Can Self-Organization Emerge through Dynamic Neural Fields Computation?

Lucian Alecu 1 Hervé Frezza-Buet 1 Frédéric Alexandre 2
2 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper, dynamic neural fields are used to develop key features of a cortically-inspired computational module. Under the perspective of designing computational systems that can exhibit the flexibility and genericity of the cortical substrate, using neural field as the competition layer for self-organizing modules has to be considered. However, despite the fact that they serve as a biologically-inspired model, applying dynamic neural fields to drive self-organization is not straightforward. In order to address that issue, an original method for evaluating neural field equations is proposed, based on statistical measurements of the field behavior in some scenarios. Limitations of classical neural field equations are then quantified, and an original field equation is proposed to overcome these difficulties. The performance of the proposed field model is discussed in comparison with some previously considered models, leading to the promotion of the proposed model as a suitable mean for processing competition in cortex-like computation for cognitive systems.
Type de document :
Article dans une revue
Connection Science, Taylor & Francis, 2011, 23 (1), pp.1-31. 〈10.1080/09540091.2010.526194〉
Liste complète des métadonnées

Littérature citée [52 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00537799
Contributeur : Frédéric Alexandre <>
Soumis le : vendredi 19 novembre 2010 - 13:27:41
Dernière modification le : jeudi 29 mars 2018 - 11:06:04
Document(s) archivé(s) le : dimanche 20 février 2011 - 02:54:42

Fichier

cs10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Lucian Alecu, Hervé Frezza-Buet, Frédéric Alexandre. Can Self-Organization Emerge through Dynamic Neural Fields Computation?. Connection Science, Taylor & Francis, 2011, 23 (1), pp.1-31. 〈10.1080/09540091.2010.526194〉. 〈inria-00537799〉

Partager

Métriques

Consultations de la notice

501

Téléchargements de fichiers

233