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In this paper, dynamic neural fields are used to develop key features of a cortically-

inspired computational module. Under the perspective of designing computational 

systems that can exhibit the flexibility of the cortical substrate, using neural field as the 

competition layer for self-organizing modules has to be considered. However, despite the 

fact that they are biologically-inspired models, using dynamic neural fields to drive self-

organization is not straightforward. To address this problem, an original method for 

evaluating neural field equations is proposed, based on statistical measurements of the 

field behavior in some scenarios. Limitations of classical neural field equations are then 

quantified, and an original field equation is proposed to overcome these difficulties, 

while preserving other features. The performance of the proposed field is discussed in 

comparison with some previously considered fields, leading to the promotion of that field 

as a suitable mean for processing competition in cortex-like computation for cognitive 

systems. 

 
Keywords: dynamic neural fields, self-organization, cognitive systems 

 

 

1   Computationally-oriented cortical modeling 

 

The motivation of the work presented in this paper originates in previous attempts to 

derive computational paradigms from the biology of the human cortex [3, 20, 32]. 

From a Computer Science point of view the cortex appears as an information 

processing system with powerful computational features. These features, like 

distributed and robust computation, self-organization, recruitment and reallocation of 

cortical tissue to adapt to some behavioral change, are familiar to neuroscientists, but 

are barely exploited in software engineering, whereas they could offer robust and 

original computational paradigms. Indeed, one important challenge in Computational 

Neuroscience is to identify and translate the computational logic of the highly 

adaptive biological structures, as the cortex, into the field of Information Technology 

and Communication. The work presented here intends to be a step forward in this 

direction. 

The most attractive feature of the cortical structure to a computer scientist is 

certainly its plasticity. Despite the variety of information that is processed onto the 

cortical structure, like vision, audition, body representation, planning, language [8], 

the cortex exhibits an undeniable anatomical homogeneity, appearing as the tiling of a 

generic neural circuit called the microcolumn in the literature [5, 28, 36]. Our brain 

seems to handle this diversity and complexity of information processing in a very 

dynamic way, some cortical regions re-adapting their functional role as a response to 

dramatic body changes [11], sometimes in no more than a few hours [46]. This raises 

the question of the true nature of the cortical computation performed in such circuitry. 
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This has often been described by analyzing the role played by some specific cortical 

areas in the processing of its corresponding modality. For example, in early studies of 

vision, cortical processing was depicted as Gabor wavelet image filtering [9], which is 

of course not the case for non visual areas. As computer scientists, our role in the 

understanding of the cortical functions is to recognize from the variety of such 

examples the expression of a common computational template that we can formalize 

as a model like in [2, 10]. Such a goal is also addressed in the field of biology itself, 

since functional similarities have been highlighted between areas dealing with 

different modalities [35]. It is therefore legitimate to ask what can actually this 

template be. Following the early proposal by Kohonen [29], we support the idea that a 

key feature of the cortical structure is the commonly called self-organizing property, 

i.e. the ability of the cortex to build dynamical topologically-preserving vector 

quantization mapping. Kohonen has made one attempt to describe this self-organizing 

paradigm in formal terms, expressing his belief that this conceptual mechanism 

governs indeed not only the formation of feature maps (e.g. visual orientation map, 

auditory map, somatosensory map), but also that of associative maps or even higher-

level cognitive mechanisms. However, even if Kohonen proposes different 

implementations of the concept, none of these is capable of encompassing all the 

computational features that could be expected in such a context. These issues, as well 

as our expectations towards the self-organizing paradigm are detailed in paragraph 

2.1. On the other hand, in a previous work [32] we designed a computational model, 

using the bijama [18] cellular programming framework, exploiting this self-

organizing property to yield the unsupervised specialization of some generic modules 

coupled with one another. From our point of view, distributed computations and the 

ability of developing multimodal representations are essential features that the 

implemented paradigm of self-organization should enable. Considering these aspects, 

the self-organization process gives rise to multimodal representations when solving a 

rewarded arm reaching problem [32]. 

These encouraging results motivates us to continue using self-organization for 

developing higher-level behavior, but the limitations of the Kohonen models compel 

us to investigate the low-level implementation of this mechanism. In particular, we 

examine in this paper the possibility of modeling the underlying competition taking 

place in the self-organizing process by the means of dynamic neural fields, a 

theoretical formalism of cortical competition within a population of neurons. Neural 

field models proposed in the literature rarely address this issue, the authors being 

rather interested in dynamical aspects, as stability and bifurcation studies. The present 

paper examines the ability of two of the most commonly used neural field models to 

implement a self-organizing procedure. Then, the paper exhibits the limitations of the 

considered fields to achieve reliable self-organizing behavior, and consequently 

proposes a novel equation that reconciles neural fields to the role we claim they 

should play in the self-organization process. 

The paper is organized as follows. In section 2, we propose the generic 

template of cortically-inspired self-organization, where the role of neural fields can be 

formulated. Then, we show how this template encompasses in the same framework 

usual vector quantization techniques, as k-means or self-organizing feature maps, and 

more biologically oriented computational models. Moreover, this highlights the 

computational properties expected from a cortically plausible mechanism, as locality 

of the computation, tolerance to random initial states, etc., which are key aspects not 

addressed by the initial Kohonen approach. 
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Section 3 presents the dynamic neural fields formalism that will be used as the 

“computational engine” of the previously introduced self-organizing template. Next, 

three possible candidates of neural field equations for implementing this template are 

introduced. First, the early model by Amari [4], since it is still considered as a 

reference and used in many of the current approaches [15, 40], and second, the model 

introduced by Pinto and Ermentrout [37, 38], are presented. This latter model 

highlights the coupling of inhibitory and excitatory neurons within cortical columns, 

and also shares common features with the model that we introduce in this paper. This 

last neural field model is the novel one claiming to extend the capabilities of the other 

classical models in respect to the self-organizing property. The dynamic behavior of 

these three equations will be further empirically analyzed in section 6 in order to 

highlight their functional features. 

In section 4, a performance measurement method to evaluate the dynamic 

evolution of a field is introduced. This allows to qualify at every time step the 

behavior of a given neural field dynamics by a scalar ’quality’. Further on, from this 

performance criterion, a so-called ’touchstone’ neural field is introduced and 

analyzed. This study indicates that the proposed performance criterion is suitable to 

the cortical modeling template and this is a sufficient condition to achieve self 

organization. 

In the next section, 5, we present the different scenarios used to collect 

comparative experimental results. As the central property investigated by our work 

concerns self-organizing abilities of a cortical model driven by a neural field, two 

scenarios are examined here. Apart from this main objective, some other properties of 

neural fields are also investigated. These are mainly the ones related to the use of 

neural field in attentional mechanisms. The purpose here is to determine whether the 

neural field that we propose is compatible with these features as well, or is 

exclusively dedicated to self-organization. We support the idea that this mechanism 

can be involved indeed in several aspects of cognitive functions. 

The last section, 6, reports actual experiments from previously described 

scenarios. The experiments are driven by the following rationale. We check 

experimentally that the touchstone field is actually able to fulfill the role expected 

from a neural field in developing self-organizing behavior. As a consequence, testing 

whether a neural field performs well, in the sense of the criterion presented in section 

4, is a relevant hint concerning its capability to operate cognitive functions. This 

check is provided for each scenario, for the three field equations considered in this 

paper. This allows to discuss these models in a comparative way, under the 

perspective of cortically-inspired mechanisms for cognition. 

 

2   A modular view of self-organization with neural fields 

 

The purpose of this paper is thus to propose a self-organization mechanism that relies 

on neural fields, as a generic cortically-inspired computational process. In this section, 

we briefly review the self-organizing concept, as introduced by Kohonen in [30], 

presenting then a generic computational architecture inspired by this paradigm. 

2.1 Cortically-inspired self-organization 

Basically, self-organization consists in extracting, from a high dimensional data 

stream, prototypes that are statistically significant and arranging them on a low 

dimensional output representational space. The usefulness of such a process is firstly 
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to have at hand a set of prototypes (the codebook) that can be used to replace the 

diversity of events in the data stream with a reduced but representative vocabulary 

and secondly to display these elements of vocabulary on a topological substratum, 

which reveals hidden relations and can be exploited for further processing. 

As one wishes to implement such a process with a distributed paradigm, such 

as artificial neural networks, or to better understand how cortical maps of neurons 

emulate this function, it must be described in terms of an architecture of units, 

information flows and learning processes. As sketched out in (Figure 1), the three-

layered architecture consists of a layer of units for the inputs, one for the recognition 

(as a result of the activation of prototypes) and one for the output. The main 

information flow is feedforward, from data stream to output representational space, 

through two steps, detection and selection, each implemented by a local circuitry, 

corresponding to recurrent local neighborhood connectivity. Detection consists in 

evaluating the matching level of each stored prototype with regard to the present input 

(it implements a distance function in the input space) and results in the recognition 

layer. Selection consists in electing, from these matching levels, a limited set of these 

prototypes, thanks to the operation of local excitation and surround inhibition. 

In parallel to these functioning rules, a learning process can take place at each 

step. At the detection step, prototypes are iteratively elaborated in an unsupervised 

way. At the selection step, the strength of competition and the topological constraints 

can be also adapted from some activity dependent parameters. As a consequence of 

these operations, prototypes corresponding to similar inputs will be actually close in 

the output space. It is also clear that all these processes must be seen as dynamical 

processes and do not share the same time constants. Another important and critical 

factor is therefore mutual influences between these loops, particularly depending on 

the time constants. 

This general definition for the distributed implementation of self-organization 

can now be confronted to several algorithms and processes. K-means proposes an 

original, simple and efficient algorithm for the detection module and particularly for 

the learning part, but in this context reduces the selection module to a simple WTA 

(Winner-Take-All). The same can be said for Kohonen SOM which adds a 

neighborhood constraint to the selection module. It is also interesting to underline 

that, in this picture, dynamic neural fields can be seen as a powerful way to 

implement a richer selection module with dynamical units, hence the central idea in 

this paper to refine classical self-organization algorithms with neural fields in the 

output layer. Coming back to the link to cortical functions, we claim (with many 

others, e.g. [10]) that the self-organization is among their properties. Information 

flows and architectural principles of the distributed implementation of self-

organization mentioned above are consistent with physiological and anatomical data 

of the cortex [2]. As discussed further, other processing take place in the cortex and 

should be also considered in further works. Similarly, feedback, generally described 

as an important information flow dedicated to cortico-cortical communication, is not 

exploited in the architecture presented here and requires further development in order 

to be integrated. For example, [32] exploits feedback information flow to implement 

multimodality. Consequently, this study is clearly an initial step of cortical modeling, 

wishing to explore self-organization considered as its basic and perception-oriented 

function. It also underlines the interest of better exploring this function with realistic 

characteristics of space, time and granularity. 
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2.2 Architecture of self-organization 

Let us consider a topological space X  of the positions (i.e. each position Xx∈  has 

some well defined neighboring positions x′ ). Space X  refers to the place where 

some self-organizing process stands. For example, biologically-inspired cortical 

modeling may consider X  as a bi-dimensional space, since the cortex is known to be 

organized as a 2D-laminar structure [36]. Let us define a field as a distribution of 

scalar activations over X , i.e. a mapping from X  to R . Such a distribution is the 

actual data that is pipelined through the data flow presented next. As the architecture 

describes a dynamical system, all its varying components are indexed by time t , that 

is considered discrete here. Therefore, a scalar field Xxxf ∈),(  at time t  is noted as 

tf , and the instantaneous value of that field at position x  is noted as )(xft . Some 

other components used in this architecture are prototypes Xxx ∈),(ω , defined at each 

position x . Typically, in a neural model like SOM, a prototype )(xω  models the 

weight vector of the neural unit at place x . From these definitions, let us sketch the 

data flow, illustrated on (Figure 1). 

 

 
 

Figure 1. Information processing in a cortically-inspired self-

organizing process. At each position x , an input )(xξ  feeds 

the  detection module. This module computes from all inputs a 

distribution of recognition activities )(xi  over X . Recognition 

feeds at its turn a selection module that has to elicit places x  

corresponding to local best recognition. To do so, the module 

produces a distribution )(xu  over the field X . This latter 

distribution modulates back the learning that occurs at the 

detection stage. 

 

Let us call the first module the detection module. It is continuously fed with 

input vectors Ξ∈)(xtξ  at each position x . On those positions, some internal 

recognition procedure matches )(xtξ  against prototype )(xtω . This produces a 
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recognition rate )(xit  for each place x , whose distribution ti  over the field is the 

output of the  detection module. Usually, the matching produces high values )(xit  at 

places x  where input )(xtξ  resembles the current prototype )(xtω . A learning 

process runs continuously in parallel to the recognition, leading to slight changes in 

the prototype values. This learning is modulated by the overall output tu  of the 

system, detailed next. More precisely, the learning of prototype )(xtω  depends on the 

current input )(xtξ  and the current value of )(xut . 

Let us call the second module the selection module. It operates from the 

distribution i  in order to compute another distribution u  over X . The latter is high 

around locally best recognitions. This locality lays on the actual topology of X , 

which is 1D on (Figure 1), but which is rather 2D in more realistic models of the 

cortical sheet. 

In this framework, external control is only given by successive changes of 

input distribution L,, 1+tt ξξ . This means that no reset of u  is performed when new 

inputs are presented, and that learning rates are kept constant. 

2.3 A comparative view of  self-organizing processes 
The above presented template is a high-level abstraction of a whole class of 

unsupervised learning techniques. In the following paragraphs we show how the 

instantiation of this conceptual template with different parameters brings out some 

classical learning paradigms. To illustrate this aspect, let us consider a general form of 

the computational procedures run by each of the two modules of the template. 

First, we define the matching procedure of the detection module as most 

classical techniques do: 

 

 )))(),(((=)( xxdfxi ttt ξω                                           (1) 

 

where d  is the a distance function of the metric space Ξ  of the input samples )(xtξ  

and f  is a monotonically decreasing function. The designer of a biologically-oriented 

model may rather say that function ))),(((=)( ξωξ xdff x , from Ξ  to R  models the  

tuning curve of the neural unit at x . 

Second, we define the general learning rule implemented by the selection 

module as: 

 

 ))()(()()(=)(,, 1 xxxuxxXxt ttttt ξωαωω −+∈∀∀ +                   (2) 

 

where 0>α  is the learning rate and is here modulated by u . 

2.3.1 K-means algorithm 

Let us consider that all Xxt x ∈)}({ξ  are identical ( const=)( tt x ξξ  for all positions). Let us 

set up the selection module so that it produces a single Dirac pulse as tu  output 

distribution, the Dirac pulse being placed at )(argmax xitXx∈
. In that case, the whole 

architecture acts as the on-line version of the k-means algorithm [31]. The Dirac pulse 

implements the winner-take-all (WTA) competition, or hard competition, used in such 

algorithms. 
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2.3.2 Self-organizing maps (SOM) algorithm 

This is the same as previously, except that tu  is instead the convolution of the 

previous Dirac pulse with a bell-shaped even function (usually a Gaussian). In that 

case, the learning rule is efficient in the region in the field surrounding the best 

recognized prototype, since in this region )(xut  is significantly high. If the width of 

the bell decreases through time, which is not a necessary condition for the 

convergence, the whole system behaves exactly as a classical Self-Organizing-Map 

(SOM) [30]. In that case, the bell, rather called a bump in the literature, induces a 

winner-take-most (WTM) competition, or soft competition, that is known to 

reorganize the prototypes Xxx ∈)}({ω  according to both the topology of the field X  

and the inner metric of Ξ  induced by d  (i.e. the so-called topology preservation) 

[30]. 

 

2.3.3 Self-organizing maps driven by neural field computation  

Let us focus now on the architectural details of our proposal, i.e. the generic 

computational template of self-organization driven by neural fields. This template 

represents the starting point of our further analysis, concerning the feasibility of 

deploying self-organizing mechanisms through neural field computation. 

The only structural difference from the previous model in section 2.3.2 is that 

here tu  is computed from ti  through a neural field equation, introduced further in 

section 3. This means that the selection module is made of an assembly of processing 

units, placed at positions Xx∈ , that update their scalar state )(xut  according to 

some differential equation. This update, for some unit x , depends on the state )(xut
′  

of some other units in the module, accessible through a lateral on-center ( +
w  

neighborhood weighting kernel) off-surround ( −
w  neighborhood weighting kernel) 

connectivity. The distribution tu  built by the neural field equation at the selection 

module level is known as dynamically fitting ti  by emerging bumps of activity in the 

field (see section 3), after some transient relaxation time. With such an approach, this 

time delay raises some algorithmical problem. As it takes a relaxation time for tu  to 

set up the appropriate bumps when ti  changes (i.e. when tξ  changes, since ti  is 

immediately computed from tξ ), and as learning runs continuously, driven by tu , in 

the detection module, transient distribution tu  may alter prototypes Xxx ∈)}({ω . To 

cope with this effect in self-organization experiments, tξ  is kept constant during 

many time steps (actually 100 for results presented further), and a small value of α  

(the learning rate) is used. Consequently, tu  reaches a new equilibrium state after a 

few time steps from each new change of the input sample tξ . Then, tu  remains 

constant, while learning can consolidate mainly from this stable state. The value of α  

is chosen such that the change of ti  induced by the continuous change of prototypes is 

small, keeping tu  actually stable. In our experiments, xx tt ∀ =)( constξξ  is used, as in 

the previous SOM model. 

In spite of an increase in complexity, compared with the SOM algorithm, this 

approach has some actually important advantages. First, if one enables the field to 

raise several bumps, learning can perform in parallel in several places (where the 
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actual bumps stand). This feature is not feasible in SOM, since the use of a maximum 

operator to select a single bump cannot be easily generalized to one corresponding to 

several bumps. Second, the nature of the SOM model is dramatically different from 

the one presented here, since SOM cannot be implemented as a fully distributed 

process, because the computation of the Dirac pulse position needs some kind of 

centralization. This centralization can be avoided with specific inhibition rules, as in 

[40]. Our work sets up SOM properties in the distributed case, using neural fields 

over a discrete space X  for the selection module. The architecture layers, i.e. the 

stack of modules implementing the distributed processing pipeline, can thus be 

represented at the level of each position, which is more consistent with both biological 

plausibility and parallel implementation (see (Figure 2)). Evaluation of neural units is 

performed asynchronously, similar to Hopfield networks [22]. More precisely, at each 

time step, all positions are evaluated sequentially, in a random order [47]. The   

bijama [18] programming framework developed in our team, implements parallel 

execution of layered cellular networks as the one described here and illustrated in 

(Figure 2). 

 

 
 

Figure 2. Cellular version of model in (Figure 1). Controlling 

this kind of distributed model motivates our study of the neural 

fields paradigm. See text for details. 

 

2.3.4 Multimodal self-organization in   bijama  cellular model 

In the bijama cellular model cited above, all positions do not receive the same input, 

since the input )(xξ  is a combination of external inputs with position dependant 

afferences from other fields (their u  values). This allows to couple self-organization 

between different fields to address multimodal problems. Current work on this model 

relies on enabling several u  bumps in each field, leading within one field to several 

parallel learning processes. This work on the bijama model [32] is out of the scope 

of this paper, but it is among the motivations of the case study presented here. 
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2.3.5 Self-organization in RFLISSOM model 

Some other significant modeling of cortical substrate can also be quoted here as 

fitting our proposed architecture. Let us mention here the RFLISSOM model, since it 

adds to the current architecture the adaptivity of the selection module, by allowing the 

learning of lateral connections +
w  and −

w  (see (Figure 2)) [33]. RFLISSOM also 

implements the cellular computation paradigm. Even if the authors have to globally 

reset the neuronal activity after each learning step, which does not fit to our online 

local computational constraints, addressing learning in the selection module is 

challenging and original. Such investigations cannot be performed using a SOM 

model, which is another argument for the case study addressed by this paper. 

 

3   Neural fields for cortical processing  

3.1 Computing with neural fields 

The dynamic neural fields (DNF) models aim to describe the dynamics of the 

electrical potential activities of populations of neuronal units (e.g. neurons or 

microcolumns) by the means of integro-differential equations. They were founded as 

an attempt to model the computational basis of the cortical information processing, 

and in particular the neural competition/cooperation in the lateral information flow. 

Wilson and Cowan [54] and later Amari [4] established the foundations of 

dynamic neural fields as a mathematical formalism. At every time instance t , the 

evolution of the membrane potential, ),( txu  for each neural unit x  of the population 

(or field) X  is described by an implicit equation. The neuronal units of the field are 

interconnected, and their lateral connections weights are fixed, typically defined as an 

on-center/off-surround influence (also known as Mexican-hat). This lateral 

connectivity for each unit x  is usually defined through the form of a neighboring 

weighting kernel. The field conceived in this way responds to input distributions 

),( txi , by increasing its activity wherever the input stimuli are locally strong, 

emerging so-called neural “bumps”. These responses may be regarded as a local soft 

competition, an effect that may be seen as a basis for the development of more 

complex computational structures. One of the most commonly used neural fields 

equation in the domain's literature is the one proposed by Amari [4], presented in 

section 3.2.1 and further analyzed in the paper. 

Since those early works, the DNF paradigm has been studied and extended, 

following two main directions. The first one, addressed next, is the use of DNF as a 

formal descriptive model of neural processing. The role of the model is then to bridge 

the gap between biological observations and mathematical analysis. Applying 

dynamical systems analysis to DNF then allows explaining qualitative observations of 

neural populations. The second direction, addressed after, is the use of DNF at another 

level, since their ability to achieve actual information processing is to be investigated. 

These two directions are complementary: while the first analyzes cortical 

computation, the second rather proposes operational mechanisms inspired from it. 

In order to support the second approach, let us review here results from 

mathematical analysis, since they provide a formal grounding for some models that 

are very close to the original one proposed here. 

Since DNF aim at modeling the dynamical behavior of the cortical tissue, 

mathematical analyses, that are often expressed in the mono-dimensional case for 

sake of simplicity, and have been extended to bi-dimensional fields, as it has been 

done in [48]. It shows that the actual shape of the on-center/off-surround kernel 
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influences the field dynamics. Conditions on lateral weight kernels have been found, 

for a constant input i  (see (Figure 1) for notations), to have isolated bumps of u  

activity after the field stabilization, rather than constant u  or Turing instabilities. In 

[48], a qualitative remark is also made about the dynamic of the reaching of these 

states when inputs change: the transition between two close stable states is performed 

by a slide of bumps from initial state to the final one. Indeed, the DNF models are 

able to do much more than placing stable bumps and such rich dynamics also 

motivate a deeper analysis of cortical neural population. Phenomena like wave front 

and traveling pulses, observed on the brain surface, actually appear in some richer 

models of DNF. First extension of DNF is the introduction of potential transmission 

delays between neurons [25, 51]. With a suitable formalization, bifurcation in such 

models to different dynamical modes can be related to parameter settings. Those 

modes are traveling fronts, traveling pulses, or Turing instabilities mentioned 

previously. The second way to extend initial DNF paradigm is to consider two types 

of neurons in the field. In those models [53], each excitatory neuron in the field is 

associated with an inhibitory neuron, so that the basic field element is an oscillator. It 

has been shown that a 1D field of such oscillators with only excitatory lateral 

connections can produce traveling activities [7], as fields with delays actually do. 

Bifurcations analysis and dynamics compatible with Hodgkin-Huxley-like membrane 

modeling has also been proposed [16], as well as the ability of such field to produce 

breathers (oscillatory activity patterns, able under some conditions to generate wave 

fronts periodically). More realistic on-center/off-surround lateral weight kernels also 

allow such dynamical behaviors [17]. It means that having a population of coupled 

excitatory and inhibitory neurons, as initially introduced by Wilson and Cowan [53], 

is a suitable extension of DNF for addressing richer dynamics, as those obtained by 

adding time delays. The link between the two may not be obvious. Nevertheless, in 

[12], a mathematical short-cut for simulating delays is proposed. It consists in 

transforming the equation with time delay into two coupled differential equations, 

which makes the delay model closer to a population of oscillators. 

As argued in section 2.1, we are interested in developing self-organizing 

behavior through neural field competition. We try to limit the complexity (but not the 

generality) of the DNF model used in this purpose by not considering explicitly the 

fine modeling of neural activity temporal propagation in the lateral flow. 

Nevertheless, we consider models based on a population of oscillators, adapted from 

[37, 38]. Consequently, we limit our analysis to the DNF models described in the next 

section. Development of high-level behavior relies on rich local phenomena that the 

field exhibits. Someone trying to elaborate computational mechanisms based on these 

dynamics has to exploit their features, reactivity to input, intensity of response, spatial 

density, frequency of occurrence or other transient and stable regime parameters. 

However, controlling all these aspects is far from simple. The incompleteness of the 

results provided by the analytical studies in this respect, and the difficulty of finding 

appropriate fine-tuning methods for generating a certain dynamic behavior of the 

field, may explain the rather few proposals of computational models based on DNF in 

the literature. As a consequence, the research interest of the domain shifted towards 

previously mentioned theoretical aspects, neglecting somehow the applicative studies 

of DNF. 

Nevertheless, few attempts exist to use DNF as a computational tool for 

applications, like robotics [13, 26]. This set can be enlarged if the works aiming at 

exhibiting some general computational properties of DNF are also considered. 

Actually, models of cognition, including self-organization, attention, decision, 
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implicitly contribute to promote the use of neural fields to control situated devices, as 

autonomous robots, even if the domain today is not mature enough to derive directly 

such applications from DNF. Let us present here such approaches, some being closer 

to biology and cognition, some others rather focused on actually using the neural 

field, but all sharing the common goal of promoting DNF as a powerful computational 

paradigm, inspired from the cortical activity. 

One computational feature of DNF that is highlighted by authors is their 

ability to take a dynamical decision from a distribution of activities. This is exactly 

what is expected from the selection module in (Figure 2). In that context, input i  is a 

complex changing profile from which the “most relevant” part has to be continuously 

identified, by permanently updating the position of an activity bump u . As mentioned 

in section 2.3.3, this can be used to implement distributed self-organization. This has 

been done previously for oriented bars organization as in V1 [14], where input tξ  (see 

notation of (Figure 1)) are restricted to varying continuously with time. The selection 

ability can also be used in attention, which differs from the self-organizing context. In 

this case, i  is the response of a saliency map, and the u  bump robustly emerges at the 

place of the appropriate focus of attention [39, 40, 43]. A similar mechanism can also 

be used for action selection [52]. For those purposes, a single bump may be desired, 

and can be ensured [34], but having several bumps in some fields may also help to 

keep an internal memory of recently visited positions [15]. Such feature is also 

involved in architecture including several fields, coupled one with the others. In this 

case, activity u  of a field is used to bias input i  of some other fields, allowing the 

whole architecture to place a set of bumps to solve multi-values constraints, thus 

accounting for cognitive properties [15, 27, 45]. We investigate such a multi-field 

approach for learning controllers, adding reward and self-organization to these 

attentional mechanisms [32]. This is what actually motivates the current paper. 

Another computational feature is the use of traveling pulses, whose stability 

has also been studied [23]. Some authors consider such waves as produced by cortical 

areas in abnormal conditions, as hallucinations [6], but traveling waves can also be 

obtained by breaking the symmetry of the lateral coupling weight kernel. This has 

been used for robotic arm control [26]. In this work, each position in the field 

corresponds to the position of the arm extremity, and obstacles are indicated by 

negative i  that are bump repulsive. The lateral weights are modified explicitly so that 

the bump moves in the direction of the goal, avoiding obstacles since the field copes 

permanently with bump rising and negative input avoidance. More recently, this 

property has been used to anticipate the consequences of action in a reinforcement 

learning context [49, 50]. 

Last, some more specific properties are addressed. Let us mention the binding 

problem, i.e. associating distant bumps in a field of oscillators that are locked in phase 

[41, 42]. This promotes once again the dynamical richness of such fields of 

oscillators. This richness has also been exploited for visual selection in a model of 

superior colliculus [44]. As opposed to previously mentioned models for visual 

attention that were based on the Amari equation, the selection is rather performed here 

by neurons behaving in two modes, thanks to a non linearity in their transfer function. 

The first mode is a race for accumulating activation, and the second mode performs 

the selection. It can be noticed from this model that populations of oscillators, when 

actually used with complex pattern of input, do not generate traveling pulse anymore, 

as opposed to the cases where mathematical results are available. This remark is also 

valid in this paper since two of the three neural fields used here for comparison are 
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actual population of oscillators, but are engaged in attentional and self-organizing 

tasks without exhibiting wave activity. 

In this paper the two main neural field principles reported above, i.e. the usual 

Amari field and the one by Ermentrout involving oscillators, are considered under the 

perspective of self-organization presented in section 2.3.3. As results presented 

further will show, they hardly fulfill all the properties expected here from them. This 

has led us to propose an original neural field equation, which is the third field 

equation actually considered in experiments. 

 

3.2 Investigated neural fields 

We detail here the neural field models that will be further investigated in the paper, in 

our attempt to design a self-organizing generic mechanism based on DNF 

computation. 

 
 

Figure 3. The stabilized response ),( txu  (gray surface) of a 

dynamic neural field to a given input distribution ),( txi  (white 

surface). Simulation provided by the bijama software library 

[18]. 

 

3.2.1 Amari neural field (ANF)  

Besides being the main founder of the theoretical formulation of dynamic neural 

fields, the Amari field (further referred to as ANF) is still used in many neural field 

modeling approaches. The classical field equation [4] is given below:  

 

xtxufxxwtxu
t

txu

x
′′′−+− ∫ ′ d)),((|)(|),(=

d

),(d1

τ
htxi ++ ),(                           (3)                                                  

 

where f  is a non-linear function (usually a sigmoid), τ  and h  are real constants, and 

w  is the lateral connections weighting kernel, usually a Mexican-hat function as 

below:  

 

                   
22

ee=)( brar AArw −−−+ −                                             (4) 
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(Figure 3) plots a distribution of input stimuli, as well as the corresponding 

stabilized response of a two-dimensional field driven by the Amari equation. 

 

3.2.2 Pinto and Ermentrout neural field (PENF) 

The second neural field model considered in our analysis is an extension of the Amari 

model, proposed by Pinto and Ermentrout [37, 38] (and further referred to as PENF). 

The equations describing the temporal evolution of the neural units are given below:   

 

),(d)),((|)(|),(),(=
d

),(d1
txvxtxufxxwtxitxu

t

txu

x
β

τ
−′′′−++− ∫ ′                 (5) 

),(),(=
d

),(d1
txutxv

t

txv
+−

η
                                                                            (6) 

 

All the parameters have the same meaning as in the Amari equation 3, except 

the additional [0,1]∈β  and v , the latter being an auxiliary distribution over the 

population X . The authors suggest that v  is a slow, negative feedback factor of the 

field's response u , that could be seen as “a spike frequency adaptation, synaptic 

depression or some other slow process that limits the excitation of the network” [37]. 

In certain conditions, the field is capable of generating sustainable traveling pulses, 

but this effect will not be investigated in our further analysis, as already mentioned. 

 

3.2.3 Back inhibited neural populations (BINP)  

Inspired by the Pinto and Ermentrout model, which enhances the behavior of a field 

through feedback contributions, we propose a new model that also introduces a 

feedback term to better control the dynamics of the field. As it will be shown by the 

further analysis, this term, suggestively called back inhibition, influences the field, in 

order to enable an enhanced bump formation and adaptability to various input stimuli. 

The mathematical formalism describing the new field behavior is given by the 

following equations:  

 

),(),(),(),(=d)/,(d1/ vigtxItxEtxittxu ⋅−⋅−⋅+⋅ γβατ                                (7) 

       )),((=d)/,(d txEhttxv                                                                               (8) 

 

The main feature of this model is that it succeeds in enabling the formation of 

high saturated bumps in all input conditions. Besides, the formed bumps can easily 

follow the changes occurring in the input stimuli distribution. 

Let us first define +
w , the on-center neighborhood weighting kernel, and −

w , 

the off-surround neighborhood weighting kernel:  

                                      
2

e=)( arrw −+                                                        (9) 

                                        
22

ee=)( crbrrw −−− −                                            (10) 

As in biological systems, that report separate excitatory and inhibitory 

neurons, we also consider a separation between these influences. Here we use cb <  in 

order to keep both kernels positive, as shown in (Figure 4). 

Let us further define respectively the lateral excitation and lateral inhibition, 

experienced by each unit x  in the field:  

( )xtxufxxwtxE
x

′′′−+

′∫ d)),((|)(|=),( 1σ                                        (11) 
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( )xtxufxxwtxI
x

′′′−−

′∫ d)),((|)(|=),( 2σ                                         (12) 

where 1σ , 2σ  and f  are sigmoid functions (cf. annex A). 

A supplementary process automatically keeps u  and v  positive and saturates 

the values )(xu  and )(xv  to 1, whenever they exceed this threshold. α , β , γ  and τ  

are real constants. g  is a product of two sigmoid functions, while h  is a monotone 

function, as represented in (Figure 5) and made explicit in annex A. 

 

 0
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Figure 4. Excitatory and inhibitory weighting kernel functions. 

See annex for the values used in our simulations. 

 

 
 

Figure  5. The g  (left) and h  (right) functions used in equations 

7 and 8. See annex for the values used in our simulations. 

 

The novelty of these equations resides in the g  term, our proposed mechanism 

for implementing an adaptive back-inhibition for all the field regions highly excited in 

low stimuli conditions. More specifically, wherever the field responds strongly to low 

inputs (i.e. 0≈i , 1≈u ), it will be forced, within a certain delay, to decrease its 

response u  to zero, through the inhibition induced by the increasing values of g , 

since v  increases while u  is high. This is why such a field is further referred to as a  

Back Inhibited Neural Population (BINP). 
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4   Qualifying the behavior of dynamic neural fields  
 

In this section a criterion is proposed to evaluate the ability of a neural field to 

participate in a self-organizing process, as previously attempted in [21]. This criterion 

is formalized in section 4.1, legitimated in section 4.2 and applied in section 6 as a 

mean to compare neural field models. 

The criterion presented here aims to measure two properties that we are 

expecting from a stabilized field response. First, locally strongest stimuli should be 

represented by bumps with a high amplitude, independent of the actual intensity of the 

stimuli. Second, at any given time instance, these bumps should be sparsely 

distributed along the field. 

In particular, if the sparseness principle is formulated as to allow for the 

formation of a single bump along the entire field, the resulting field response can be 

interpreted as a distributed computation of a global maximum. As a consequence, the 

template described in section 2.3.3 that would use such a field to implement its 

selection module, would intuitively behave as a classical SOM algorithm. An 

empirical investigation of this assertion is presented in section 4.2, its conclusions 

making us consider such principles legitimate for supporting the development of self-

organizing properties. 

Inspired by [34], we propose here some illustrations of fields satisfying these 

principles. Figure 6 describes visually the expected responses of such a neural field 

performing in various key scenarios. For visual simplicity, we consider here only the 

one-dimensional X  space, but the principles presented here can be extrapolated to a 

multidimensional X . Additionally, for the same practical reasons, we limit our 

discussion to the vicinity of a single bump, as we are interested in highlighting the 

local selective behavior of the field. All the cases may be immediately generalized to 

fields able to raise multiple bumps simultaneously. As we will see, the definition of 

the quality criterion that we will further formulate is independent of the dimension of 

X  or number of bumps. 

As a general remark, the fields respond, or adapt their responses so as to match 

locally strongest stimuli (the distribution ti  computed by the detection module of the 

architecture described in (Figure 1)). Their behavior should be robust, the fields not 

being distracted by isolated peaks of input stimuli (see (Figure 6. d, e)). 

Let us highlight here the case of null input scenario presented in (Figure 6. h). 

The fact that the input is absent should not suppress the selectivity character of the 

field. Non-intuitively, the responses of the field in the (c) and (h) cases from (Figure 

6) are qualitatively equivalent: the field does not cease selecting (i.e. form high 

bumps) even in conditions of uniform level of input stimuli. In this respect, this field 

does not make a distinction between scenarios of different levels of input stimuli. Its 

responses are selective and well-saturated in any input conditions. 

Let us now express our insight on how fields with such a behavior can be used 

to participate in self-organization. We recall that the field response, as assumed in 

section 2.3.3, will be used to modulate the learning rule controlling the adjustments of 

the prototypes (see equation 2). The prototypes match usually very poorly at the 

beginning of the learning process, and only after the procedure converges, they 

increase their matching response. Consequently, the input stimuli received by the 

neural field from the selection module of the self-organizing template will be very 

low at the beginning, and only afterwards will increase. Therefore, in order to 

correctly modulate learning, the field has to enable the emergence of high responses 

regardless of the level of input stimuli. In this sense, the particular selectivity of the 
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field, defined by the first principle stated here, is suitable for self-organization. The 

illustration of this argument is presented in section 4.2, where we show how the 

template from section 2.3.3, using as the selection module a neural field satisfying the 

two principles described here, can indeed achieve self-organization. 

 

 
 

Figure  6. Some expected effects (an extension from [34]) of a 

one-dimensional neural field activity (the thick plot), in 

response to various inputs (the thin plot). For each row, the 

temporal evolution of the field is shown from left to right. The 

field is assumed to generate a single bump of activity. a. 

selectivity, b. competition, c. exploration (high plateau), d. 

competition (strong distractor), e. competition (weak 

distractor), f. collaboration, g. adaptation, h. exploration (low 

plateau). 

 

Following the above considerations, let us formulate the properties (P) and (Q) 

corresponding to the two principles. (P) stands for the field selectivity principle, and 

(Q) for the bump density constraint. 
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Property P  Bumps of a stabilized field response emerge in regions where the 

input stimuli are locally the strongest and their amplitudes do not depend on the 

amplitudes of the input stimuli.  

  

Property Q  The distance between the center positions of any two bumps of a 

stabilized field response must be kept between two bounding limits ( minb  and maxb , 

with maxmin bb < , as in (Figure 7)), such that the bumps are neither too sparse, nor too 

dense in the field.  

 

From now we will be guided by the desiderata of finding neural fields that 

fulfill the two properties (P ∧  Q). A specific numerical instrument to capture and 

measure how precisely a neural field satisfies these properties along its evolution is 

described in the next section. 

 

 
 

Figure 7. An example of a one-dimensional stabilized response 

of a field satisfying (P ∧  Q). See text for details. 

 

4.1 Evaluation of neural field computational capabilities 
In this section, we express (P ∧  Q) into equations, describing also a method to qualify 

the dynamics of a field with respect to these principles. The conceived instrument will 

then be used as a tool to investigate whether a specific field satisfies the (P ∧  Q) 

properties in a particular benchmarking scenario. 

While this approach does not provide a direct solution to the parameter choice 

problem, one can quantitatively evaluate any field dynamics with respect to (P ∧  Q) 

and thus validate a specific parameter choice [1]. Additionally, based on the actual 

measuring instrument, an optimization procedure may be implemented for studying 

the impact of the variation of one or more parameter values upon the field behavior. 

However, this procedure has a very high computational cost. 

 

4.1.1 Measure of performance  

The following analysis is performed for any time instance t . However, for the sake of 

simplicity, the notations used here do not carry the t  index, as time does not appear 

explicitly in any of the equations below. 

Let us consider an input distribution Xxxi ∈)}({  over the field X , and the field 

response distribution Xxxu ∈)}({ . Let us also note X
R  the set of functions from X  to 

R . Both )(xu  and )(xi  belong to X
R . The Euclidian distance d  on this set is given 

by equation 13.  
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                 2))()((=),(,, xbxabadba
Xx

XX −∈∈ ∫ ∈RR                              (13) 

 

The (Q) property states that the distance between any two bumps of the field 

has to lay in the interval ),( maxmin bb . Thereby, let us define XB R⊂  as the set of all 

possible field distributions obtained by placing bumps throughout the field as to 

satisfy the (Q) condition. For example, (Figure 7) shows one element of the B  set in 

such a case. In particular, if minb  is very large ( ∞→minb ), B  is the set of distributions 

formed by a single bump placed at position x , for whichever Xx∈ . 

In order that a given distribution u  satisfies the two properties, (P ∧  Q), by 

definition it should be an element of B . Therefore, the distance from u  to B  (i.e. 

),(min=),( uudBud Bu ′∈′ ) should be ideally zero, or practically as small as possible. 

On the other hand, the (P) property of the fields states that )(xu  should be high when 

)(xi  is locally the strongest, thus the two distributions should be correlated. This 

implies that the distance ),( iud  should also be as small as possible. It may be 

impossible to have 0=),( uid , since u  should belong to B  and i  may not, thus 

),( uid  should be reduced to ),( Bid . Unless i  itself is an element of B  (i.e. 

0=),( Bid ), fulfilling the two conditions (P ∧  Q) implies satisfying two opposite 

constraints, i.e. minimizing two different interrelated distances at the same time. 

Let us define )(uB

i∆  as the residual error of u  minimizing the two above 

distances, a measure of performance of u  with regard to i  and B :  

 

                          ),()),(),((=)( 22
BudBiduidu

B

i +−∆                                (14) 

 

In addition, we define a normalized version of )(uB

i∆  as below:  

                          )(0,)/(=)( Bduu
B

i

B

i ∆∆                                                          (15) 

 

From these definitions follows immediately that the touchstone fields always 

have 0=)(=)( uu
B

i

B

i ∆∆ . 

To illustrate the intuition behind the introduction of )(uB

i∆ , let us outline here 

a geometrical interpretation of this performance measuring instrument. In (Figure 8), 

we represent X
R  (the set of functions from X  to R ) as the bi-dimensional Euclidian 

plane. In this plane, each point stands for a particular distribution of activity over the 

field, and the Euclidian distance between two points represents the actual distance d  

defined in equation 13. 

Let us consider )},(=),(min=),(,{= BiduidiidBiB Bui
′′∈′ ∈′  the projection of 

i  onto B , the set of all the field responses satisfying (P ∧  Q) in respect to i . The 

proximity of u  to one of the elements of iB  is upper bounded by the value of )(uB

i∆ . 

Indeed, in order for u  to approach a good field behavior, both quadratic terms in 

equation 14 (also depicted in (Figure 8)) have to be small. However, minimizing one 

of the terms of )(uB

i∆  may trigger the increase of the other one and vice versa, as both 

depend on i . Therefore, the minimization of )(uB

i∆  is not a straightforward 

procedure. Finally, we can state that near zero values of )(uB

i∆  indicate a good field 

behavior, well satisfying the (P ∧  Q) properties. 
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Figure 8. Geometrical interpretation of )(uB

i∆ . We remind that 

i  is the input and u  is the resulting field, while B  is the set of 

fields satisfying the Q condition. The thick line represents the 

set iB  of field responses satisfying (P ∧  Q) in respect to i , and 

it indicates a quality reference. u  is nearly as qualitative if both 

following distances marked with the symbol * in the figure are 

small: )),(),(( Biduid −  (see the left side of the figure) and 

),( Bud  (see the right side of the figure). (P ∧  Q) is the 

intersection of the two dotted lined regions in the figure. The 

proximity of u  to iB  increases while this intersection shrinks 

around iB , i.e. while )(uB

i∆  reduces towards zero. 

 

4.1.2 Performance computation and touchstone fields  

The introduced performance criterion of the field selectivity is based on distances 

from a distribution (i.e. u  or i ) to a set of distributions (i.e. B ). Computing such 

distances implies finding among the elements of B  a distribution that minimizes the 

distance to u  or i . This searching procedure is described in the current section, since 

it represents the core mechanism for computing the )(uB

i∆  value. 

Whereas B  is a continuous set, computing a projection to it (e.g. ),( Bud ) can 

be performed in a finite time when this set is defined as a parametrized functional set. 

The density condition (Q) asserted in the previous section allows such 

parameterization. In addition, if we consider a fixed shape for an elementary bump of 

any touchstone field response (e.g. we may choose for this a particular bell shape), we 

can search for any element Bb∈  in a finite time. In such case, the set of parameters 

completely defining B  is given by the coordinates of the centers of such bumps. Let 

us therefore note Xx∈  a position in the field, and },,{= 1 pxx Lθ  a set of p  bump 

center positions. Let Θ  be the set of all possible θ . Some Θ∈θ  defines an element 

Bb ∈θ  only when the positions ix  satisfy the density condition (Q) of B . The set Θ  

can then be discretized, by considering discretized positions, and then explored in a 

combinatorial way. The constraints imposed by the condition of bumps density within 

X  prune dramatically the research in this discrete set of parameters. Namely, it 

restricts the parameters values to fewer discrete valid positions. The set of these 

discrete positions which satisfy property (P) is noted Θ̂  in the following. 

With the previous notations, let us show how Θ̂  is used to compute the 

touchstone field response, i.e. to find Bb∈  that minimizes ),( bid . This can actually 
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be done by considering all Θ∈ ˆˆ),,( ˆ θ
θ
bid . Indeed, for each 

θ̂
b , an exploration is 

started, driven by a gradient descent according to )),(( θθ bid∇  from θ̂ . This is done in 

a stochastic way, by modifying randomly some components of current θ , and 
applying only modification that leads to an improvement of the objective (here a 

smaller ),( θbid ). In this manner the search runs from θ̂  until θ  is stable, i.e. θ  is a 

local optimum. 

At the end of such a process started for all Θ∈ ˆθ̂ , the element of B  that 

minimizes an expression is available, as well as the minimal value of this expression. 

This element *b  is the touchstone field response, for which 0=)( *bB

i∆ . Such a 

mechanism is used only for computing the performance criterion, and is not a valid 

neural field process since it is not distributed. Nevertheless, in the next section, the 

optimal function found by this procedure, considered as a “touchstone field response”, 

is used as the output of the selection module in (Figure 1), in order to justify the 

relevance of the )(uB

i∆  criterion. 

 

4.2 The relevance of (P ∧  Q) in a self-organizing context 
We present here the pragmatic arguments that entitle us to consider (P ∧  Q) actually 

relevant for the goals that motivated our research. Consequently, we investigate here 

whether fields satisfying these properties may implement the selection module of the 

architecture described in section 2.3.3, in order to successfully solve a self-organizing 

task. Lacking formal instruments to analyze this aspect, we examine it through 

experimental means, comparing the outputs of classical SOM algorithm (see section 

2.3.2) with those provided by the neural field implementation. 

Let us consider the simple two-dimensional input domain 

1}<0.5 | ),(={= 2

2

2

121 ξξξξξ +≤Ξ , plotted as the gray coronal shape shown in the 

two sub-figures of (Figure 9). Let also X  be a discrete field with a ring topology. For 

implementation details, see further section 5.1.1 where the same scenario is used. 

We are interested here in finding whether feeding with randomly distributed 

values Ξ∈ξ  the two architectures (a self-organizing architecture using the 

touchstone field as the selection module cf. 2.3.3, and a classical SOM cf. 2.3.2), may 

lead to similar results. 

 
 

Figure 9. Using the self-organizing template from section 2 to 

solve a one-dimensional task. Results obtained when using as 

selection module the one described in 2.3.3 (figure a) and that 

described in 2.3.2, in which neural fields are ideally satisfying 

the (P ∧  Q) properties (figure b). 
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(Figure 9) gathers results of the two solutions. In both cases, the prototypes 

Xxx ∈)}({ω  of the detection module, randomly initialized, succeed in reorganizing well 

and finally describe a discrete one-dimensional representation of the coronal shape. 

As observed, there is no qualitative difference between the results of the two 

implementations. Nevertheless, we remind that the distributions u  of the touchstone 

neural fields are computed by the gradient descent procedure described in paragraph 

4.1.2. They are, therefore, not the result of some local algorithm computation, but the 

results of the explicit combinatorial research procedure of the elements of B  that 

minimize ),( Bid . Following these considerations, the touchstone fields cannot be 

used in practical applications, as this procedure is not distributed, and besides, is 

extremely costly in terms of computational complexity. The essential conclusion of 

these results is nevertheless that the satisfaction of the (P ∧  Q) properties is a 

sufficient condition for a field to achieve self-organization. This argument shows that 

(P ∧  Q) may be considered as desirable properties for neural fields used as selection 

module of the template described in section 2. Motivated by these remarks, we 

examine in the next sections, with the aid of the presented performance measurement 

)(uB

i∆ , the ability of the neural fields models considered in section 3.2 to satisfy these 

assumed properties. 

 

5   Measuring experimental neural field capacities from scenarios 
 

Driven by the same practical arguments expressed throughout the paper, we describe 

here an empirical methodology to study the behavior of a field in specific scenarios. 

The procedure consists in evaluating the dynamics of the field by computing the value 

of )(uB

i∆  for a sequence of time steps. We call a plot dynamic quality curve of )(uB

i∆  

as a function of time, a of the field for that specific scenario i . 

While any empirical analysis is incomplete in regard to the variety of the 

dynamics a field may experience, it can nevertheless provide relevant results that can 

be extrapolated to a much broader context. Consequently, we analyze the behavior of 

the field in multiple simple scenarios, each of them exhibiting one or few key aspects. 

In order to test the capacity of the fields to satisfy the (P ∧  Q) properties, we 

plot the dynamic quality curves of the field in scenarios exhibiting one or more 

aspects depicted in (Figure 6). In the following paragraphs, we describe a short 

taxonomy of benchmark scenarios, based on their relevance in modeling applications 

(in particular biologically-inspired applications modeling cognitive features). 

 

5.1 Self-organization  
We describe here two scenarios that will be used to analyze the capacity of neural 

fields to perform self-organization as indicated in section 2.3.3. 

 

5.1.1 1D scenario 

The first scenario is identical to the one described in section 4.2. The input domain is 

the two-dimensional set 1}<0.5 | ),(={= 2

2

2

121 ξξξξξ +≤Ξ . X  is a one-

dimensional set with a ring topology. A new sample is drawn from Ξ  every 100 

steps, and is maintained for the entire epoch of 100 steps. The tuning curve function 

of the prototypes is given by 
2||)(||5e=)( ξω −− xxi . The learning rule is given by equation 

2, with 4102= −⋅α . 
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5.1.2 2D scenario 

The second scenario is inspired from the approaches of modeling visual cortical 

processing. Bi-dimensional neural fields are of primary interest when cortical 

modeling is addressed. As many authors in such a context address the modeling of 

orientation selectivity in V1 [33, 48], the scenario proposed here aims at feeding the 

neural field with inputs standing for orientations. 

Here, a bi-dimensional field X  is considered for quantifying data drawn 

according to a uni-dimensional uniform distribution from the input space 

/2]/2,[= ππ−Ξ . Even if such projection, from uni- to bi-dimensional discrete space 

may appear unusual, since the Xxx ∈)}({ω  are randomly initialized, self-organization in 

such context consists in unfolding a 2D map, which is not straightforward when 

considered under the perspective of the field dynamics. Input is actually the 

orientation angle /2]/2,[ ππξ −∈  of an oriented bar stimulus and the prototypes are 

also angles /2]/2,[)( ππω −∈x . This allows to represent the prototypes values )(xω  at 

each position x  graphically with an oriented bar. 

The frequency of drawing samples from the input domain, as well as the 

learning rate are the same as in the first scenario. However, in this case we will 

examine two different tuning curves. First, )mod))(((=)( πξω −xcosxi . Second, 
πξω mod|)(|e=)( −xxi . Even if the tuning curve is not a parameter of the field, we will 

show how it can influence dramatically the global output of the self-organizing 

process. 

For both scenarios, all the prototypes are randomly initialized. The learning is 

permanent (i.e. the prototypes are adjusted at every time step), and no reset of the 

field potentials is performed during the simulations. The input Xxx ∈),(ξ  is the same 

ξ  for all the positions x . In order not to experience any border effects, X  is 

considered having a toroidal topology in every case. 

 

5.2 Auxiliary scenarios 
In addition to the self-organization, we investigate here some other scenarios 

exhibiting features that may be exploited in practical applications of neural fields. 

Furthermore, we are interested to observe whether features shown by classical neural 

fields are also conserved by the newly introduced neural field model. 

 

5.2.1 Attention 

The attentional scenarios are typically characterized by inputs following continuous 

trajectories that are sometimes occluded or suppressed, or patches of stimuli randomly 

appearing and disappearing in the input distribution. 

The expected behavior of a field in such cases is to focus its activity (raise 

bumps) at some salient place and to track it, undisturbed by noise, local distractors or 

the other input patterns. 

Therefore, in these scenarios, there are two main features that have to be 

investigated: the fact that the field raises high bumps somewhere in the field (focus), 

and the fact that it adapts its response so as to follow the focused patches of input 

(tracking). For example, the cases (a, d, g) from the (Figure 6) are in this sense 

relevant as basic attentional scenarios. 

 

5.2.2 Exploration 
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Exploration scenarios refer to an input characterized by almost constant level of 

stimuli (the so-called plateaus). In these cases, as illustrated in (Figure 6. c, h), the 

field is expected to select only some regions where to raise high bumps, the input 

locations being all equally probable to elicit the formation of bumps. 

 

6   Experiments 
 

In the current section, the three models introduced in section 3.2 (i.e. ANF, PENF, 

BINP) are empirically evaluated according to the methodology described in the 

previous section. The values of the free parameters of the neural field models used in 

each scenario simulation are reported in annex A. 

 

6.1 Self-organization  
6.1.1 1D scenario 

The three neural fields are used here to implement the detection module of the 

template described in 2.3.3, in order to solve the uni-dimensional self-organization 

scenario presented previously in section 5.1.1. The results obtained by using each of 

the three considered models are presented in (Figure 10). For each step of the self-

organization scenario, the quality indicator )(uB

i∆  was measured. The histograms of 

these data corresponding to each neural field implementation are plotted in (Figure 

11). 

 

 
 

Figure  10.  Solving a one-dimensional self-organizing task 

using neural fields as described in section 2.3.3. Results 

provided by the usage of the following field models: a. ANF, b. 

PNF, c. BINP. The input distribution is shown as the gray ring 

shape seen in every sub-figure. New samples are presented 

every 100 steps and a total of 16000 samples are drawn 

throughout the experiment. 

 

 
 

Figure  11.  Histograms of the )(uB

i∆  values measured for each 

step of the uni-dimensional self-organizing scenario. The 

corresponding plots for each of the three neural fields 

implementations: a. ANF, b. PENF, c. BINP. 
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As it can be observed, the two classical models (ANF and PENF) fail to 

achieve the expected results, while the new model (BINP) succeeds in correctly 

reorganizing the prototypes. In paragraph 6.3 the plots from the two figures (10 and 

11) are analyzed in detail and then the explanation for such results is provided. 

 

6.1.2 2D scenario 

As described previously in section 5.1.2, for the bi-dimensional case, we also study 

the impact of the tuning curve on the global behavior of the self-organization process. 

Let us first use the tuning curve of the prototypes as defined by 

)mod))(((=)( πξω −xcosxi . Unlike the 1D scenario, both classical fields (ANF and 

PENF) succeed in reorganizing very accurately the prototypes (see (Figure 12)). 

 

 
 

Figure 12.  Solving a two-dimensional self-organizing task 

with different neural field implementations. The task consists 

in organizing a 2D orientation map, similar to that found in the 

V1 cortical area. The input is given by a uniform distribution of 

orientations in /2]/2,[ ΠΠ−  interval. Here, the response of the 

prototypes is defined by the tuning curve function 

)mod))(((=)( πξω −xcosxi . and a graphical representation of 

the different field solutions is given: a. ANF, b. PENF, c. 

BINP. New samples are drawn every 100 steps and the 

scenario consists of a total of 8000 samples. 

 

 
 

Figure 13.  Solving the same self-organizing task as reported in 

(Figure 2), but here with a different tuning curve for the 

prototypes, defined as πξω mod|)(|e=)( −− xxi . Final results 

produced by neural fields: a. ANF, b. PENF, c. BINP. 

 

In the second bi-dimensional experiment, the tuning curve of the prototypes is 

set to πξω mod|)(|e=)( −− xxi , that is much sharper than the one used previously. All the  

Page 24 of 35

URL: http:/mc.manuscriptcentral.com/ccos

Connection Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

other parameters or conditions of the self-organizing scenario remain unchanged. 

Unlike the previous context, the results obtained in this case by the classical fields 

(ANF and PENF) are completely unsatisfactory, while the newly introduced field 

model, BINP continues to achieve very good results (see (Figure 13)). 

The results presented here empirically suggest that the newly proposed BINP 

model is indeed a good candidate for developing self-organization mechanisms driven 

by dynamic neural field computation. In addition, the two scenarios presented here 

highlight the influence of the tuning curve function (and thus the sensitivity of the 

prototypes) on the global behavior of the classical fields. The results from both 

scenarios are further analyzed and explained in paragraph 6.3. 

 

6.2 Auxiliary scenarios  
6.2.1 Attention 

Dynamic neural fields (mainly ANF) have been successfully used in many 

applications to simulate basic attentional mechanisms. Here we examine the evolution 

of the three fields dynamics in some simple scenarios that could be relevant for 

attention modeling. 
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Figure 14. Basic attentional scenarios simulations. The 

parameters of the fields equations are chosen as to allow the 

emergence of only one activity bump. For each row, from left 

to right: the input stimulus (first column) and the response of 

the three neural fields: ANF (second column), PENF (third 

column) and BINP (fourth column). For each individual plot, 

the x-axis represents the time step of the simulation and the y-

axis, the intensity (shown in levels of gray) of the neuronal 

activity of each neuronal unit of the field. 
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Figure 15. Basic attentional scenarios simulations. Continuation 

from (Figure 14). Same legend as in (Figure 14). 

 

For visual simplicity, the experiments presented here concern only uni-

dimensional scenarios. In (Figures 14 and 15) each line plots the following sequence 

of sub-figures: the temporal evolution of input i , and three columns with the 

corresponding response of each of the three fields considered in our analysis (ANF, 

PENF and BINP). In all the sub-figures, the x-axis represents the temporal axis. For 

each step of simulation, the amplitude of the distribution (input i  or field response u ) 

for each position Xx∈  is shown in levels of gray along the y-axis. 

The parameters of the field equations considered in all the following 

experiments are chosen as to guarantee the emergence of a single neural bump in the 

field. Results where the density constraint allows multiple bumps in the field can be 

easily extrapolated from these data. The formation of multiple simultaneous bumps 

sparsely distributed along the field will be addressed in the near future of our 

research, as our long-term goal is to model multimodal self-organization through 

neural field computation. 

(Figures 14 and 15) present the simulated data from several attentional 

scenarios. As a general remark, all the fields are behaving as expected in most of the 

cases, i.e. first focusing their activity on a patch of input stimuli (thus raising a bump) 

and then following this patch throughout the simulation. Consequently, the 

corresponding quality curves of the fields approach zero in such cases, as seen in 

(Figures 16 and 17). These empirical results entitle us to consider them suitable for 

implementing attentional mechanisms. Moreover, the newly proposed neural field is 

also appropriate to be used in such attentional modeling, therefore being completely 

compatible with the current cognitive modeling approaches. 
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Figure 16. Quality curves of the three fields from the scenarios 

presented in (Figure 14). For each row, from left to right: ANF 

(first column), PENF (second column), BINP (third column). 

For each individual plot, the x-axis represents the time step of 

the simulation and the y-axis, the quality indicator )(uB

i∆ . 

 

The only significant difference between the fields behavior is the smaller degree of  

“inertia” that the dynamics of Pinto and Ermentrout field manifests. Indeed, in 

scenario (j), the ANF and BINP are not capable of following the accelerated shifting 

of the input stimuli. Conversely, the Pinto and Ermentrout field is more sensitive to 

the input. Definitely, the additional negative feedback term ),( txv  used in the PENF 

and in the BINP models facilitates the dynamics of the bumps, allowing therefore a 

quicker adaptation to input stimuli changes. 

 

6.2.2 Exploration 

These exploration scenarios concern a key aspect to our analysis. As observed (see 

(Figure 18)), the classical fields are incapable of forming a significant response in low 

input conditions. Only the new field is able to do so, showing also a very good 

dynamics of the bumps. In such case, the classical fields are non-selective, and this is 

immediately reflected in the quality curves plots from the (Figure 19). 
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Figure 17. Quality curves of the three fields from the scenarios 

presented in (Figure 15). Same legend as in (Figure 16). 
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Figure 18. Basic exploration scenarios simulations. The 

parameters of the fields equations are chosen as to allow the 

emergence of only one activity bump. For each row, from left 

to right: the input stimulus (first column) and the response of a 

neural field: ANF (second column), PENF (third column) and 

BINP (fourth column). a. high level plateau input; b. low level 

plateau input. Same legend as in (Figure 14). 

 

6.3 Discussion 
In this section 6, the three neural field models (ANF, PENF and BINP) were 

examined in multiple scenarios in order to empirically highlight particular features of 

their dynamics. 
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As a whole, the above qualitative analysis of the three fields dynamics entitle 

us to consider the newly proposed BINP model appropriate for supporting the 

implementation of reliable and robust self-organization mechanisms (see (Figure 13. 

c)). In addition, other dynamical features exhibited by the classical fields are globally 

conserved by the new model (see sections 5.2 and 6.2), and thus the new field may be 

regarded as an enhancement of the former models in our claimed attempt to extend 

the applicative area of dynamic neural fields. 
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Figure 19. Quality curves of the three fields from the scenarios 

presented in (Figure 18). Same legend as in (Figure 16). 

 

As the actual goal of the paper is to conceive self-organizing mechanisms by 

the means of neural field computation, we focus now on scenarios mentioned in 

sections 5.1 and 6.1. We remind that the role of neural fields in these scenarios is to 

implement (in a totally distributed way) the WTM policy that modulates the learning 

rule of the self-organizing algorithm (according to equation 2). 

Let us start the analysis of results on the 1D ring shape distribution illustrated 

on (Figure 10. a), where the classical ANF is used. At the beginning of the learning 

process, prototypes are set to random values taken in the enclosing box of the ring. 

When some input is tossed from the coronal shape Ξ  (drawn in light gray in (Figure 

10)), it may be close to only few prototypes, that are the only ones for which the 

matching i  is not null. Moreover, those prototypes may be scattered over X , the ring 

of units, since no organization stands a priori. The i  distribution (see (Figure. 2)) is 

thus made of few sparse peaks. In such condition, we have observed that ANF field is 

able to set up a bump of activity around the highest of those peaks. After stabilization, 

as mentioned in paragraph 2.3.3, the next input is tossed from the ring, without any 

reset of the current bump. The new sparse peak resulting from the next input are not 

able to force the field to reconsider the bump position, especially if there are still 

some units in the current bump that match the new input. Through the presentation of 

many input Ξ∈ξ , the effect of this constant bump on the units placed where the 

bump stands is a continuous learning. Due to the update rule (equation 2), this makes 

the prototypes in the bump smoothly change in order to reach the average of all the 

presented inputs. In the case of the coronal shape, this average is out of the shape, in 

the central hole. The result is that the longer the prototypes in the bump learn, the less 

they match. After enough time steps, matching is so weak for the units in the bump, 

that the distribution of peaks for the next input outside the bump is significantly 

stronger than each poor matching of the units inside the bump. Then only, the bump 

can move elsewhere, be stable until the units in that new place in the field do not 
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match in turn, etc. After many inputs, the result displayed on (Figure 10. a) shows that 

all the prototypes have been ``pushed away'' the coronal Ξ , near the average central 

point. 

When the same experiment is made using the PENF field, things start the same 

way, pushing prototypes in the central hole of the ring distribution of inputs. Then, we 

have observed that the higher mobility of the bumps (that can be seen on (Figure. 15)) 

allows the prototypes to be extracted from the hole. Nevertheless, the resulting field 

needs to be unfolded to achieve perfect topological matching, as shown by the stable 

state reached in this case (Figure 10.b). Last, the BINP field proposed in this paper 

takes benefits from the back inhibition to avoid having constant bumps on a weakly 

matching area of units (see (Figure 18. b)). The story at the beginning of learning is 

thus dramatically different, and is much closer to what an touchstone field, in the 

sense of paragraph 4.1.2, should have done, as result in (Figure 10. c) shows. For 

those first set of experiments, it can be said that the dynamics of self-organization is 

sometimes complex, even depending on the topological features of the input 

distribution. Here, the presence of a hole at the center of mass of the coronal shape 

has tricky effects. These effects are difficult to capture with our quality measurement 

tool, since (Figure 11) shows similar histograms in that experiment for the three 

fields. Even if keeping )(uB

i∆  null, as the touchstone field does by definition, is a 

sufficient condition for self-organizing (see (Figure 9)), a slight drift from this 

condition, as the ones by ANF and PENF in (Figure 11), may have dramatic effects. 

The observation of good (but not perfect) quality measurements may thus be used as a 

hint for the designer of a field equation, rather than a guaranty for the capability of 

self-organization. Nevertheless, it is more relevant as a tool to quantify the behavior 

on attentional scenarios, as results in section 5.2 show, and it is also helpful for 

parameter tuning [1]. 

The experiments inspired from V1 (Figures 12 and 13) show the role of this 

feature in the self-organization dynamics. In both figures, the inputs are an angle 

(1D), that is mapped on a bi-dimensional array of units. Quite surprisingly, in (Figure 

12), all the three fields manage to organize prototypes, whereas performances in 

(Figure 13) are coherent with what has been observed on in the previous coronal input 

distribution case, using a 1D field. The difference between the two is a sensitivity of 

the matching. Each unit acts as a band-pass filter centered at the prototype value, but 

the width of this band is wide on (Figure 12) and quite sharp in (Figure 13). At the 

beginning of learning, the former leads to peaks in the distribution of i  that are not 

sparse, thus allowing to reconsider bump position even for the ANF equation, whereas 

the latter produces sparse distribution of peaks, as for (Figure 10). The sparseness of i  

distribution when learning starts is crucial for self-organization, and this parameter 

depends on the band-pass width, regards to the number of units and the size of the 

region where the inputs are taken from. 

To sum up, a deep analysis of the self-organization dynamics with WTM 

procedure carried out by a neural field reveals that this process is complex and 

depends on hidden parameters, as the topology of the input distribution (e.g. presence 

of holes) or the width of the band-pass filters in comparison with the input variability. 

These crucial aspects of the learning task seem to be quite difficult to handle with 

formal tools, and the one proposed here helps only partially. Nevertheless, the BINP 

field introduced in this paper appears to be robust to those aspects, due to the active 

back inhibition mechanism that ensures an extreme bump mobility when the self-

organization is not achieved (i.e. some units in the bump still poorly match). This is 

why we consider the BINP network as a good candidate for addressing more complex 
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self-organizing task, as the one of organizing behavior in cortically inspired 

architectures, that motivates the present study. 

 

7   Conclusion and future work 
 

Even if the use of distributed competition mechanisms in a population of adaptive 

band-pass filters as the core mechanism of cortical processing is not a recent idea, 

since it was formulated by Kohonen in the eighties, the research in cortically-inspired 

computational systems allowing situated and flexible computation is still not mature. 

The amazing computational properties of the cortical substrate is a strong motivation 

to persevere in this direction, but this research has to cope with the complexity of non 

linear dynamical systems, since even toy simulations require to set up recurrent 

network with emerging properties that are not fully understood by mathematical 

approaches. 

In this paper, an empirical tool is proposed to tackle those design difficulties. 

It consists of a procedure that gives a scalar evaluation, at each time step, to the state 

of a neural field, according to the input it receives. This evaluation has been shown to 

have the right meaning, since it actually determines whether the field succeeds in 

behaving as a cortical competition should do, for endowing a system with attentional 

selectivity and self-organization. These latter two properties are indeed the ones 

expected for designing cognitive systems based on populations of units. 

From suitable experiments, it has been shown that the classical neural field 

equation by Amari needs to be improved in such a context, as well as the oscillator-

based neural field by Ermentrout and Pinto. An improvement is proposed, that is 

shown to fit the requirements for the design of self-organizing systems, as well as for 

subsequent attentional properties. It allows to get rid of the common computational 

tricks that are necessary to other fields. First of them is the need for specific weight 

initialization, that is not required with the BINP equation. Second, there is no need to 

reset the network when a new input occurs. This implies that the system is free from 

being informed or synchronized with some input presentation scheme, it runs on-line 

and only copes with the intrinsic time steps for evaluating its computational units, just 

receiving input as a continuous stream, as any situated system necessarily does. Third, 

successive inputs do not need to be correlated, since the field is able to reconsider a 

bump position when it becomes irrelevant, allowing a completely new input to be 

considered without the influence of the previous one. This is what the back inhibition 

in the BINP model actually does. For example, this allows to consider visual inputs in 

more realistic cases. Indeed, when saccades make frequent and sudden changes in the 

gaze direction, sensing the visual scene, the input flow coming from the retina to the 

brain is undoubtedly discontinuous. 

Future work consists in investigating the perspective offered by a reliable 

distributed self-organizing scheme. First, using the mechanism for joint self-

organization between multi-modal fields is the next step, since this work [32] was the 

motivation of the present study, as mentioned in the text. Second, the robustness of 

such dynamical systems when used with large fields (several millions of units) is also 

considered, since we are currently working on implementing the model sketched in 

(Figure 2) on a cluster of PCs [19]. Last, another direction is to investigate how this 

mechanism can behave in a self-organizing field where several bumps are allowed. 

This is, for example, mandatory for vision, since the primary visual cortex is 

organized as a gradient from central vision to peripheral one [24], and learning 
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processes have to operate in parallel, within different bumps, at different levels of 

eccentricity. This requirement is mandatory for any other realistic cortical map. 

To sum up, being able to quantify, and then control, the inner mechanisms of 

an artificial cortical system makes the study of the outer properties emerging from 

population of units feasible, allowing then to address cognitive systems by a cortical 

paradigm. 
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Appendix A 
 

Here we present the numeric values used in our simulations. For all the scenarios 

considered in the paper, we use the following parameter values:   

    • for the ANF equations (3 and 4): 

0=0.3,=0.001,=0.05,=0.5,=0.8,= hbaAA τ−+ ;  

    • for the PENF equations (4, 5 and 6):  

0.5=0.3,=0.85,=0.001,=0.05,=0.35,=0.67,= ητβbaAA −+ .  

    • for the BINP equations (4, 7 and 8):  

0.3=3,=3,=2.4,=0.04,=0.005,=0.15,=0.35,=0.67,= τγβαcbaAA −+ .  

)()(= 21 vgigg  and h  functions are the discretized forms (in order to speed up the 

simulations computations) of the sigmoid functions plotted in figure 5, as shown 

below. 

 

 











≤+−

≤+−

≤+−

1<0.450.180.18

0.45<0.302.505.33

0.30<010.33

0=1

=)(1

ii

ii

ii

i

ig  

 











≤+

≤−

≤

1<0.800.500.50

0.80<0.601.903.50

0.60<00.33

0=0

=)(2

ii

ii

vv

v

vg  

 








≤+

≤−

≤≤−

1<0.300.0050.014

0.30<0.200.1750.620

0.2000.0950.215

=)(

vv

vv

vv

vh  

 

 

 

Page 35 of 35

URL: http:/mc.manuscriptcentral.com/ccos

Connection Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


