Higher-order differential properties of Keccak and Luffa

Abstract : In this paper, we identify higher-order differential and zero-sum properties in the full Keccak-f permutation, in the Luffa v1 hash function, and in components of the Luffa v2 algorithm. These structural properties rely on a new bound on the degree of iterated permutations with a nonlinear layer composed of parallel applications of smaller balanced Sboxes. These techniques yield zero-sum partitions of size $2^{1590}$ for the full Keccak-f permutation and several observations on the Luffa hash family. We first show that Luffa v1 applied to one-block messages is a function of 255 variables with degree at most 251. This observation leads to the construction of a higher-order differential distinguisher for the full Luffa v1 hash function, similar to the one presented by Watanabe et al. on a reduced version. We show that similar techniques can be used to find all-zero higher-order differentials in the Luffa v2 compression function, but the additional blank round destroys this property in the hash function.
Type de document :
Pré-publication, Document de travail
2010
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00537741
Contributeur : Anne Canteaut <>
Soumis le : vendredi 19 novembre 2010 - 10:23:56
Dernière modification le : mercredi 14 décembre 2016 - 01:06:10
Document(s) archivé(s) le : dimanche 20 février 2011 - 02:47:52

Fichier

fullversion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00537741, version 1

Collections

Citation

Christina Boura, Anne Canteaut, Christophe De Cannière. Higher-order differential properties of Keccak and Luffa. 2010. 〈inria-00537741〉

Partager

Métriques

Consultations de la notice

214

Téléchargements de fichiers

122