
HAL Id: inria-00537935
https://hal.inria.fr/inria-00537935

Submitted on 19 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating a constant expression in multiple precision
with a guaranteed error bound

Sylvain Chevillard

To cite this version:
Sylvain Chevillard. Evaluating a constant expression in multiple precision with a guaranteed error
bound. [Research Report] RR-7443, INRIA. 2010, pp.16. <inria-00537935>

https://hal.inria.fr/inria-00537935
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
4

4
3

--
F

R
+

E
N

G

Algorithms, Certification, and Cryptography

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Evaluating a constant expression in multiple

precision with a guaranteed error bound

Sylvain Chevillard

N° 7443

Novembre 2010

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Evaluating a constant expression in multiple
precision with a guaranteed error bound

Sylvain Chevillard

Theme : Algorithms, Certification, and Cryptography
Équipe-Projet Caramel

Rapport de recherche n° 7443 — Novembre 2010 — 16 pages

Abstract: The evaluation of special functions often involves the evaluation of
numerical constants. When the precision of the evaluation is known in advance
(e.g., when developing libms) these constants are simply precomputed once for
a while. In contrast, when the precision is dynamically chosen by the user (e.g.,
in multiple precision libraries), the constants must be evaluated on the fly at
the required precision and with a rigorous error bound.

Often, such constants are easily obtained by means of formulas involving
simple numbers and functions. In principle, it is not a difficult work to write
multiple precision code for evaluating such formulas with a rigorous roundoff
analysis: one only has to study how roundoff errors propagate through subex-
pressions. However, this work is painful and error-prone and it is difficult for
a human being to be perfectly rigorous in this process. Moreover, the task
quickly becomes impractical when the size of the formula grows. In this article,
we present an algorithm that takes as input a constant formula and that auto-
matically produces code for evaluating it in arbitrary precision with a rigorous
error bound. It has been implemented in the Sollya free software tool and its
behavior is illustrated on several examples.

Key-words: multiple precision, constant expression, rigorous error bounds,
roundoff analysis, faithful rounding.

Évaluation d’expressions constantes en précision
arbitraire avec bornes d’erreur garanties

Résumé : L’évaluation de fonction spéciales nécessite souvent d’évaluer cer-
taines constantes. Lorsque la précision est connue à l’avance (par exemple,
lorsqu’on développe une libm), ces constantes sont simplement précalculées une
fois pour toutes. Mais lorsque la précision est fixée par l’utilisateur au moment
de l’évaluation (comme c’est le cas pour les bibliothèques en précision arbi-
traire), les constantes doivent être évaluées à la volée à la précision demandée
et en bornant rigoureusement les erreurs.

Souvent, ce genre de constantes est donné par des formules faisant intervenir
des fonctions simples et des entiers. En principe, écrire du code en précision arbi-
traire pour évaluer ce genre de formule avec une analyse rigoureuse des erreurs
d’arrondi n’est pas une tâche difficile. Il suffit d’étudier comment les erreurs
d’arrondi se propagent à travers les sous-expressions. Cependant, ce travail est
ingrat, délicat, et il est difficile pour un être humain de rester parfaitement
rigoureux. De plus, la tâche devient vite inabordable lorsque la formule grossit.
Dans cet article, nous présentons un algorithme qui prend en entrée une formule
constante et qui produit automatiquement du code pour l’évaluer en précision
arbitraire et avec une borne d’erreur rigoureuse. Nous l’avons implémenté de
façon expérimentale dans l’outil libre Sollya, et nous illustrons son comporte-
ment sur plusieurs exemples.

Mots-clés : précision arbitraire, expression constante, borne d’erreur rigoureuse,
analyse d’erreur, arrondi fidèle.

Evaluating constant expressions in multiple precision 3

1 Introduction

In the past twenty years, several libraries have been developed for perform-
ing floating-point computations with higher precisions than the usual single or
double precisions. Such libraries are often called multiple precision or multi-
precision libraries: one may cite (among others) ZMLIB [13], the Arprec C++
[1] or NTL libraries, the GNU MPFR library [4], or the Python mpmath library1.
Such libraries turned to be very useful when double precision does not provide
a satisfying accuracy: either because one needs more than 53 significant bits or
because one wants to solve a very ill-conditioned problem. They are also used
as a building block for higher level libraries such as libraries implementing real
arithmetic [16, 11].

When one develops a multiprecision library, one often needs to write code for
the multiprecision evaluation of expressions defining constants. As an example,
π can be evaluated by means of Ramanujan’s formula:2

π =
9801

2
√
2

∞∑

k=0

(4k)! (1103 + 26390k)

(k!)4 3964k

. (1)

Important constants also appear in Taylor series, used to evaluate functions. For
instance consider the Airy Ai function. Its value at 0 is Ai(0) = 3−2/3 Γ(2/3)−1

and it is the first coefficient of its Taylor series. The value Γ(2/3) can be effi-
ciently evaluated thanks to Euler’s reflection formula Γ(x)Γ(1−x) = π/ sin(πx)
and thanks to a series due to Brown3 for evaluating Γ(1/3):

Γ(1/3) =

(
12π4

√
10

∞∑

k=0

(−1)k (6k)!
(k!)3 (3k)! 12288000k

)1/6

. (2)

In these formulas, the series are fairly easy to implement. However, once
the series is correctly evaluated, some work remains for computing the value π
or Ai(0). This work is not difficult in theory, but it is painful and error-prone:
in order to perform a completely rigorous roundoff analysis, each subexpression
must be rigorously bounded (above and below) and second order error terms
cannot be neglected. Writing a complete proof is a long, boring and very error-
prone process, and it is unlikely that anyone will ever read it carefully.

In this article, we propose an algorithm for automatically implementing a
constant expression in multiprecision. It takes as input any expression formed
from numerical constants and from predefined functions. The algorithm pro-
duces multiprecision code; this code allows for evaluating the expression with
any desired final accuracy.

The article is organized as follows: in the next section, we formally state the
problem that we intend to solve. In Section 3, we present previous works related
to this subject. Section 4 begins with a small reminder of roundoff analysis and
defines notations used in the sequel; the rest of the section is devoted to the
presentation and the proof of our algorithm. Finally, in Section 5, we illustrate
the behavior of our algorithm on several examples.

1http://code.google.com/p/mpmath/
2This is not the best known formula for evaluating π but we give it as an example of the

kind of expressions we are interested with.
3See http://www.iamned.com/math/

RR n° 7443

http://code.google.com/p/mpmath/
http://www.iamned.com/math/

Evaluating constant expressions in multiple precision 4

2 Statement of the problem

We begin by formally defining what we mean by constant expression. We denote
by C ⊂ R a set of “predefined constants”. It represents the set of built-in
constants, that do not need to be evaluated by composition of operations. For
instance, it is reasonable to assume that Z ⊆ C. It is also possible to add
other particular constants in C such as, e.g., π, γ, etc. Moreover we will denote
by B the set of “basic functions”, i.e., the set of unary functions used to build
expressions. We additionally require that the functions in B be differentiable.
The set E of expressions that we consider is the smallest set containing C and
such that:

• If e1, e2 ∈ E , then e1 ⋄ e2 ∈ E , where ⋄ ∈ {+,−,÷,×}.

• If e ∈ E and if f ∈ B, f(e) ∈ E .

Remark: strictly speaking, there is a difference between an expression e and
the real value that it represents. For instance “4×arctan(1)” and “2×arccos(0)”
are two distinct expressions, and they both represent the same value π. These
expressions correspond to different ways of evaluating the same constant, and
it is important to consider them as distinct. In general, when speaking of e,
it is clear from the context whether the expression e or its value should be
considered. Hence, when no confusion is possible, we do not explicitly make the
distinction.

We can now rigorously formulate our problem:

Given a constant expression e ∈ E, generate a program eval_e

for the multiprecision evaluation of e. More formally, for any
integer p ≥ 2, eval_e(p) shall return a value y such that |y−e| ≤
21−p |e|.

In order to write the program eval_e, we need a multiprecision floating-
point environment, where operations are performed with a rigorous control of
rounding errors. As a matter of course, the environment shall provide a way of
evaluating all the predefined constants C and all the basic functions f ∈ B with
an arbitrary and guaranteed relative error. In our current implementation, the
code generated by our algorithm uses the MPFR library. Our current implemen-
tation neglects the possibility of underflows and overflows. As a matter of fact,
the exponent range of MPFR is very large and can be considered as infinite in
practice.

The algorithm itself needs a multiprecision interval arithmetic environment:
in such an environment, variables are intervals whose bounds are floating-point
numbers with any user-defined precision. The result of the evaluation of a
function f : Rn → R on intervals x1, . . . , xn is an interval y such that the exact
image J = f(x1, . . . , xn) satisfies J ⊆ y. We also suppose that the library is
asymptotically exact, i.e., when the precision tends to infinity, y tends to J for
every function f ∈ B and every operation ⋄ ∈ {+,−,÷,×}.

In our current implementation, we use the MPFI library. In this case, among
other functions, B contains the trigonometric functions and their reciprocals, the
hyperbolic functions and their reciprocals, the exponential function, logarithms
in several bases, and for any integer n, the n-th root and x 7→ xn.

RR n° 7443

Evaluating constant expressions in multiple precision 5

Our algorithm accepts any constant expression of E , but it may abort if the
value of a subexpression is exactly 0. This comes from the fact that the algo-
rithm tries to evaluate expressions with a bounded relative error : hence, when
a subexpression exactly evaluates to 0, the algorithm would have to actually
prove it and return 0. Unfortunately, proving that an expression is exactly 0
is a difficult problem and algorithms for this purpose generally rely on num-
ber theory conjectures [12]. It would be out of our scope to implement such
algorithms. Anyway, we consider this limitation as minor for two reasons:

• First, our algorithm always detects the problem and aborts, explicitly
giving the subexpression that seems to evaluate to 0. This allows the
users to investigate the problem and manually replace the subexpression
by 0 if they manage to prove the equality. If, on the contrary, the users
manage to prove that the subexpression is not zero, they can re-run the
algorithm using a higher precision in interval arithmetic computations: our
algorithm will eventually succeed, because the interval arithmetic library
is asymptotically exact.

• Second, the primary purpose of our algorithm is only to help people who
write multiprecision code for evaluating constants: if a subexpression can
be simplified to 0, they would probably be happy that the algorithm warns
them and allows them to simplify their formula.

3 Previous Work

Several methods can be used for evaluating an expression in multiple precision.
The most generic one is the so-called exact real arithmetic [6]. Real arithmetic
simulates computations with real numbers, as if they were exactly known (with
infinite precision). In this paradigm, each number is represented as a black-box
that provides approximations with any desired accuracy. When an operation
is performed (e.g., addition, multiplication, evaluation of a function, etc.), the
precision of intermediate computations is automatically adjusted, in order to
provide the required accuracy.

The libraries of exact real arithmetic are too general for our purpose: they are
designed to evaluate any function given by an expression, in particular variables
are allowed. Since the order of magnitude of variables is not known in advance,
the choice of the intermediate precisions is necessarily made at run-time. Fairly
good strategies have been proposed [15] for which optimality can be proven [8]
provided that the precisions are chosen at run-time. In contrast, we deliberately
limit ourself to constant expressions: hence everything is known a priori and
the choice of intermediate precisions can be made when generating the code,
which will hence be more efficient.

Tools have been designed for studying the effects of rounding errors in a
code. In Mathematica, the so-called significance arithmetic [14] is used to track
the propagation of errors through algorithms. This method, though useful, is
not rigorous because it only considers first-order errors and neglects higher-
order errors. Krämer proposed an algorithm that automatically and rigorously
bounds the total roundoff error of a numerical code [9, 10]. The algorithm that
we present in the following has similarities with Krämer’s work, however they
differ by two points. First, Krämer supposes that the same precision is used

RR n° 7443

Evaluating constant expressions in multiple precision 6

through the whole computation. We do not have such an assumption: actually,
our algorithm chooses a suitable precision independently for each subexpres-
sion, trying to minimize the necessary precision at each step. Second, Krämer’s
algorithm allows for variables in the code and may hence largely overestimate
the total error. In contrast, we can take advantage of the fact that we consider
only constant expressions. Finally, Gappa [3] is a powerful tool able to bound
the total roundoff error in a code. Moreover it generates a formal proof for the
computed bound which offers a strong guarantee. It is able to handle codes in-
volving several precisions. However, these precisions must be statically known.
In our context, the precision is a variable and will be chosen by the user at run-
time. Moreover, Gappa is designed to analyze existing code, whereas we are
interested in directly generating code with well-chosen intermediate precisions.
Thus Gappa is not well-suited for us.

4 Description of the algorithm

4.1 Reminder of roundoff analysis

For proving the correctness of our algorithm, we have to study how roundoff
errors propagate through the execution of the generated program eval_e. This
is a classical topic, very well presented in [7]. We recall a few important facts
without demonstration.

Definition 1. If p ≥ 2 denotes the current precision, the quantity up = 21−p is
called the unit roundoff.
If x ∈ R, we denote by ⋄(x) a faithful rounding of x (i.e., x itself if x is a
floating-point number and any of the two floating-point numbers enclosing x
otherwise).

Proposition 1. For any x ∈ R, there exists δ ∈ R, |δ| ≤ up such that ⋄(x) =
x (1 + δ).

The relative error counter is a convenient notation for representing the ac-
cumulation of errors through divisions and multiplications: we write ẑ = z 〈k〉,
meaning that ẑ is an approximate value of z, obtained by k successive multipli-
cations or divisions. More formally, we write ẑ = z 〈k〉 if

∃δ1, . . . , δk ∈ R, s1, . . . , sk ∈ {−1, 1}, such that ẑ = z

k∏

i=1

(1+δi)
si with |δi| ≤ up.

We now need a proposition to bound the error corresponding to a given value
of the error counter:

Proposition 2. Let z ∈ R and let ẑ be a floating-point number. We suppose
that k ∈ N satisfies kup ≤ 1/2 and that we can write ẑ = z 〈k〉. Then

∃θk ∈ R, such that ẑ = z(1 + θk) with |θk| ≤ 2kup.

Definition 2. For x ∈ R − {0}, we define EXP(x) = 1 + ⌊log2 |x|⌋. In other
words EXP(x) is the unique integer E such that 2E−1 ≤ |x| < 2E. By extension,
we let EXP(0) = −∞.
For an interval [a, b], we define MAXEXP([a, b]) = maxx∈[a, b] EXP(x) and
MINEXP accordingly.

RR n° 7443

Evaluating constant expressions in multiple precision 7

4.2 General description of the algorithm

Our algorithm has the following signature: implement_constant(e, name). Here
e ∈ E denotes a constant expression and name is a string containing the desired
name for the output program (for instance name=“eval_e”). The algorithm
produces the code of a procedure eval_e(prec) that computes an approximate
value of e with relative error smaller than 21−prec. In order to generate the
core of eval_e, we use an auxiliary algorithm implementer(var_name, e, p).
The argument var_name contains the name of the variable where the result
should be stored, and the argument p ∈ Z indicates that the result should be an
approximation with relative error smaller than 21−p−prec (roughly speaking, it
means that the result is computed with p guard bits; however, p is allowed to be
negative). Formally, the correction property of implementer is the following:

Proposition 3. A call to implementer(var_name, e, p) generates code. This
code depends on a formal parameter prec; when run, it stores in variable
var_name an approximate value ê of e such that

|ê− e| ≤ 21−prec−p |e|.

Hence, the core of eval_e is generated by a call to implementer(“y”, e, 0)
immediately followed by the instruction “return y;”. We describe the algo-
rithm implementer and prove its correction in the next sections. It proceeds
recursively on the structure of e: we distinguish three cases, whether e is a
multiplication/division, an addition/subtraction, or a basic function f ∈ B.
Accordingly, the proof of correctness is a structural induction on e.

4.3 Case of a multiplication/division

The case when e is a multiplication/division is the most simple because (roughly)
relative errors are added when performing a multiplication/division. If e has the
form e = e′×e′′ or e = e′÷e′′, there is a unique way of rewriting e as a maximal
product, i.e., with the form

e =
e1 × · · · × en
f1 × · · · × fm

,

where neither the ei nor the fj are multiplications/divisions. By recursive calls,
we can evaluate the ei (resp. fj) with a controlled relative error δi (resp. εj).
When multiplying and dividing the ei and fj together, each operation leads to
a relative error γk directly controlled by the precision used for performing the
operation. The overall relative error is henceforth approximately

(∑n
i=1 δi

)
+(∑m

j=1 εj
)
+
(∑n+m−1

k=1 γk
)

and we want to ensure that it stays smaller than
21−prec−p.

Optimally choosing the δi, εj and γk appears to be a subtle problem. Sup-
pose for instance that e1 is much more difficult to evaluate than the others ei
and fj . Then, one should choose δ1 ≃ 21−prec−p and the other error terms very
small compared to δ1. More generally, the idea would be to give a weight to each
expression ei and fj , depending on the hardness of their evaluation at a given
precision. Unfortunately, estimating this hardness seems difficult in practice
because it depends (in a complex way) on the underlying multiprecision library
and possibly also on the precision prec+ p. Van der Hoeven [15] proposed that

RR n° 7443

Evaluating constant expressions in multiple precision 8

the weight of an expression is defined by the number of operations in the ex-
pression. This allows for a good distribution of the errors when the expression
(seen as a tree) is ill-balanced. However, this does not take into account the
fact that operations have different practical complexities.

In our current implementation, we chose to apply a simpler strategy. We
simply make all error terms of a product nearly equal, independently of the
respective sizes of the subexpressions ei and fj : we take δi = εj = γk ≃
21−prec−p/(2(n+m)) for all i, j, k. More formally, this leads to the algorithm
described in Algorithm 1. We now rigorously prove its correctness.

Algorithm 1: implementer: case of a multiplication/division.

Input: var_name, e1, . . . , en, f1, . . . , fm, p
Output: code for evaluating the expression e = (e1 · · · en)/(f1 · · · fm)

Output code for the test: “if prec+ p ≤ 1 then {var_name← 0; return}”;1

r ← ⌈log2(m+ n)⌉;2

let a1, . . . , an, b1, . . . , bm, tmp be fresh names;3

For each i ∈ {1 . . . n}, recursively call implementer(“ai”, ei, p+ r + 2);4

For each j ∈ {1 . . .m}, recursively call implementer(“bj”, fj , p+ r + 2);5

Output code for setting global precision to prec+ p+ r + 2;6

Output code for computing var_name← a1 × · · · × an;7

Output code for computing tmp← b1 × · · · × bm;8

Output code for computing var_name← var_name÷ tmp;9

Proof of correctness: in the following, ai (resp. bj , resp. var_name) rep-
resents the approximated value of ei (resp. fj , resp. e) computed during an
execution of the generated program.

If prec + p ≤ 1, we have var_name = 0, hence |var_name − e| = |e| ≤
21−prec−p |e|, which proves the correctness. Thus, for now on, we suppose that
prec+ p ≥ 2. By recurrence hypothesis, we can write ai = ei 〈1〉 for each i and
bj = fj 〈1〉 for each j, assuming a global precision of prec + p + r + 2. When
computing tmp and var_name, the multiplications are faithfully rounded; hence,
for each multiplication z = x̂ × ŷ, the computed value ẑ satisfies ẑ = x̂ ŷ 〈1〉.
The same holds for the final division. Thus, eventually we have

var_name = e 〈2(n+m)− 1〉 .

Using Proposition 2, we see that |var_name− e| ≤ e (1+θ) with |θ| ≤ (4(n+m)−
2) · 21−prec−p−r−2. By definition 2−r ≤ 1/(m+n), hence finally |θ| ≤ 21−prec−p.

�

4.4 Case of an addition/subtraction

In the case when e = e′ + e′′ or e = e′ − e′′, we do the same as what we
do for the multiplications/divisions: we look for the maximal sum e = e1 +
· · ·+ en (where none of the ei is an addition/subtraction, or the negation of an
addition/subtraction) and we equally distribute the errors between terms.

For a sum, it is more natural to consider absolute errors. If the ei are
evaluated with absolute errors δi and if the successive additions lead to absolute

RR n° 7443

Evaluating constant expressions in multiple precision 9

errors γk, the overall absolute error is given by
(∑n

i=1 δi
)
+
(∑n−1

k=1 γk
)

and we
want to keep it smaller than the absolute error 21−prec−p |e|. Again, a rule of
thumb indicates that we should take δi = γk ≃ 21−prec−p |e|/(2n− 1).

However, contrary to the case of a multiplication/division, γk does not de-
pend only on the precision used to perform the corresponding addition but also
on the order of magnitude of both operands. The practical consequence of this
remark is the following: the error terms γk depend on the order the operations
are performed. It is well known that choosing an optimal order is a NP-hard
problem [7, Chap. 4.2].

Thus, we do not try to find an optimal order of summation: we let the user
choose the order of summation and simply follow the structure of the expression
tree e. In practice, if e = e′ ± e′′, we determine the number n′ of terms in
the maximal sum corresponding to e′: e′ = e′1 ± · · · ± e′n′ and we define n′′

accordingly for e′′. Then, we evaluate e′ with an absolute error smaller than
21−prec−p |e|n′/(n′ + n′′ + 1) and we evaluate e′′ with an absolute error smaller
than 21−prec−p |e|n′′/(n′+n′′+1). Finally, we perform the addition/subtraction
with an absolute error smaller than 21−prec−p |e|/(n′ + n′′ + 1). This strategy
exactly corresponds to equally balancing all error terms in the sum e′1 + · · · +
e′n′ + e′′1 + · · · e′′n′′ . Counting the number of terms in the maximal sum of an
expression e is performed by means of a procedure summation_weight(e). The
formal algorithm is summed up in Algorithm 2.

Algorithm 2: implementer: case of an addition/subtraction.

Input: var_name, e1, e2, p
Output: code for evaluating the expression e = e1 ± e2

u1 ← e1; u2 ← e2 evaluated by interval arithmetic;1

v← u1 ± u2 evaluated by interval arithmetic;2

if 0 ∈ v then abort;3

n1 ← summation_weight(e1); n2 ← summation_weight(e2);4

n← n1 + n2 + 1;
E1 ← MINEXP(n1 v

nu1

); E2 ← MINEXP(n2 v

nu2

);5

E ← MINEXP(v

n (|u1|+|u2|));6

let a1 and a2 be fresh names;7

Output code for the following test:8

“if prec+ p+ 1− E1 ≤ 1 then a1 ← 0 else”
implementer(“a1”, e1, p+ 1− E1);
Output code for the following test:9

“if prec+ p+ 1− E2 ≤ 1 then a2 ← 0 else”
implementer(“a2”, e2, p+ 1− E2);
Output code for setting global precision to prec+ p+ 2− E;10

Output code for computing var_name← a1 ± a2;11

Proof of correctness: by definition of E1, we have E1 ≤ EXP(n1 e
n e1

). A
similar identity holds for E2 and E. Hence

∣∣∣e1
e

∣∣∣ ≤ n1

n
· 21−E1 ,

∣∣∣e2
e

∣∣∣ ≤ n2

n
· 21−E2 , and

|e1|+ |e2|
|e| ≤ 1

n
· 21−E . (3)

RR n° 7443

Evaluating constant expressions in multiple precision 10

We consider an execution of the generated program. For both i = 1 and
i = 2, the definition of ai depends on the test prec + p + 1 − Ei ≤ 1 but,
in any case, we can write ai = ei (1 + εi) with |εi| ≤ 21−(prec+p+1−Ei): if
prec+ p+ 1−Ei > 1, the result is directly given by the recurrence hypothesis
on implementer; if, on the contrary, prec+p+1−Ei ≤ 1, we have ai = 0 and we
can write ai = ei (1+ εi) where εi = −1, which satisfies |εi| ≤ 21−(prec+p+1−Ei).

We now write the error between var_name and e: since the final addi-
tion/subtraction is faithfully rounded, we have var_name = (a1 ± a2) (1 + ε)
with |ε| ≤ 21−(prec+p+2−E). Hence:
∣∣∣∣
var_name− e

e

∣∣∣∣ ≤
∣∣∣e1
e

∣∣∣ 21−(prec+p+1−E1) +
∣∣∣e2
e

∣∣∣ 21−(prec+p+1−E2) +

∣∣∣∣
a1 ± a2

e

∣∣∣∣ 2
1−(prec+p+2−E).

We can conclude using (3), provided that we show that |a1±a2| ≤ 2(|e1|+ |e2|).
By the triangle inequality: |a1 ± a2| ≤ |a1|+ |a2|, thus it suffices to prove that
|ai| ≤ 2|ei|. If ai = 0, it is obviously true. Otherwise, prec + p + 1 − Ei > 1,
thus |εi| ≤ 1 and finally |ai| = |ei (1 + εi)| ≤ 2|ei|.

�

4.5 Case of a basic function

We now study the case when e = f(e1) where f ∈ B is a basic function. The
idea of the algorithm is as follows: a recursive call implementer(some fresh
name “y”, e1, q) allows us to evaluate e1 as accurately as desired by adjusting
q. We denote by h the corresponding absolute error: y = e1 + h. By recurrence
hypothesis, |h| ≤ 21−prec−q |e1|.

The function f possibly amplifies or contracts this error. Namely, using the
mean value theorem,

f(y) = f(e1) + h f ′(ξ),

where ξ lies between y and e1. Hence, roughly speaking, the final relative error
is h f ′(ξ)/f(e1), which is close to h f ′(e1)/f(e1).

In principle, this gives us a suitable value for q: it suffices that |h| ≤
|f(e1)/f ′(e1)| 21−prec−p. Hence, it suffices to choose

q ≥ p+MAXEXP(e1 f
′(e1)/f(e1)).

This gives us the idea of the algorithm. However, in order to be perfectly
rigorous, we have to take into account the fact that ξ is not exactly equal to e1.
In order to handle this problem, we introduce a retro-action loop for choosing
q, and we use interval arithmetic for ensuring safety. Moreover, we must take
into account the rounding that happens when evaluating f itself. This leads to
the algorithm summed up in Algorithm 3.

Proof of correctness: we shall prove that the algorithm terminates and that
it is correct. The case when prec + p ≤ 1 is obvious. So, we suppose in the
following that prec + p ≥ 2. Obviously r strictly increases during the loop.
Moreover, when r increases, the width of the interval [e1 (1 − 2−p−r), e1 (1 +

RR n° 7443

Evaluating constant expressions in multiple precision 11

Algorithm 3: implementer: case of a basic function.

Input: var_name, f , e1, p
Output: code for evaluating the expression e = f(e1)

Output code for the test: “if prec+ p ≤ 1 then {var_name← 0; return}”;1

u← f(e1) evaluated by interval arithmetic;2

if 0 ∈ u then abort;3

u← e1/u;4

v← u · f ′(e1) evaluated by interval arithmetic;5

r ← 2 +MAXEXP(v);6

v← u · f ′([e1 (1− 2−p−r), e1 (1 + 2−p−r)] evaluated by interval7

arithmetic;
while r < 2 +MAXEXP(v) do8

r ← r + 1;9

v← u · f ′([e1 (1− 2−p−r), e1 (1 + 2−p−r)] evaluated by interval10

arithmetic;
end11

let y be a fresh name;12

implementer(“y”, e1, p+ r);13

Output code for setting global precision to prec+ p+ 2;14

Output code for computing var_name← f(y);15

2−p−r)] decreases. Hence, during the loop, the interval v can only shrink and
MAXEXP(v) can only decrease (or stay equal). This proves that the loop
eventually terminates.

By construction, after the loop, r ≥ 2 + MAXEXP(v). Moreover, by re-
currence hypothesis, the generated code computes an approximation y of e1
satisfying

|y − e1| ≤ 21−prec−p−r |e1|. (4)

In particular, |y− e1| ≤ 2−p−r |e1|. Thus any value ξ between y and e1 satisfies
ξ ∈ [e1 (1− 2−p−r), e1 (1 + 2−p−r)].

Moreover, using (4) and the mean value theorem, we have

f(y)− f(e1) = f(e1) θ where |θ| ≤ 21−prec−p−r · |e1 f ′(ξ)/f(e1)|.

Since ξ lies between y and e1, it holds that e1 f
′(ξ)/f(e1) ∈ v. Hence |θ| ≤

21−prec−p−r+MAXEXP(v) ≤ 21−prec−p−2. In conclusion, assuming a global preci-
sion of prec+p+2, we can write f(y) = f(e1) 〈1〉. Moreover, since the final eval-
uation is also performed in precision prec+p+2, we have var_name = f(y) 〈1〉.
We conclude using Proposition 2 on var_name = f(e1) 〈1〉 〈1〉 = f(e1) 〈2〉.

�

5 Examples

We have implemented our algorithm in the Sollya4 free software tool, as the
experimental implementconstant command. We tested it on several expres-
sions; each time, we ran the generated code and checked that the accuracy of

4See http://sollya.gforge.inria.fr/

RR n° 7443

http://sollya.gforge.inria.fr/

Evaluating constant expressions in multiple precision 12

its result was correct by comparing it with a high-precision interval evaluation
of the expression.

As expected, the algorithm detects when a subexpression is an exact zero.
For instance, when run on the expression

sin(1) + exp

(
3

√
5

√
32/5− 5

√
27/5− 1 + 5

√
3− 5
√
9

5
√
25

)
,

our algorithm aborts with a message indicating that 3

√
5

√
32/5− 5

√
27/5− 1+ 5

√
3− 5

√
9

5
√
25

is probably exactly zero.

5.1 First example

Our first example comes from the competition organized at the CCA 2000 con-
ference for testing the efficiency and correctness of multiprecision libraries [2].
The expression to evaluate is log(1 + log(1 + log(1 + log(1 + exp(1))))). There
is no numerical difficulty in the evaluation of this expression, but it illustrates
well how the algorithm tracks the propagation of roundoff errors and adapts
the intermediate precisions. The output of the algorithm, as a pseudo-code, is
represented in Algorithm 4; the comments indicate what precision is used to
perform each operation.

Algorithm 4: Pseudo-code produced by our algorithm on the first exam-
ple.
Input: prec

y ← exp(1); /* prec+19 */

y ← 1 + y; /* prec+18 */

y ← log(y); /* prec+15 */

y ← 1 + y; /* prec+15 */

y ← log(y); /* prec+11 */

y ← 1 + y; /* prec+11 */

y ← log(y); /* prec+7 */

y ← 1 + y; /* prec+7 */

y ← log(y); /* prec+2 */

return y

We ran the algorithm with prec varying from 2 to 100 000 and considered
the actual relative error ε(prec). By construction, this error has the form
α(prec) 21−prec with |α(prec)| ≤ 1. As a matter of course, since the error anal-
ysis is pessimistic |α| can be much smaller than 1 in practice. For instance when
|α| ≃ 1/2n, it means that we have n more correct bits than expected. Recip-
rocally, it means that we might evaluate the expression using lower precisions
and still get an accurate enough result. On this example, we observed that
the maximum of |α| over the considered range of precision was roughly 1/23.5.
This indicates that we were not too pessimistic and that we could probably not
improve the choice of precisions by more than one or two bits.

RR n° 7443

Evaluating constant expressions in multiple precision 13

5.2 Second example

The second example is an expression constructed to illustrate the fact that, even
for evaluating some fairly simple expressions, double precision may be insuffi-
cient. It has been presented by Ghazi et al. [5] to demonstrate the usefulness of
multiprecision libraries. The expression to evaluate is

e = 173746 sin(1e22) + 94228 log(171/10)− 78487 exp(42/100).

Ghazi et al. explain that, when double precision is used to evaluate e, the
computed result is 2.91 . . . e−11; if long double are used (i.e. 64-bit signifi-
cand), the computed result is −1.31 . . . e−12; and actually, the correct result is
−1.34 . . . e−12.

The output of our algorithm is represented in Algorithm 5. A quick look
to the code immediately shows that the expression is ill-conditioned for an
evaluation in double precision: to obtain one bit of accuracy, it is necessary
to perform the last operation in precision at least 62. Using long doubles, one
should not expect more than roughly 3 correct bits. But we can also see that,
if the expression is naively evaluated by performing all the operations with a
given precision p ≥ 61, one roughly expects to get p − 61 correct bits in the
result.

Algorithm 5: Pseudo-code produced by our algorithm on the second
example.
Input: prec

t1 ← sin(1e22); /* prec+66 */

t2 ← 173746 t1; /* prec+64 */

t3 ← 171/10 ; /* prec+70 */

t4 ← log(t3) ; /* prec+67 */

t5 ← 94228 t4 ; /* prec+65 */

t6 ← t2 + t5 ; /* prec+63 */

t7 ← 42/100 ; /* prec+68 */

t8 ← exp(t7) ; /* prec+65 */

t9 ← 78487 t8 ; /* prec+63 */

y ← t6 − t9 ; /* prec+61 */

return y

We ran the algorithm with prec varying from 2 to 100 000 and measured the
corresponding α(prec) as we did for the first example. Here, the maximum of
|α| was roughly 1/26.9. This indicates that we might improve our error analysis
a little and save a few bits of precision in the computation.

5.3 Third example

Our last example comes from a real-life problem arising when one wants to
implement the Airy Ai function in arbitrary precision by means of its Taylor
series: as explained in the introduction, one needs to evaluate Γ(1/3). One
could compute an approximate value of 1/3 and use a generic implementation

RR n° 7443

Evaluating constant expressions in multiple precision 14

of the Γ function but it would be much less efficient than using a formula such
as Equation (2) given on page 3.

Our algorithm is not able to handle series, but as discussed in Section 2, the
sets of basic functions B and predefined constants C are arbitrary. Hence, our
implementation provides an extension mechanism that allows one to add a new
constant in C. We define α =

∑+∞
k=0 ak where (ak)k∈N is defined by a0 = 1 and

ak+1 =
−(6k + 1) (6k + 2) (6k + 3) (6k + 4) (6k + 5) (6k + 6)

(k + 1)3 (3k + 1) (3k + 2) (3k + 3) 12288000
ak.

Thus Equation (2) becomes Γ(1/3) = (12π4 α/
√
10)1/6 and can be handled by

our algorithm, provided that α ∈ C. In order to add α to the set C, we only
need to provide a procedure eval_alpha(prec) that returns an approximate
value y of α such that |y − α| ≤ 21−prec α. Such a procedure is easy to design:
a quick computation shows that |ak+1| ≤ 9 |ak|/64000 for all k. Hence the
series converges at least as fast as the geometric series with ratio 9/64000 which
remainder is easily bounded. This gives a suitable truncation rank in function
of prec. Once the truncation rank is known, the sum is evaluated at a suitable
precision p obtained by a straightforward roundoff analysis. Once α ∈ C, our
algorithm easily generates code for Γ(1/3) (see Algorithm 6).

Algorithm 6: Pseudo-code produced by our algorithm for evaluating
Γ(1/3) with Equation (2).

Input: prec

t1 ← π ; /* prec + 11 */

t2 ← t41 ; /* prec + 7 */

t3 ← eval_alpha(prec + 5);
t4 ←

√
10 ; /* prec + 7 */

t5 ← 12 t2 t3/t4 ; /* prec + 5 */

y ← 6
√

t5 ; /* prec + 2 */

return y

We ran the algorithm with prec varying from 2 to 100 000. The maximum
of |α| in this case was roughly 1/23.4, which is close to being optimal.

6 Conclusion

We presented an algorithm that automatically generates code for evaluating
constant expressions in multiple precision. In our current implementation we
generate MPFR code, but it would be easy to generate code using other multiple
precision libraries, provided that operations with mixed precisions are possible.

The primary goal of the algorithm is to help developers of multiple precision
libraries in their work: when developing a function for such a library, it is often
necessary to write code for evaluating constants. As an example, the developers
of MPFR reported that they successfully used our algorithm when they developed
the Ai function. As illustrated in Section 5.2, the algorithm may also serve as
a way of understanding how rounding errors propagate in the floating-point
evaluation of a constant expression and how many correct bits can be expected
in the final result if the operations are all performed at a given precision.

RR n° 7443

Evaluating constant expressions in multiple precision 15

Our algorithm could be improved in at least two ways. First, the expres-
sions are currently represented as trees. An improvement would be to represent
expressions as directed acyclic graphs, which would avoid recomputing subex-
pressions that have already been evaluated. Second, we could try to give real-
istic weights to expressions, that would be used for well-balancing errors in the
evaluation of an expression.

Though we took great care in proving and implementing our algorithm, and
though we tested it on many examples, it is always possible that a bug remains
somewhere. Moreover, the roundoff analysis always considers the worst possible
case and is henceforth very pessimistic: so a bug in the generated code would be
very difficult to detect because the code will almost always give correct results.
A solution consists in modifying our algorithm so that, for each instance, it
generates both the code and a formal proof of its correctness. The formal
proof can then be checked with an automatic proof checker, thus offering a high
guarantee. Generating such a formal proof is an on-going work.

References

[1] D. H. Bailey, Y. Hida, X. S. Li, and B. Thompson. Arprec: An arbitrary
precision computation package. Software and documentation available at
http://crd.lbl.gov/~dhbailey/mpdist/.

[2] J. Blanck. Exact Real Arithmetic Systems: Results of Competition. In
J. Blanck, V. Brattka, and P. Hertling, editors, Computability and Com-
plexity in Analysis, volume 2064 of Lecture Notes in Computer Science,
pages 389–393, Heidelberg, Germany, 2001. Springer.

[3] M. Daumas and G. Melquiond. Certification of bounds on expressions
involving rounded operators. ACM Transactions on Mathematical Software
(TOMS), 37(1):1–20, 2010.

[4] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR:
A multiple-precision binary floating-point library with correct rounding.
ACM Transactions on Mathematical Software (TOMS), 33(2), 2007.

[5] K. R. Ghazi, V. Lefèvre, P. Théveny, and P. Zimmermann. Why and
How to Use Arbitrary Precision. Computing in Science and Engineering,
12(3):62–65, 2010.

[6] P. Gowland and D. Lester. A Survey of Exact Arithmetic Implementations.
In J. Blanck, V. Brattka, and P. Hertling, editors, Computability and Com-
plexity in Analysis, volume 2064 of Lecture Notes in Computer Science,
pages 30–47, Heidelberg, Germany, 2001. Springer.

[7] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
second edition, 2002.

[8] V. Kreinovich and S. Rump. Towards Optimal Use of Multi-Precision
Arithmetic: A Remark. Reliable Computing, 12(5):365–369, 2006.

[9] W. Krämer. A priori Worst-Case Error Bounds for Floating-Point Compu-
tations. IEEE Transactions on Computers, 47(7):750–756, 1998.

RR n° 7443

http://crd.lbl.gov/~dhbailey/mpdist/

Evaluating constant expressions in multiple precision 16

[10] W. Krämer and A. Bantle. Automatic Forward Error Analysis for Floating
Point Algorithms. Reliable Computing, 7(4):321–340, 2001.

[11] N. Müller. The iRRAM: Exact Arithmetic in C++. In J. Blanck, V. Brat-
tka, and P. Hertling, editors, Computability and Complexity in Analysis,
volume 2064 of Lecture Notes in Computer Science, pages 222–252, Heidel-
berg, Germany, 2001. Springer.

[12] D. Richardson. How to Recognize Zero. Journal of Symbolic Computation,
24(6):627–645, 1997.

[13] D. M. Smith. Algorithm 786: multiple-precision complex arithmetic
and functions. ACM Transactions on Mathematical Software (TOMS),
24(4):359–367, 1998.

[14] M. Sofroniou and G. Spaletta. Precise numerical computation. Journal of
Logic and Algebraic Programming, 64(1):113–134, 2005.

[15] J. van der Hoeven. Computations with effective real numbers. Theoretical
Computer Science, 351(1):52–60, 2006.

[16] J. van der Hoeven. Effective real numbers in Mmxlib. In ISSAC ’06:
Proceedings of the 2006 international symposium on Symbolic and algebraic
computation, pages 138–145, New York, NY, USA, 2006. ACM.

RR n° 7443

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Statement of the problem
	Previous Work
	Description of the algorithm
	Reminder of roundoff analysis
	General description of the algorithm
	Case of a multiplication/division
	Case of an addition/subtraction
	Case of a basic function

	Examples
	First example
	Second example
	Third example

	Conclusion

