N
N

N

HAL

open science

Interactive Solid Animation Using Linearized
Displacement Constraints

Francois Faure

» To cite this version:

Francois Faure. Interactive Solid Animation Using Linearized Displacement Constraints. Eurographics
Workshop on Computer Animation and Simulation (EGCAS), Aug 1998, Lisbon, Portugal. pp.61-72.

inria-00537520

HAL Id: inria-00537520
https://inria.hal.science/inria-00537520
Submitted on 18 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00537520
https://hal.archives-ouvertes.fr

| nteractive Solid Animation Using Linearized
Displacement Constraints

Francois Faure
Ingtitut fir Computergrafik
Technische Universitat, Wien

Abstract. We present a new approach for interactive solid animation. It allows a
user to efficiently trade-off accuracy for speed, making complicated structurestractable
in interactive time. Linearized displacement constraints are used in conjunction with
an efficient iterative equation solver to perform the assembly of articulated solids. This
alowsthe initialization of a scene and the correction of numerical integration errors. A
robust integration scheme limits the instabilities due to approximations. Applications
are shown and discussed.

1 Introduction

Interactivity is amajor issuein computer animation. However, interactive articulated
solid animation has yet been restricted to small structures, except in specia cases. This
lack of interactivity may be dueto the inheritage of the computer animation techniques
from robotics and mechanical engineering. The primary concern of these sciences is
physical accuracy rather than computation time. Fast applications such as robot control
are applied to simple structures, compared with the objects we want to animate in com-
puter graphics. Virtua reality and large interactive applicationsrequire a new approach
based on the control of the computation time. Experiments show that when dragging an
object, users prefer quick responses, even with low precision, than waiting a few sec-
onds for a precise motion. Thisimplies trading-off accuracy for speed. Thisidea has
been extensively used for rendering. The specific problem of animation isthe possible
accumulation of error over time, leading to inacceptable results. Therefore, we present
an approach based on fast structure assembly and stable integration scheme. By per-
forming the assembly at the end of each time step just before displaying the scene, one
can accept relatively large errorsinsidethe time step. Thistolerance allowsthe approxi-
mate computation of thetime derivatives and the use of largetime stepsin the numerical
integration. As aresult, interactivity can be obtained for large scenes.

The remainder of this paper isorganized asfollows. In section 2, we briefly describe
the problems of time integration applied to the simulation of articulated structures, and
how they have been dealt with in the field of computer graphics. We then present an
alternative approach well-known in mechanical simulation, which seems currently un-
used in our domain. The following sections present variants of this approach that we
have devel oped in order to meet the needs of computer graphics. Section 3 describes an

assembly algorithm for complex articulated structures. Section 4 presents applications
to animation such asinverse kinematics, dynamics, along with first resultsin trading-off
accuracy for speed in computer animation.

2 Background and motivation

Numerical simulation consistsin integrating a differential equation over time. From a
practical point of view, thisrequiresrepeatedly computing thetime derivative of the sys-
tem, and integrating it over a (possibly variable) time step. The laws of physics provide
equations on accel erations, which allow the animation of systems of particules as ordi-
nary differential equations (ODES). In contrast, constrained systems such as articul ated
structuresincludejointswith associated geometrical equationswhich must remain satis-
fied over time. Thisleadsform ODEsto differentia algebraic equations (DAES), which
are more difficult to handle. The DAE governing a physically-based articulated body
can be expressed in matrix form as:

g = Dv (1)
Mvé = f(t7Q7”)+JT(Q))‘ (2)
0 = g(ta Q) (3)

where q isthe set of coordinates, M the mass matrix associated with the coordinates,
f represents the external forces, g the geometrical constraints, and .J the derivative of
g with respect to the coordinates, also called the Jacobian of the constraints. Matrix
D relates the velocities to the derivatives of the coordinates, e.g. angular velocity to
guaternion derivatives. The exponent T represents matrix transposition. The vector A
gatherstheindependent components of the constraint forces, acting a ong thedirections
of the geometrical constraints. In the remaining of the paper, we use bold lettersto de-
note global vectorsand matrices, gathering valuesrelated to all the jointsor solidsof the
articulated bodies.
Differentiating twice equation (3) and substituting into equation (2) provides

g:JM_l(f-l—JT)\)-l—av:O 4

where a., isthe velocity-dependent part of the relative accelerations. Solving equation
(4) providesthe constraint forces A, then thetime derivatives through equations (2) and
(2). Using the derivatives, we can compute a new position using:

w(l + dt)= (1) +p(t, x (1), dt)

where ¢ represents an integration scheme such as Euler or Runge-Kutta. Unfortuna-
tely, al integration schemes introduce more or less drift, i.e. equation (3) and itsfirst
derivative are no more satisfied at time¢ + d¢, even if we start from a consistent state
at timet. Thisdrift eventualy resultsin solids moving apart from each other without
meeting the joint constraints, and it can quickly become visible. The drift is restricted
to loop closuresif relative coordinates are used.

In order to keep the drift within reasonable values, Baumgarte stabilizationis very
popular[3, 2, 8]. It consistsin using a modified version of equation (4), namely:

Gg=JM Y Ff+ITX) + ay = 719+729

where~; and v, are parameters provided by the user, and thevectorsg and g straightfor-
wardly computable at each time step. This perturbation acts much like damped springs
applied to each congtraint. This method has also shown capabilities of assembling ar-
ticulated solidg[2]. Unfortunatdly, the values of v, and - are difficult to set. Too weak,
they do not prevent the drift from reaching inacceptable values. Too high, they induce
instabilitiesdueto time sampling. The optimal compromise can be very difficult to find.
In many cases, the stiffness induced by this method makes the use of small time steps
necessary, thus reducing the computationa efficiency.

More recently, efficient aternative approaches have been proposed, introducing the
principle of post-stabilization[1, 4]. The basic ideais to proceed in two steps:

o starting from (gq(t), v(t)), integrate the vel ocities and accel erations over thetime
interval dt using your favorite integration scheme, e.g. Runge-Kutta, and denote
theresult (q(t + dt), v(t + dt))

o perform post-stabilizationin order to meet the geometric constraintsand their first
derivatives:

q(t+dt) = q(t+dt)-dq (5)
v(t+dt) = #(t+dl)— dv (6)

The computation of the correction termsisexplained in section 3.3. Thisapproach frees
theuser fromtuningarbitrary stabilization parameters, and experimentshave shown bet-
ter stability than Baumgarte stabilization[4]. The authors show that if the truncation er-
ror of theintegration scheme is O (dt?*!) then the driftis O (dt>(P+1)).

In this paper, we provide three contributionsto this approach. First, we generdize
the position stabilization (eg.5) to an iterative assembly algorithm. This allows the au-
tomatic initialization of scenes including complex geometric constraints.

Second, weinclude the assembly method in a simpleintegration scheme which ma-
kes no explicit use of velocity. This avoids performing the velocity stabilization (eq.6),
which resultsin more computationa efficiency. Thisalso avoidsusto derivenoisy input
data such as coordinates of 3D trakers.

Finaly, we investigate the capabilities of post-stabilization for purposes of inter-
activity instead of precision. It is commonly admitted in mechanica engineering that
the fourth-order Runge-Kuttaintegration scheme is the most efficient in most practical
caseq[10]. Thisrequires computing four derivativesat each time step. Performing stan-
dard post-stabilization requires two additional dynamic solutions. Our approach is per-
ticularly useful when, for purposes of interactivity, we can not afford even one dynamic
solution within an animation step.

Figure 1: Our model applied to ajoint with one translation and one rotation alowed. The two
referenceframes of thisjoint are centered on P, and P-, with their direction aligned with the main
axes of the joint. The solids are centered on O, and O-, and the absolute coordinate system on
Oq. Thefull and empty disks respectively denote translation and rotation constraints.

3 Fadt assembly of articulated structures

Structure assembly can be used either to initialize complicated scenes including closed
loops, or to correct positions after time integration. We first present our joint model,
which allows us to compute geometric constraintsfor awide variety of joints. We then
show how to obtai n alinearized geometric equation by writingit as akinematic equation.
Then weturnthe non-square kinemati c equation system into asquare dynamics equation
system. Wefinaly describe the assembly a gorithm.

3.1 Joint model and kinematic equations

We consider two solidsrepresented by their local frames S; and .S, centered on O, and
O, respectively. An exampleisshown in figure 1. The positions of the solids are de-
fined with respect to areference frame (Oy, Sp). Let the solidsbe bound by ajoint L;5.
We represent thisjoint usingtwo local frames 7, and 1., attached to S; and S; and cen-
tered in P, and P», respectively. The geometric constraints between L; and L- define
the type of the joint. A universal joint requires P; and P to remain equal, whereas a
plane-to-plane joint requires that one plane fixed in L; coincides with one plane fixed
in Lo.

Theveocitieshaveto be consistent with the constraints. For simplicity, agood choiceis
to express the kinemati c equations at the center of one of the joint frames, thisframe be-
ing aligned with the motion constraints. Expressing the relative velocity between solids
S; and S; @ point £; provides:

= vi(B) = v (F)
= vz(Oz) —|—wi X OZPZ — Uj(Oj) — w]' X (ijj + PjPZ')

Wij = Wi — Wy

vij

Table 1: Kinematic constraints associated with different typesof joints. A cross denotesthe pres-
ence of akinematic constraint along the associated direction. Translation and rotation directions
are denoted using emt and em r, respectively. We chose arbitrarily the vector : asthe main axis
of thejoint.

joint type ti [t [tk |ri|rf|rk
universal X | x| x
pin x| x| x x| x
cylindrical x | % x | X
prismatic X | x| x| x| x
ball-socket x | x
smooth surface contact | x

Thekinematics equations associated with ajoint including », trandation constraintsand
n, rotation constraints can be written as:

vij(P).tk = Ck 1 S k S N¢ (7)
Wij.Tk = e ng <k <ng+n, (8)

wheret;, and ry aretrand ation and rotation constraint directions. The scalars ¢ are the
values of the velocity constraints in tranglation or rotation. These values are null for
perfect joints. Table (1) showsthe kinematic constrai nts associated with some common
joints. Further work will include dependent constraint directions such as screws.
Generdly, there is a whole space of velocities consistent with the constraints, and
we want to compute the consi stent vel ocities which are the nearest to given values. The
sets of equations (7,8) related to al the joints of the scene can thus be gathered in the
following matrix equation:
Jbv=¢—Jv 9)

where v isthe current global velocity vector and dv isavelocity correction necessary
to reach the space of consistent velocitites. The solution of the equation system is ex-
plained in section 3.3. Using relative coordinates, only theloop closures require the so-
lution of a kinematic equation, the acyclic constraints being implicitely satisfied.

3.2 Linearized geometric equations

Starting from an inconsi stent state, we want to compute new positions satisfying the ge-
ometric constraints. Geometric equations are generally difficult to solve because they
involve nonlinear equations including sine functions. We obtain a linear equation by
integrating a kinematic equation over avirtual time step d¢*:

Jovdt* = b (10)

where b is the displacement constraints necessary to cancel the errors. We explain at
the end of thissection how to compute the di splacement constraints. The solution of the

equation provides the unknown vector dvdt*. The coordinate corrections are straight-
forwarly obtained using equation (1):

dq = Dvdl”

The solution of thelineari zed equati on system is good approximation of thereal solution
when small displacements are involved. We do not explicitely use the virtual time step
sinceitsvaueisarbitrary.

Now we show a simple way of computing the displacement constraint . This re-
quires representing the relative rotation of the two joint coordinate frames as w;;dt*.
The relative translation d;; and the relative rotation B(L;, L;) can be computed using
transitivity:

6ij = PPy = PO; + 0,0 + 0O0; + O; Pj
R(Li, L;) = R(L:, Si).R(S;i, So).R(S0, S;).R(S;, Lj)

where the operator R isyour favorite rotation model (quaternions, matrices, Euler an-
gles...) andthedot denotesthe appropriatetransitivity operator. Wethenturntherelative
rotation into an (axis,angl€e) form where the axisis a unit vector, and finally turn it into
athree dimensional vector defined as the axis multiplied by the angle, that we call w;;.
Projecting therel ative rotation and trandl ation to the corresponding constraint directions
providesthevalues of the geometric constraint errors. The displacement constraintsare,
for each joint, the opposite of the geometric errors:

bk = —(Sij .tk 1 S k S N¢

b, = —Wi. g N < k< ng+n,

3.3 From kinematicsto dynamics

Since the number of constraints is independent on the number of coordinates, the Ja
cobian matrix istypically non-square. A way of regularizing the equation system isto
use congtraint forces to move the solids. This leads from kinematics to dynamics. In
dynamics, each solid S; obeysthe fundamenta principle:

fi = M, (12)

where f; and ¢; are six-dimensional vectors denoting force and acceleration, and M; the
mass matrix of .S;. A common assumption about constraint forces isthat they act along
the constraint axes. This derives from the principle of virtual works applied to perfect
joints. In this case, the forces applied to the solids by the constraints are ssimply JT X
where the vector A gathers all the constraint forces. This leads to the equation system:

(2T))=(5) =

where the first line is Newton's law restricted to the constraint forces, and the second
line isthe kinematics equation. Vector b isthe relative acceleration correction. Itisthe

opposite of the relative accel eration which would occur along constrained directions if
null constraint forces were applied. Vector X represents the unknown constraint forces
necessary to enforce the kinematic constraints. They result in an acceleration correc-
tion 4. The equation system (12) is square and models physical interactions between
the solids. Absolute coordinates involve a diagona mass matrix, whereas relative co-
ordinates require computing the entries of a dense matrix. In both cases, matrix M is
symmetric positive definite. It isthus possible to perform a substitution of thefirst line
into the second one to obtain a new, reduced equation system:

AN =b, with A=JM~1JT (13)
The corrections can then be computed as
00 = M~ JT(JM-1JT)~1p

Notethat using theidentity as amass matrix isequiva ent with performing aleft pseudo-
inverse solution, well-known in kinematics[6]. Thisisour motivation for performing a
dynamic solution: it is a straightforward generaization of the standard kinematics ap-
proaches, and it allows us to compute physically redistic motions. Corrections of ve-
locities or positionsare computed in a similar way when performing post-stabilization.

3.4 Thefast assembly algorithm

Starting from astate q, the assembly is performed by adding to vector ¢ anincrement d¢
computed by the function correction. This function, which pseudocode is given below,
computesiteratively aposition correction necessary to meet theconstraints. At each iter-
ation, it solvesalinear system similar with equation (12), except that position corrections
are computed instead of acceleration corrections. Thislinear system is a fist-order ap-
proximation of the geometric equations. Severa iterations may thus be necessary. The
computation of the correction terminates as soon as a displacement satisfying al the ge-
ometric constraints up to agiven precision has been computed. Thisis checked by the
bool ean function geometryOk. The algorithm can al so terminate after agiven number of
iteration have been performed. The procedure compute_entries computes the entries of
matrices M, J and the displacement constraint b corresponding to given coordinates.

correction(q){
g =20
compute entries(g, M, J, b)
while not geometryOk(b){
dq += M~YIT(JM-1JT)~-1p
compute entries(g + dq, M, J, b)
}

return dgq

1

In contrast with differential approacheq 2, 7], our assembly process is not delayed
throughtime and thus allowsthe display of accurate geometry at any animation step. In

Figure 2: Example of convergence of the assembly method. The geometric constraints state that
the endpoints of the bar have to coincide with the centers of the disks.

contrast with kinematical approacheq[6, 11], it makes use of mass and it is thus compat-
ible with dynamics.

In practice, the convergence of thea gorithmisfast (see examplein figure 2), except
if the rotations reach high values. In this case the linear approximation is too poor and
the system may enter an endless process. To solve this problem, we simply truncate
excessive rotations. Empirically, 0.8 radians seems a good value.

At each iteration, the linear equation equation (13) is solved using the biconjugate
gradient algorithm[9]. Instead of computing explicitly a decomposition of the matrix
JM~1JT | the agorithm solves the equation system by performing a sequence of ma-
trix products. Using absolute coordinates allows the use of matrix sparsity, providing a
good efficiency. The biconjugate gradient algorithm performsan iterative minimization
of theerror. Thisalowsthetermination of the algorithmto occur as soon as the desired
precisionisreached, using variousnorms, or after agiven number of iterationshave been
performed. Moreover, thisalgorithm handl esindefinite equation systems, and computes
aleast-square solution in case of inconsistent constraints.

The computation of the correctionistwiceiterative: each loop traversal involvesan
iterative solution of a linear equation system. Limiting the number of iterations alow
the user to trade-off accuracy for speed, which isuseful when applied to complex struc-
tures. An exampleof complex assembly isshowninfigure (3). Thisscenesincludes 758
scalar congtraints. Six iterationsaree used to perform the assembly, each of them limited
to 30 conjugate gradient iterations. The computation timeis less than one second on a
standard SGI O2 workstation.

4 Applicationsto animation

4.1 Inversekinematics

We apply our articul ated body method to aVVR environment including 3D hand-trackers
with buttons. Thisallowsusto interactively catch, drag and rel ease objects. A straight-
forward applicationisinversekinematics. A joint bindingthetracker and the solid poin-
ted by the traker is creasted when the button is clicked. Aslong as the button remains
pressed, the position and orientation of the joint is updated according to the position of
thetraker. Applying the assembly agorithmalowsthe structureto “follow” the tracker

JUSY.VN
BOUSUUE

VAVA ,f_ A WLN AN

“jj g _“t““t“‘ —t“
7 "~/ \' NVAWAN

-

AN /\ ,.-’\.._ x\ INAN
LN N

Figure 3: Complex assembly. Wewant to bind the handsand feet of the different-sized characters.

according to the geometric constraints. A null inverse massis applied to the tracker, so
that only the other objects can be corrected.

4.2 Dynamics

In dynamics, theforces are responsiblefor theaccel erations of the solids. Theveocities
remain unchanged in case of null forces. So far, we have not yet introduced velocities
inthe system. Vel ocities are difficult to compute from 3D traker input since the trackers
generally measure only positions. Numerical derivationisdangerousbecause noisy data
induce instability. The problem is even harder when dealing with accelerations. Filter-
ing thedatais not a satisfying solution because it introduces disturbing delays. To avoid
this problem, we apply Stoermer’sintegration scheme[9], which makes no explicit use
of velocities, using the previousdisplacements A g instead. Thisintegrationscheme can
be written as:

Aq(t+dt) = Aq(t) + §dt?
q(t + dt) = q(t) + Aq(t + di)

Thisintegration scheme requiresan initiaizationof Aq, eg. Aq(0) =¢(0)dt + %dtzij.
It fits perticularly well with our assembly approach. We perform the assembly at the
end of each time step so that the geometric errorsarising from numerical integration are
canceled before displaying the scene. The position increment vector is updated as well
as the positionsthemselves. The pseudocode for a simulation step is as follows:

step(dt){
Aq += M™1fdi?
q += Agq
dq = correction(q)
q += dq
Aq += éq

Note the extreme simplicity of this animation scheme. We do not even compute ac-
cel erations compatible with the constraints. Rather, only externa forces are considered

Figure 4: Our method applied to asimple example. A particleis constrained to remain on afixed
circle. It first movesaccordingtoits previousmotion (in thisexample, there are no external forces
applied). Thenacorrection dq isapplied in order to meet the constraint. Thedisplacement Aq is
updated accordingly.

in vector f, the solid first move as if they were free, and their positions (and displace-
ments) are corrected at the end of each time step. Thisresultsin correcting simultane-
ously acceleration and numerical integration errors, and allows performing large time
steps. Anillustrationis shown in figure 4. Note that the updated “velocity” isthe dis-
placement between two positionscompatiblewith the constraints. Contrary with Baum-
garte stabilization, thismethod inducesfew velocity in the directionsof the geometrical
constraints. As aresult, the method is much more robust to large time steps.

Compared with previous related work[5], the efficiency of our method comes from
the use of the biconjugate gradient algorithm, along with a robust integration scheme.

We validated thisintegration scheme using numerous experimentsinvolvingisol ated
articulated bodies. Energy and momentum remain constant up to machine roundoff pre-
cision. Bodies linked to the ground may suffer from energy variations, similarly with
what happens using other integration schemes. The limits of this approach are reached
when strong forces generatelarge di splacementsrequiringlarge corrections. Inthiscase,
numerical roundoffsand linear approximationsmay result in jerky motion, unless short
time steps are used. Further work will include accel eration correction.

4.3 Trading-off accuracy for speed

Interactivity is necessary in applications such as virtual reslity. Our iterative approach
alows the user to tune the level of interactivity by limiting the computation time. The
number of assembly iterations can be set to one for high interactivity, while three are
generally enough for high precision. The number of conjugate gradient iterations can
often be reduced to a surprisingly small number compared with the theoretica number,
whichisequal to (at most) the number of constraints. Applied tothearticulated structure
infigure 5including 56 solidsand 261 scalar constraints, 2 geometrical iterations each
of theminvolving 5 conjugate gradient iterationsallow usto drag the structure interac-
tively. In contrast, 3 geometrical iterationseach of theminvolving 50 conjugate gradient
iterationsare necessary to obtain avisualy perfect geometric accuracy, resultingin poor
interactivity.

Large time steps allow the use of real-world time. In our application, timeisread at
each entry in the main animation loop, and the time step isdeduced from thetime of the
previousentry. Dueto varioustechnical reasons, thistime step isnot constant. The pre-
vious displacements A g used by theintegration scheme are scaled by dividing the new
time step by the previousone. Sincethedifferent time steps have the same order of mag-

NN %
ANZAN

NN
ANZIN

Figure 5: Interactive positioning. Low geometrical precision allows interactivity during motion.
Precision is eventually recovered.

Figure 6: Interactive dynamics. The user shakesthe plate using a 3D tracker. Low precision al-
lows high interactivity with visually correct results.

nitude, the division does not induce important roundoff errors. We were ableto animate
the scene shown infigure 6 at 12 frames per second on a standard SGI O2 workstation.
This scene includes 28 solids and 108 scalar constraints. Only one geometric iteration
and fifteen conjugate gradient iterations are performed for each animation frame. The
rendering takes approximately half the computation time.

5 Futurework

Our modified post-stabilization approach with tunabl e accuracy or computationtime has
shown good capabilities for interactive solid animation. Further improvements should
includeinitial guesses of the conjugate gradient solution. However, we have found few
similarity between constraint forces from one step to another using displacement con-
straints. We expect to find moretemporal coherency using accel eration correction. Valu-
able initial guesses may allow the rapid computation of accel erations more compatible
with the constraints. This would reduce the geometrica error at each step and conse-
quently, the number of stabilization iterations. Additionally, weighting the geometric
errorsin terms of their contributionto the percepted accuracy may reduce the necessary
computations.

Aknowledgements

We gratefully acknowledge the support of the European Union’s Training and Mobility
of Researchers (TMR) programme in funding thiswork.

References

1.

10.
11.

U. M. Ascher, H.Chin, L.R.Petzold, and S. Reich. Stabiliation of constrained me-
chanical systemswith daesand invariant manifold. Journal of Mechanics of Sruc-
tures and Machines, 23(2):135-157, 1995.

Ronen Barzel and Alan H. Barr. A modeling system based on dynamic con-
gtraints. 1n John Dill, editor, Computer Graphics (S GGRAPH ’ 88 Proceedings),
volume 22, pages 179-188, August 1988.

J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical
systems. Computer Methodsin Applied Mechanics, 1:1-36, 1972.

Hong Sheng Chin. Sabilization Methods for Smulations of Constrained Multi-
body Dynamics. PhD thesis, University of British Columbia, 1995.

M.P. Gascuel and J.D. Gascuel. Displacement constraints for interactive model-
ing and animation of articul ated structures. The Visual Computer, 10(4):191-204,
March 1994.

Michael Girard and Anthony A. Macigewski. Computational modeling for the
computer animation of legged figures. In B. A. Barsky, editor, Computer Graphics
(SIGGRAPH ' 85 Proceedings), volume 19, pages 263-270, July 1985.

M. Gleicher. A Differential Approach to Graphical Manipulation. PhD thesis,
Carnegie Mdlon University, 1994.

Paul M. Isaacs and Michael F. Cohen. Mixed methodsfor complex kinematic con-
straintsin dynamic figure animation. The Visual Computer, 4(6):296-305, Decem-
ber 1988.

Press, Teukolski, Vetterling, and Flannery. Numerical Recipesin C. Cambridge
University Press, 1992.

W. Schilen. Multibody Systems Handbook. Springer, Berlin, 1990.

Jianmin Zhao and Norman |. Badler. Inverse kinematics positioning using nonlin-
ear programming for highly articulated figures. ACM Transactions on Graphics,
13(4):313-336, October 1994.

