M. Amara, R. Djellouli, and C. Farhat, Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.47-1038, 2009.
DOI : 10.1137/060673230

URL : https://hal.archives-ouvertes.fr/hal-00865802

I. Babu²ka and I. J. Melenk, THE PARTITION OF UNITY METHOD, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.727-758, 1997.
DOI : 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

I. Babu²ka and S. Sauter, Is the Pollution Eect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers?

O. Cessenat and B. Després, Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem, SIAM Journal on Numerical Analysis, vol.35, issue.1
DOI : 10.1137/S0036142995285873

W. Desmet, P. Van-hal, P. Sas, and D. Vandepitte, A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems, Advances in Engineering Software, vol.33, issue.7-10, pp.527-540, 2002.
DOI : 10.1016/S0965-9978(02)00062-5

C. Farhat, I. Harari, and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.11-12, pp.1389-1419, 2003.
DOI : 10.1016/S0045-7825(02)00646-1

C. Farhat, P. Wiedemann-goiran, and R. Tezaur, A discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of short wave exterior Helmholtz problems on unstructured meshes, Wave Motion, vol.39, issue.4, pp.307-317, 2004.
DOI : 10.1016/j.wavemoti.2003.12.006

C. Farhat, R. Tezaur, and P. Wiedemann-goiran, Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems, International Journal for Numerical Methods in Engineering, vol.42, issue.2, pp.61-1938, 2004.
DOI : 10.1002/nme.1139

B. V. Genechten, B. Bergen, D. Vanderpitte, and W. Desmet, A Trefftz-based numerical modelling framework for Helmholtz problems with complex multiple-scatterer configurations, Journal of Computational Physics, vol.229, issue.18, pp.6623-6643, 2010.
DOI : 10.1016/j.jcp.2010.05.016

M. Grigoroscuta-strugaru, Contribution à la résolution numérique des problèmes de Helmholtz, 2009.

P. Grisvard, Elliptic Problems in Non Smooth Domains Pitman, 1985.

J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Dierential Equations, 1923.

L. Hörmander, The Analysis of Linear Partial Dierential Operator, 1985.

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1998.
DOI : 10.1137/S1064827595287997

F. Magoulès, Computational Methods for Acoustics Problems, 2008.

P. Monk and D. Q. Wang, A least-squares method for the Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, vol.175, issue.1-2, pp.411-454, 1999.
DOI : 10.1016/S0045-7825(98)00326-0

M. E. Rose, Weak-element approximations to elliptic differential equations, Numerische Mathematik, vol.24, issue.3, pp.185-204, 1975.
DOI : 10.1007/BF01436591

O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems, vol.20, issue.3, pp.475-487, 2004.
DOI : 10.1016/j.future.2003.07.011

O. Schenk and K. Gärtner, On fast factorization pivoting methods for symmetric indenite systems, Elec. Trans. Numer. Anal, vol.23, pp.158-179, 2006.

M. E. Taylor, Partial Dierential Equations I: Basic Theory, 1997.

R. Tezaur, A. Macedo, C. Farhat, and R. Djellouli, Three-dimensional finite element calculations in acoustic scattering using arbitrarily shaped convex artificial boundaries, International Journal for Numerical Methods in Engineering, vol.85, issue.6, pp.1461-1476, 2002.
DOI : 10.1002/nme.346

I. Centre-de-recherche, ?. Grenoble, and . Rhône-alpes, Europe -38334 Montbonnot Saint-Ismier Centre de recherche INRIA Lille ? Nord Europe : Parc Scientifique de la Haute Borne -40, avenue Halley -59650 Villeneuve d'Ascq Centre de recherche INRIA Nancy ? Grand Est : LORIA, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex Centre de recherche INRIA Paris ? Rocquencourt : Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex Centre de recherche INRIA Rennes ? Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex Centre de recherche INRIA Saclay ? Île-de-France, des Vignes : 4, rue Jacques Monod -91893 Orsay Cedex Centre de recherche INRIA, pp.105-78153, 2004.