharp features can be easily modeled. Figures 30(c)
and 30(i) show the advantage of foldover-free deformations,
as the artist did not have to concentrate on avoiding self-
intersections: our deformations do not change the topology
of space and thus preserve the topology of the initial object.

5. Modeling with constant volume

In a non-virtual modeling context, one of the most important
factors which affects the artist’s technique is the amount of
available material. This aspect was ignored in the previous
sections. The notion of an amount of material is not only fa-
miliar to professional artists, but also to children, who may
experience it with Play-Doh R©at kindergarten, and to adults
through everyday life experience. A shape modeling tech-
nique that preserves volume will take advantage of this, and
will hopefully be genuinely intuitive to use.

5.1. Swirl

We define a particular case of sweeper, a swirl, by using a
point tool c, together with a rotation of angle θ around an
axis~v (see Figure 31). A scalar function, ϕ, and a deforma-
tion are defined as before. Informally, a swirl twists space
locally around axis ~v without compression or dilation (see
proof in [ACWK04]): it preserves volume.

5.2. Ring of swirls

Many deformations of the above kind can be naively com-
bined to create a more complex deformation:

f (p) =

(

n−1
⊕

i=0
(ϕi(p)�Mi)

)

·p (69)

It is important here to remark that the above blending is not
the blending formula of simultaneous tools defined in Equa-
tion (51), and only uses simple weights. The reason for us-
ing the above simple blending equation as opposed to Equa-
tion (51) is that the latter modulates the amount of individual
transformations locally, and attempting to control the vol-
ume with it would be inappropriate. We provide a conve-
nient way for the artist to input n rotations, by specification
of a single translation~t. Let us consider n points, ci, on the
circle of center h, and radius r lying in a plane perpendic-
ular to~t. To these points correspond n consistently-oriented
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 30: All these shapes were modeled starting with a sphere,
in at most one hour. In (c), the first modeling step was to squash the
sphere into a very thin disk. In (g), eyeballs were added.

unit tangent vectors~vi (see Figure 32). Each pair, (ci,~vi), to-
gether with an angle, θi, define a rotation. Along with radii
of influence λi = 2r, we can define n swirls. The radius of
the circle r, is left to the user to choose. The following value
for θi will transform h exactly into h +~t (see justification in

[ACWK04]):

θi =
2‖~t‖
nr

(70)

With this information, the deformation of Equation (69) is
now a tool capable of transforming a point into a desired tar-
get. We show in Figure 32 the effect of the tool for different
values of n; in practice, we use 8 swirls.

5.2.0.1. Preserving coherency and volume If the mag-
nitude of the input vector ~t is too large, the deformation
of Equation (69) will produce a self-intersecting surface,
and will not preserve volume accurately. The reason for
self-intersection is explained in Section 4.1. The volume
is not accurately preserved because the blending operator,
⊕, blends the transformation matrices, and not the defor-
mations. To correct this, it is necessary to subdivide~t into
smaller vectors. Thus foldovers and volume preservation are
healed with the same strategy. The number of steps must be
proportional to the speed and inversely proportional to the
size of the tool. We use:

s = max(1,d4‖~t‖/re) (71)

As the circle sweeps space, it defines a cylinder. Thus the
swirling-sweeper is made of ns basic deformations. Fig-
ure 33 illustrates this decomposition applied to a shape.

5.3. Swirling-Sweepers

We summarize here the swirling-sweepers algorithm:
Input point h, translation~t, and radius r
Compute the number of required steps s

Compute the angle of each step, θi =
2‖~t‖
nrs

for each step k from 0 to s−1 do
for each point p in the tool’s bounding box do

M = 0
for each swirl i from 0 to n−1 do

M += ϕi
k(p) logMi,k

end for
p = (expM) ·p

end for
end for

The point cik denotes the center of the ith swirl of the kth ring
of swirls. For efficiency, a table of the basic-swirl centers,
cik, and a table of the rotation matrices, logMi,k, are pre-
computed. We have a closed-form for the logarithm of the
involved matrix, given in Equations (72) and (73), saving an
otherwise expensive numerical approximation:

~n = θi~vi
~m = ci,k ×~n (72)

logMi,k =









0 −nz ny mx
nz 0 −nx my
−ny nx 0 mz

0 0 0 0









(73)
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Note that for the sake of efficiency, we handle these matrices
as mere pairs of vectors, (~n,~m). Once M is computed, we use
a closed-form for computing expM. Since the matrix M is a
weighted sum of matrices logMi,k, the matrix M is of the
form of Equation (73), and can be represented with a pair
(~nM ,~mM). If ~nM = 0, then expM is a translation of vector
~mM . Else, if the dot product ~mM ·~nM = 0, then expM is a
rotation of center c, angle θ axis~v, as given by Equation (74):

c = ~ω×~m
‖~ω‖2

θ = ‖~nM‖
~v = ~nM/θ

(74)

Finally, in the remaining cases, we denote l = ‖~nM‖, and we
use Equation (75) (see Appendix B for efficiency):

expM = I+M + 1−cos l
l2 M2 + l−sin l

l3 M3 (75)

Symmetrical objects can be easily modeled by introducing
a plane of symmetry about which the tool is reflected (see
Figure 35).

5.4. Results

In Figure 35, we compare the shapes’ volume with unit
spheres on the right. The shapes volumes are respectively
101.422%, 99.993%, 101.158% and 103.633% of the initial
sphere. This error is the result of accumulating smaller errors
from each deformation. For instance 80 swirling-sweepers
have been used to model the alien. The small errors are due
to the finite number of steps, and to our choice of shape rep-
resentation. The shapes shown in Figure 35 were modeled in
real-time in half an hour at most, and were all made starting
with a sphere.

θ

c c
v v

λ

Figure 31: The effect on a sphere of a swirl centered at c, with a
rotation angle θ around~v. The two shapes have the same volume.

6. A shape description

With sweepers and swirling-sweepers, shape modeling oper-
ations based on gesture can be conveniently described, while
coherency and volume of the shape are maintained. By us-
ing both operation types, the artist can increased, decreased
or preserved the volume of a shape (see Figure 36). Because
these operation types are indepent from the shape descrip-
tion, several choices are available: mesh, particles, discrete
grid of deformed raytracing (see [Ang05]). In the context of

hh

4 swirls 8 swirls2 swirls

h

t t t

Figure 32: By arranging n basic swirls in a circle, a more complex
deformation is achieved. In the rightmost image: with 8 swirls, there
are no visible artifacts due to the discrete number of swirls.

t t s/

t s/

t s/

h

h + t

input step ... step sstep 1

Figure 33: A volume preserving deformation is obtained by de-
composing a translation into circles of swirls. 3 steps have been
used for this illustration. As the artist pulls the surface, the shape
gets thinner. The selected point’s transformation is precisely con-
trolled.

shape modeling, the number of deformations is possibly ex-
cessively large, and issues related to such excess have to be
taken into consideration when defining a shape description.
We provide in this section a shape description for interac-
tive modeling which supports high deformation and does not
break when highly stretched.

A simple way of representing a deformable shape is to
place a set of samples on the surface of the shape: this makes
the task of deforming the shape as straightforward as de-
forming the points on its surface. Points are discrete surface
samples, and need to be somehow connected using splatting,
interpolation or approximation scheme in order to display a
continuous surface.

Our method uses an updated mesh, i.e. vertices con-
nected with triangles. Connectivity provides convenient 2D-
boundary information for rendering the surface as well as
surface neighborhood information, which enables the artist
to define very thin membranes without having them van-
ish, as shown in Figure 30(c). The use of triangular “C0

patches” circumvents issues related to non-regular vertices
and smoothness maintenance across the boundaries that join
patches. Also, current hardware handles polygons very effi-
ciently, which is relevant to us since interactivity is among
our objectives. The reader however should be aware that
point-sampled geometry has recently ignited a lot of inter-
est from researchers [PKKG03].
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Figure 34: When pushed or pulled, a sphere will inflate or deflate
elsewhere.

The possibly large number of deformations applied by
an artist requires some minimum surface sampling density.
Thus, the scene is initialized with a polygonal model, e.g. a
sphere with a homogeneous density of nearly equilateral tri-
angles‖. In order to quickly fetch the vertices to be deformed
and the edges that require splitting or collapsing, these are
inserted into a 3D grid. Note that this spatial limitation is
not too restrictive for the artist, as our deformations allow us
to translate the entire model rigidly and scale it uniformly.

To fetch the vertices that are deformed, a query is done
with the tool’s bounding box. Conveniently, this bounding
box is also used in Eq. (49). Since the principle of our swept
deformations is to subdivide the input gesture into a series
of smaller ones, all the transformations applied to the ver-
tices are bounded. To take advantage of this decomposition
in steps, we apply a modified version of a more generic
algorithm [GD99]. Our method requires keeping two ver-
tices and two normals per vertex, corresponding to the pre-
vious and following state of some small step operation fk.
Loosely speaking, our surface-updating algorithm assumes
that smooth curves run on the surface, and that the available
information, namely vertices and normals, should be able to
represent them. If this is not the case after deformation, then
it means the surface is under-sampled. On the other hand, if
an edge is well enough represented by a single sample, then
it is collapsed.

Let us consider an edge e defined by two vertices (v0,v1)
with normals (~n0,~n1), and the deformed edge e′ defined by
vertices (v′0,v

′
1) with normals (~n′0,~n

′
1). In addition to the

conditions in [GD99] based on edge length and angle be-
tween normals, we also base the choice of splitting edge e′

on the error between the edge and a fictitious vertex, which
belongs to a smooth curve on the surface. The fictitious ver-

‖ A simple way to obtain an homogeneous sphere polygonization
consists of starting with an icosahedron, putting all its edges longer
than h in a queue, splitting them and putting the pieces longer than
h back in the queue. Each time a split is performed, the new edges
are flipped to maximize the smallest angle.

Figure 35: Examples of models “sculpted” with swirling-
sweepers. The mouse, the goblin, the alien and the tree have re-
spectively 27607, 25509, 40495 and 38420 vertices. These objects
were modeled in less than 30 min by one of the authors. Eyeballs
have been added.

Figure 36: Shape modeled with sweepers and swirling-sweepers.

tex is used only for measuring the error, and is not a means
of interpolating the vertices. If the error between the ficti-
tious vertex and the edge is too large, the edge e is split, and
the new vertex and normal are deformed. On the other hand
if the fictitious vertex represents the edge e′ well enough,
then edge e is collapsed, and the new vertex is deformed. We
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define the fictitious vertex as the mid-vertex of a C1 curve,
since vertices and normals only provide first order informa-
tion about the surface. The following cubic polynomial curve
interpolates the vertices v′0 and v′1 with corresponding shape
tangents~t0 and~t1, defined below:

c(u) = (v′0(1+2u)+~t0u)(1−u)2+

(v′1(1+2(1−u))−~t1(1−u))u2 (76)

The only constraint on tangent~ti is to be perpendicular to
the corresponding normal ~ni. The following choice defines
tangents of magnitude proportional to the distance between
the vertices:

~t0 = ~g−~g ·~n′1
~t1 = ~g−~g ·~n′0

where ~g = v′1 −v′0
(77)

With the above tangents, the expression of the middle vertex
simplifies:

c(0.5) = ( v′0 +v′1 +(~g ·~n′0 −~g ·~n′1)/4 ) / 2 (78)

With the fictitious vertex c(0.5), the tests to decide whether
an edge should be split or collapsed can now be defined:

Too-long edge: An edge e′ is too long if at least one of the
following conditions is met:

• The edge is longer than Lmax, the size of a grid-cell. This
condition keeps a minimum surface density, so that the
deformation can be caught by the net of vertices if the
coating thickness λ j is greater than Lmax.

• The distance between the fictitious vertex and the mid-
vertex of e′ is too large (we used Lmax/20). This condition
prevents the sampling from folding on itself, which would
produce multiple sampling layers of the same surface.

• The angle between the normals~n′0 and~n′1 is larger than a
constant θmax. This condition keeps a minimum curvature
sampling.

Too-short edge: An edge e′ is too short if all of the following
conditions are met:

• The edge’s length is shorter than Lmin (we used Lmax/2).
• The angle between the normals~n′0 and~n′1 is smaller than

a constant θmin.
• The distance between the fictitious vertex and the mid-

vertex of e′ is too small (we used Lmin/20).

Also, to avoid excessively small edges, an edge is merged
regardless of previous conditions if it is too small (we used
Lmin/20).

We stress that the procedure for updating the mesh
is applied at each small step, rather than after the user’s
deformation function has been applied. Because vertex
displacements are bounded by the foldover-free conditions,
the update of our shape description does not suffer from
problems related to updating a greatly distorted triangula-
tion. Figure 37 shows a twist on a simple U-shape. Figure 38

shows the algorithm preserving a fine triangulation only
where required. Figure 39 shows the algorithm at work in a
more practical situation. The procedure outline is:

Compute the number of steps required, s.
for each step k do

Deform the points, and hold their previous values
for each too-long edge do

split the edge and deform the new point.
end for
for each too-short edge do

collapse the edge and deform the new point.
end for

end for

Figure 37: Example of our mesh-updating algorithm on a highly
twisted U-shape. The close-up shows a sharp feature, with finer
elongated triangles.

Figure 38: Behaviour of our mesh-updating algorithm on an al-
ready punched sphere. The decimation acompanying the second
punch simplifies the small triangle of the first punch. The tool has
been removed for better visualization.

Figure 39: Close-up of the goat. Notice the large triangles on the
cheek and the fine ones on the ear. The initial shape is a sphere.

Limitation: With the updated mesh method, we choose
to ignore the history of functions applied to the shape by
the artist. Thus we “collapse” the history by freezing it in
the current shape. To explain the major consequence of this,
let us suppose the scene at a time tk, such that the shape
S(tk) is shown to the user. The next deformation produced
by the artist with the mouse is function ftk 7→tk+1 , and all the
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mesh refinements and simplifications are performed in S(tk).
This is however an approximation: ideally the last operation
should be concatenated to the history of deformations, and
the whole series should be applied to the initial shape S(t0),

i.e.
n
Ω

i=0
fti 7→ti+1 should be applied to each new vertex. This

would however become more and more time consuming as
the sequence of deformations gets longer (n gets larger), and
the modeling software would eventually become unusable.

7. Conclusion

Sweepers, is a framework for defining swept deformation
operation for shape modeling. It permits the description of
a family of shape operations based on gesture between the
artist and the mathematics describing the shape, and enables
an artist to handle shapes in a more efficient way than mod-
ifying directly a shape’s mathematical description. Because
sweepers are foldover-free, they maintain easily a shape co-
herency. Swirling-sweepers is a type of swept-deformation
for describing shape modeling operations that preserve im-
plicitly the shape’s volume. Subjectively, swirling-sweepers
is the most effective modeling technique defined in the
sweepers framework. Further work on volume-preservation
outlines that there is in fact a link between swirling-sweepers
and fluid mechanics [AN]. The separation of the shape’s op-
erations and the shape’s description leads to the exploration
of alternative ways to describe a shape’s surface or volume
for rendering. While our proposed method is sufficient in a
wide range of situations, more research should be done in
this area.
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Appendix A: Linear Combination of Transformations

The multiplication operator � and addition operator ⊕,
which behave essentially like · and + for scalars. The oper-
ator � is defined as α�M = exp(α logM) and the operator
⊕ is defined as M⊕N = exp(logM + logN). The following
series defines the exponential of a matrix:

expM = I+M +
1
2

M2 +
1
6

M3 · · · =
∞

∑
k=0

Mk

k!
(79)

The logarithm of a matrix is defined as an inverse of the
exponential, as follows:

log(I−M) = −M− 1
2

M2 − 1
3

M3 · · · = −
∞

∑
k=1

Mk

k
(80)

In a similar that repeting + can be expressed with ∑, the
repetition of ⊕ can be expressed as follows:

n
⊕

i=1
Mi = M1 ⊕M2 ⊕·· ·⊕Mn (81)

Appendix B: Exponential

Applying the exponential of the matrix to a point does not
require to compute the exponential of the matrix explicitly.
Let us define the matrix M with a pair of vectors, (~n,~m).

exp(M) ·p = p+(~m+~n×p)b+(~n×~m
l2 −p)a

+~n((~n ·p)a+(~n ·~m)(1−b)) 1
l2

where l = ‖~n‖
a = 1− cos(l)
b =

sin(l)
l

(82)
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