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3 Université Versailles St-Quentin, France
4 Marine Hydrophysical Institute, National Academy of Sciences, Sevastopol, Ukraine

Etienne.Huot@inria.fr, Isabelle.Herlin@inria.fr

Abstract

The paper presents a motion estimation method based on
data assimilation in a dynamic model, named Image Model,
expressing the physical evolution of a quantity observed on the
images. The application concerns the retrieval of apparent
surface velocity from a sequence of satellite data, acquired
over the ocean.

The Image Model includes a shallow-water approximation
for the dynamics of the velocity field (the evolution of the two
components of motion are linked by the water layer thickness)
and a transport equation for the image field. For retrieving
the surface velocity, a sequence of Sea Surface Temperature
(SST) acquisitions is assimilated in the Image Model with a
4D-Var method. This is based on the minimization of a cost
function including the discrepancy between model outputs and
SST data and a regularization term. Several types of regu-
larization norms have been studied. Results are discussed to
analyze the impact of the different components of the assimi-
lation system.

1. Introduction and state of the art

Ocean surface velocity is approximated using image pro-

cessing techniques on satellite image sequences. Methods for

estimating a dense motion field usually rely on a conserva-

tion equation [5], which is however not sufficient to compute

the two components of the velocity vector. This is named

the aperture problem. A Tikhonov regularization is then ap-

plied, relying on regularity heuristics. In [4, 6], authors use a

regularity constraint based on the irrotational and solenoidal

description of the motion field. To apply the approach on

fluid motion, authors [2, 4] also propose to replace the usual

luminance conservation hypothesis by a mass conservation

equation. However, these processing techniques have two

main drawbacks. First, the algorithms rely on the compu-

tation of spatial and temporal derivatives, which is impossi-

ble if some data are occluded by clouds or contaminated by

noise. Second, the equations have no physical origin. The

image processing community got a recent interest in data as-

similation tools [1, 3, 8], which partly overcome the two pre-

vious concerns. We proposed such method in [7]: the avail-

able satellite images constitute observations and are assim-

ilated into an Image Model (IM), in order to derive motion

pseudo-observations, that are in turn assimilated in an opera-

tional oceanic model. This IM, named in the following Sim-
ple Image Model (SIM) and its limitations are summarized in

section 2, in order to introduce the so-called Extended Image
Model (EIM), described in section 3. The EIM expresses: (i)
the transport of temperature by surface velocity with a sim-

plified version of the 3D advection-diffusion equation that

applies to temperature transport in oceans; (ii) the dynam-

ics of the surface velocity, whose components are linked by

the water layer thickness, using the shallow-water approxi-

mation. Variational data assimilation is then applied to assim-

ilate SST observations into EIM and estimate surface motion

(section 4). Section 5 illustrates the results and discusses the

impact of the different options of the data assimilation soft-

ware.

2. Simple Image Model

We consider the advection-diffusion equation governing

the transport of temperature T by a 3D motion field w:

∂T

∂t
= −∇T ·w− T · divw + KT ΔT + Src− Snk. (1)

KT denotes the temperature diffusivity, Src and Snk are the

source and sink terms corresponding to the local heat flow.

Equation (1) is simplified: (i) it is assumed to be valid for

the 2D motion field v; (ii) water is assumed incompressible

(div v = 0); (iii) Src and Snk, are neglected. Hence, the

evolution of temperature is modelled in 2D by:
∂T
∂t

= −∇T · v + KT ΔT .

We assume that the surface velocity field v evolves much

slower than the temperature field. This heuristic is accept-

able for a large range of marine processes. If a vortex, whose
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spatial scale is more than 10 − 50km is transported with a

velocity less than 0.1 to 0.5m/s then the temporal scale of

that phenomenon will be more than one day. It means that the

surface velocity field can be considered as stationary during

one day, i.e.: ∂u
∂t

= ∂v
∂t

= 0, if the motion vector is written

v = (u, v)T .

SIM is composed by the previous equations. Satellite ac-

quisitions are assimilated into SIM in order to retrieve surface

velocity. The main limitation concerns the heuristic on veloc-

ity, which is not always valid. Consequently SIM is only

applicable for a short temporal window, typically 12 hours,

without any non linear phenomena. The remaining of the pa-

per describes a more accurate physical model and its assimi-

lation system.

3. Extended Image Model

The issue of ocean modelling has long been addressed by

oceanographers and applied mathematicians. In this paper,

the Saint-Venant formulation is considered. It approximates

the Navier-Stokes equations in 2D, leading to shallow-water

models used for atmospheric simulation, hydrology and op-

erational oceanography. The equations link the 2D velocity

(u, v) of a merged layer to its thickness h or, more precisely,

to the thickness anomaly, i.e. η = h − hm, with hm denoting

the average value.

Including the transport equation of temperature, the Ex-
tended Image Model (EIM) is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
= −u

∂T

∂x
− v

∂T

∂y
+ KT ΔT

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
+ fv − g′ ∂η

∂x
+ KvΔu

∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
− fu − g′ ∂η

∂y
+ KvΔv

∂η

∂t
= −∂(uη)

∂x
+

∂(vη)

∂y
− hm

(
∂u

∂x
+

∂v

∂y

)
.

(2)

f denotes the Coriolis parameter; Kv the viscosity of the wa-

ter layer; g′ = g(ρ0 − ρ1)/ρ0 the reduced gravity. ρ0 corre-

sponds to the reference density and ρ1 to the average density

of the water layer. EIM includes a physical description of the

motion dynamics which permits to overpass the previous limi-

tations of SIM. It allows to process large assimilation windows

(more than one day), even those displaying non linear effects.

4. Data assimilation

The aim is to assimilate a sequence of SST acquisi-

tions into the Image Model and estimate the surface veloc-

ity over a temporal window τ = [t0, tN ]. A set of images

{Y (t1), . . . , Y (tN )}, acquired at dates t1 to tN and over the

spatial domain Ω, are used as observations.

4.1. Variational approach

The system (2) is summarized as: ∂X
∂t

= F (X), with

X(t) = (T (t), u(t), v(t), h(t))T the model state vector and

F the evolution model corresponding to the right hand side.

The links between X(t) and the observation Y (t) are

expressed through the observation operator H: Y (t) =
H(X(t))+εo, εo stands for the observation noise. This equa-

tion is only valid at acquisition dates t1 . . . tN . H is a simple

projection operator, because surface temperature is the first

component of the state vector. εo is assumed to be Gaussian

and characterized by its covariance matrix R.

The background value of X(t0) is supposed to be X0.

This provides the equation X(t0) = X0 + εb. εb is the

error on the background value. It is assumed to be Gaussian

and characterized by its covariance matrix B.

The cost function J , which has to be minimized with re-

spect to the control variable X(t0):

J(X(t0)) =∫
Ω,τ

(H(X) − Y )TR−1(H(X) − Y )dx dy dt

+

∫
Ω

(X(t0) − X0)
TB−1(X(t0) − X0)dx dy.

(3)

The first term of (3) expresses the discrepancy between the

model outputs and the observations and the second term the

confidence on the background. One can refer to [1] for a

discussion about the choice of the matrix R and its impact

on the result. The variational data assimilation approach

consists in minimizing J and estimating X̂0, that verifies

X̂0 = argmin J(X(t0)) or equivalently ∇J(X̂0) = 0
(X̂0 = (T̂0, û0, v̂0, ĥ0)).

The result v̂0 = (û0, v̂0)
T is then considered as the esti-

mation of motion at t0 and its integration over τ provides the

space-time motion field.

4.2. Regularization

As stated in the introduction, a regularization term is added

to J in order to obtain a convex cost function: the minimiza-

tion process converges to a global minimum. Several heuris-

tics have been compared:

1. R1 =

∫
Ω

α(|∇u|2 + |∇v|2)dx dy +

∫
Ω

βdiv vdx dy (4)

The integral is spatial, because the constraint is only applied

at t0.

The first term of R1 penalizes the variation of the norm

of motion and the second one relies on the incompressibility

assumption and penalizes the value of the divergence. J1 =
J + R1 denotes the cost function built from equations (3) and

(4).

2. R2 =

∫
Ω

[
α|∇div v|2 + β|∇curl v|2

]
dx dy (5)
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The fluid motion being described by its irrotational, div v, and

solenoidal, curl v, components, R2 is used to penalize their

variations. J2 = J + R2 denotes the cost function built from

equations (3) and (5).

5. Impact of the data assimilation options

The first concern is to demonstrate the potential of EIM.

For that purpose SIM and EIM have been both applied on a

sequence of satellite data. Results are displayed on figure 1.

The first line shows the constant motion field computed by

SIM: it is represented by black vectors superposed to image

data. On the second line, the three consecutive motion fields

retrieved by EIM allow to visualize the vortex evolution.

Figure 1. Motion estimation superposed
to satellite images. Top: SIM results, bot-
tom: EIM results.

For better understanding the options of the data assimi-

lation algorithm, we discuss the results on twin experiments.

The synthetic images, simulating SST data and further used as

observations Y , are obtained by integrating EIM from known

initial conditions: X0 = (T0, u0, v0, h0)
T displayed on fig-

ure 2. Five observation images are considered: the first one

0

50

100

150

0

50

100

150
145

150

155

Figure 2. Left: temperature image. Cen-
ter: velocity field. Right: 3D visualization
of the thickness.

at t1 = t0 + dt, and the others with a regular time interval

of 200dt. dt being the time step of the simulation process.

Three observations are illustrated on figure 3. The experiment

Figure 3. Simulated observations.

consists in assimilating the observations into EIM and com-

pare the result X̂0 to the reference X0, The parameters are:

the cost function (J1 or J2), the regularization weights α and

β, and the background value X0. We set fixed values to α and

β and only discuss the impact of the initial conditions and the

cost function.

5.1. Impact of the background thickness field h0

We first set X0 = (Tt1 , 0, 0, h0)
T :

• The temperature field T0 is initialized with the first ob-

servation Tt1 ;

• We assume no knowledge on the motion field; v0 =
(u0, v0)

T = (0, 0)T ;

• We consider having a perfect knowledge of the thickness

anomaly; h0 = h0.

The motion results obtained with J1 and J2 at T0 are dis-

played on figure 4. In this case, the quantitative analysis

Figure 4. Left: with J1. Center: with J2.
Right: truth.

demonstrate that both the norm and the direction of the mo-

tion vector are better estimated with J2 (average norm error

less than 1%, average angular error approximately 5 degrees).

In a second experiment, we use no prior knowledge on the

interface and the background is set to h0 = hm, hm being

the average value. In operational cases, this average value is

known from ocean specialists. The results are similar to those

obtained with a perfect knowledge of h0 and the conclusions

on errors are similar. This remark allows applying the soft-

ware on real data, without having to perform a complex pre-

processing to get an accurate thickness background value.
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5.2. Impact of the background motion field v0

This analysis concerns the background value for the mo-

tion field v0. Different values have been obtained from image

processing algorithms. In the following, the comparison con-

cerns a null motion field, (u0, v0) = (0, 0), and one obtained

by applying the Horn and Schunk method [5] on the first two

frames (result is on figure 5). In both cases, the two other

background values are T0 = Tt1 and h0 = hm, and data

assimilation is performed with the cost function J1.

Figure 5. Result on the first two frames
from the Horn and Schunk method.

The results are displayed on figure 6. That demonstrates
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Figure 6. Left: result of estimation with
a null motion background; center: with
a background motion estimated with the
Horn & Schunk method; left the ground
truth.

that a null initial condition allows a better estimation than a

non perfect initialization, which can be incompatible with the

whole image sequence, because computed only on the first

two frames.

6. Conclusion

This paper presents a motion estimation method relying

on image assimilation in an Image Model. The IM includes

some physical knowledge on the dynamics and is based on

the shallow-water equations. The two components of veloc-

ity are linked by the thickness of the water layer. The 4D-Var

assimilation is performed and equivalent to minimizing a cost

function, that expresses the discrepancy between image ob-

servations and model outputs and includes a regularity com-

ponent.

The data assimilation system has a number of options: reg-

ularization term, parameters values, initial conditions. Their

impact is analyzed with results obtained on synthetic data

in order to quantify the differences. It has been shown that

the best results are obtained with the shallow-water evolution

equations, with null background value for the motion field,

constant background value hm for the thickness field, and a

regularization term that penalizes the variations of the diver-

gence and the rotational.
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