Regular solutions of a problem coupling a compressible fluid and an elastic structure

Abstract : We are interested by the three-dimensional coupling between a compressible viscous fluid and an elastic structure immersed inside the fluid. They are contained in a fixed bounded set. The fluid motion is modelled by the compressible Navier-Stokes equations and the structure motion is described by the linearized elasticity equation. We establish the local in time existence and the uniqueness of regular solutions for this model. We emphasize that the equations do not contain extra regularizing term. The result is proved by first introducing a problem linearized and by proving that it admits a unique regular solution. The regularity is obtained thanks to successive estimates on the unknowns and their derivatives in time and thanks to elliptic estimates. At last, a fixed point theorem allows to prove the existence and uniqueness of regular solution of the nonlinear problem.
Type de document :
[Research Report] 2009
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger
Contributeur : Muriel Boulakia <>
Soumis le : samedi 20 novembre 2010 - 14:09:55
Dernière modification le : vendredi 31 août 2018 - 09:06:02
Document(s) archivé(s) le : vendredi 26 octobre 2012 - 16:15:41


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00538039, version 1



Muriel Boulakia, Sergio Guerrero. Regular solutions of a problem coupling a compressible fluid and an elastic structure. [Research Report] 2009. 〈inria-00538039〉



Consultations de la notice


Téléchargements de fichiers