N

HAL

open science

Model Driven Language Engineering with Kermeta

Jean-Marc Jézéquel, Olivier Barais, Franck Fleurey

» To cite this version:

Jean-Marc Jézéquel, Olivier Barais, Franck Fleurey. Model Driven Language Engineering with Ker-
meta. Joao M. Fernandes, Ralf Lammel, Joao Saraiva, Joost Visser. 3rd Summer School on Gener-
ative and Transformational Techniques in Software Engineering, LNCS 6491, Springer, 2010.

00538461

HAL 1d: inria-00538461
https://inria.hal.science/inria-00538461

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

inria-

https://inria.hal.science/inria-00538461
https://hal.archives-ouvertes.fr

Model Driven Language Engineering with
Kermeta

Jean-Marc Jézéquel, Olivier Barais, Franck Fleurey

INRIA & University of Rennesl
Campus Universitaire de Beaulieu
35042 Rennes CEDEX, France

Abstract. In many domains such as telecom, aerospace and automo-
tive industries, engineers rely on Domain Specific Modeling Languages
(DSML) to solve the complex issues of engineering safety critical soft-
ware. Traditional Language Engineering starts with the grammar of a
language to produce a variety of tools for processing programs expressed
in this language. Recently however, many new languages tend to be first
defined through metamodels, i.e. models describing their abstract syn-
tax. Relying on well tooled standards such as E-MOF, this approach
makes it possible to readily benefit from a set of tools such as reflexive
editors, or XML serialization of models. This article aims at showing
how Model Driven Engineering can easily complement these off-the-shelf
tools to obtain a complete environment for such a language, including
interpreter, compiler, pretty-printer and customizable editors. We illus-
trate the conceptual simplicity and elegance of this approach using the
running example of the well known LOGO programming language, de-
veloped within the Kermeta environment.

1 Introduction

In many domains such as telecom, aerospace and automotive industries [21],
engineers rely on Domain Specific Modeling Languages (DSML) to solve the
complex issues of engineering safety critical software at the right level of ab-
straction. These DSMLs indeed define modeling constructs that are tailored to
the specific needs of a particular domain. When such a new DSML is needed, it is
now often first defined through meta-models, i.e. models describing its abstract
syntax [14] when traditional language engineering would have started with the
grammar of the language. Relying on well tooled standards such as E-MOF, the
meta-modeling approach makes it possible to readily benefit from a set of tools
such as reflexive editors, or XML serialization of models. More importantly, hav-
ing such a tool supported de facto standard for defining models and meta-models
paves the way towards a rich ecosystem of interoperable tools working seamlessly
with these models and meta-models.

Combining this Model Driven approach with a traditional grammar based one
has however produced mixed results in terms of the complexity of the overall
approach. Several groups around the world are thus investigating the idea of a

new Language Engineering completely based on models [22], that we call Model
Driven Language Engineering (MDLE).

In this paper we present one of these approaches, based on the Kernel Meta-
Modeling environment Kermeta [16,7]. We start in Section 2 by giving a quick
overview of executable meta-modeling, and then focusing on Kermeta, seen both
as an aspect-oriented programming language as well as an integration platform
for heterogeneous meta-modeling. We then recall in Section 3 how to model the
abstract syntax of a language in E-MOF, allowing for a direct implementation of
its meta-model in the Eclipse Modeling Framework (EMF). We then show how
to weave both the static and dynamic semantics of the language into the meta-
model using Kermeta to get an interpreter for the language. Then we address
compilation, which is just a special case of model transformation to a platform
specific model [17,3]. We illustrate the conceptual simplicity and elegance of
this approach using the running example of the well known Logo programming
language, for which a complete programming environment is concretely outlined
in this article, from the Logo meta-model to simulation to code generation for
the Lego Mindstorm platform and execution of a Logo program by a Mindstorm
turtle.

2 Executable Meta-Modeling

2.1 Introduction

Modeling is not just about expressing a solution at a higher abstraction level
than code. This limited view on modeling has been useful in the past (assembly
languages abstracting away from machine code, 3GL abstracting over assembly
languages, etc.) and it is still useful today to get e.g.; a holistic view on a large
C++ program. But modeling goes well beyond that.

In engineering, one wants to break down a complex system into as many
models as needed in order to address all the relevant concerns in such a way
that they become understandable enough. These models may be expressed with
a general purpose modeling language such as the UML [26], or with Domain
Specific Modeling Languages (DSML) when it is more appropriate. Each of these
models can be seen as the abstraction of an aspect of reality for handling a given
concern. The provision of effective means for handling such concerns makes it
possible to establish critical trade-offs early on in the software life cycle.

Models have been used for long as descriptive artifacts, which was already
extremely useful. In many cases we want to go beyond that, i.e. we want to be
able to perform computations on models, for example to simulate some behav-
ior [16], or to generate code or tests out of them [19]. This requires that models
are no longer informal, and that the language used to describe them has a well
defined abstract syntax (called its meta-model) and semantics.

Relying on well tooled Eclipse standards such as E-MOF to describe these
meta-models, we can readily benefit from a set of tools such as reflexive editors,
or XML serialization of models, and also from a standard way of accessing models

from Java. The rest of this section introduces Kermeta, a Kernel Meta-Modeling
language and environment, whose goal is to complement Eclipse off-the-shelf
tools to obtain a complete environment for such DSMLs, including interpreters,
compilers, pretty-printers and customizable editors.

2.2 Kermeta as a MOF extension

Kermeta is a Model Driven Engineering platform for building rich development
environments around meta-models using an aspect-oriented paradigm [16,10].
Kermeta has been designed to easily extend meta-models with many different
concerns (such as static semantics, dynamic semantics, model transformations,
connection to concrete syntax, etc.) expressed in heterogeneous languages. A
meta-language such as the Meta Object Facility (MOF) standard [18] indeed
already supports an object-oriented definition of meta-models in terms of pack-
ages, classes, properties and operation signatures, as well as model-specific con-
structions such as containments and associations between classes. MOF does not
include however concepts for the definition of constraints or operational seman-
tics (operations in MOF do jot contain bodies). Kermeta can thus be seen as an
extension of MOF with an imperative action language for specifying constraints
and operation bodies at the meta-model level.

The action language of Kermeta is especially designed to process models. Tt
is imperative and includes classical control structures such as blocks, conditional
and loops. Since the MOF specifies object-oriented structures (classes, properties
and operations), Kermeta implements traditional object-oriented mechanisms for
multiple inheritance and behavior redefinition with a late binding semantics (to
avoid multiple inheritance conflicts a simple behaviors selection mechanism is
available in Kermeta). Like most modern object-oriented languages, Kermeta
is statically typed, with generics and also provides reflection and an exception
handling mechanism.

In addition to object-oriented structures, the MOF contains model-specific
constructions such as containment and associations. These elements require a
specific semantics of the action languages in order to maintain the integrity of
associations and containment relations. For example, in Kermeta, the assignment
of a property must handle the other end of the association if the property is part
of an association and the object containers if the property is a composition.

Kermeta expressions are very similar to Object Constraint Language (OCL)
expressions. In particular, Kermeta includes lexical closures similar to OCL itera-
tors on collections such as each, collect, select or detect. The standard framework
of Kermeta also includes all the operations defined in the OCL standard frame-
work. This alignment between Kermeta and OCL allows OCL constraints to be
directly imported and evaluated in Kermeta. Pre-conditions and post-conditions
can be defined for operations and invariants can be defined for classes. The
Kermeta virtual machine has a specific execution mode, which monitors these
contracts and reports any violation.

2.3 Kermeta as an Aspect-Oriented Integration Platform

Since Kermeta is an extension of MOF, a MOF meta-model can conversely be
seen as a valid Kermeta program that just declares packages, classes and so on
but does nothing. Kermeta can then be used to breath life into this meta-model
by incrementally introducing aspects for handling concerns of static semantics,
dynamic semantics, or model transformations [17].

One of the key features of Kermeta is the static composition operator "re-
quire", which allows extending an existing meta-model with new elements such
as properties, operations, constraints or classes. This operator allows defining
these various aspects in separate units and integrating them automatically into
the meta-model. The composition is done statically and the composed model is
typed-checked to ensure the safe integration of all units. This mechanism makes
it easy to reuse existing meta-models or to split meta-models into reusable pieces.
It can be compared to the open class paradigm [4]. Consequently a meta-class
that identifies a domain concept can be extended without editing the meta-
model directly. Open classes in Kermeta are used to organize "cross-cutting"
concerns separately from the meta-model to which they belong, a key feature of
aspect-oriented programming [11]. With this mechanism, Kermeta can support
the addition of new meta-class, new subclasses, new methods, new properties,
new contracts to existing meta-model. The require mechanism also provides flex-
ibility. For example, several operational semantics could be defined in separate
units for a single meta-model and then alternatively composed depending on
particular needs. This is the case for instance in the UML meta-model when
several semantics variation points are defined.

Thank to this composition operator, Kermeta can remain a kernel platform
to safely integrate all the concerns around a meta-model. As detailed in the
previous paragraphs, meta-models can be expressed in MOF and constraints
in OCL. Kermeta also allows importing Java classes in order to use services
such as file input/output or network communications during a transformation
or a simulation. These functionalities are not available in the Kermeta standard
framework. Kermeta and its framework remain dedicated to model processing
but provide an easy integration with other languages. This is very useful for
instance to make models communicating with existing Java applications.

3 Building an integrated environement for the Logo
Language

3.1 Meta-Modeling Logo

To illustrate the approach proposed in this paper, we use the example of the Logo
language. This example was chosen because Logo is a simple yet real (i.e. Turing-
complete) programming language, originally created for educational purposes.
Its most popular application is turtle graphics: the program is used to direct
a virtual turtle on a board and make it draw geometric figures when its pen

is

down'. Figure 1 presents a sample Logo program which draws a square. In

this paper we propose to build a complete Logo environment using model-driven
engineering techniques.

O~ O O W N

— =
—= O O

12
13
14
15

definition of the square procedure
TO square :size
REPEAT 4 [
FORWARD :size
RIGHT 90
1
END

clear screen

CLEAR

draw a square
PENDOWN

square (50)
PENUP

Fig. 1. Logo square program

The first task in the model driven construction of a language is the defi-

nition of its abstract syntax. The abstract syntax captures the concepts of the
language (these are primitive instructions, expressions, control structures, proce-
dure definitions, etc.) and the relations among them (e.g. an expression is either
a constant or a binary expression, that itself contains two expressions). In our
approach the abstract syntax is defined using a meta-model.

Figure 2 presents the meta-model for the abstract syntax of the Logo lan-

guage. The Logo meta-model includes:

— Primitive statements (Forward, Back, Left, Right, PenUp and PenDown).

These statement allows moving and turning the Logo turtle and controlling
its pen.

— Arithmetic Expressions (Constant, BinaryExzp and its sub-classes). In our

version of Logo, constants are integers and all operators only deal with in-
tegers.

— Procedures (ProcDeclaration, ProcCall, Parameter and ParameterCall) al-

low defining and calling functions with parameters (note that recursion is
supported in Logo).

— Control Structures (Block, If, Repeat and While). Classical sequence, condi-

1

tional and loops for an imperative language.

A complete history of the Logo language and many code samples can be found on

wikipedia (http://en.wikipedia.org/wiki/Logo_(programming language))

Jajawieled

Jebaul: en[eAlabaul

JUBISU0D &

Nleistaweie] &

T oMo ®_ _gﬂ s|enbd g

buuis ; SwWeu &
T9Pouiele] &)

ﬁ F] I

ﬁgﬁ

e

i
Aol

¥oyq

OIS |10

Jedesie

SINPNIISIOAU0) &)

N o

sbie

bus : oWIeU o

Peae]
i

10 @bue

uone1eaqI0ld 6

_.—D._Mm.m,-zkm_ [5)

=

T sda1s \ q:D\w_c:&

_ uonpuod _”..o

T sdajs

TS

+'0 ——
JUBWaILIS &

BUENIENSTH

Logo Abstract Syntax.

2

Fig.

In practice the Logo meta-model can be defined within the Eclipse Model-
ing Framework (EMF). EMF is a meta-modeling environment built on top of
the Eclipse platform and based on the Essential- MOF standard. Within Eclipse
several graphical editors can be used to define such meta-models. Once the meta-
model is defined, the EMF automatically provides editors and serialization capa-
bilities for the meta-model. The editor allows creating instances of the classes of
the meta-model and saving these instances models in the XMI standard format.

As soon as the meta-model of Fig. 2 has been defined, it is possible to in-
stantiate it using the generated editor in order to write Logo programs. Figure 3
presents a screen-shot of the generated editor with the square program presented
previously. The program was defined in the tree editor and the right part of the
figure shows how the logo program was serialized.

<?xml version="1.0" encoding="ASCIT"?>

Block xmi:version="2.0" xmlns:xmi="

ements xsi:type="ASM:ProcDeclarat
name="s1ze" />

= 4 Block

~ < Proc Declaration square

< Parameter size

+ 4 Block ents xs1:type="ASM:Repeat":
1tion xs1:type="ASM:Constar

~ < Repeat & L
<4 Constant 4 = ts xs1:type="ASM:Fore

xsl:type="ASM:Paramet
mentss
xs1:type="ASM:Righ
Le xs1:type="ASM: Constar
ments>

= 4 Block

= <4 Forward

4 Parameter Call
~ < Right

4 Constant 90

% Clear <

4 Pen Down
~ 4 Proc Call
4 Constant 50
<+ Pen Up

Fig. 3. Logo square program in the generated editor and serialized in XMI.

Xsi:type="ASM:Clear" />

%s1:type="ASM: PenDown" /=

s1:type="ASM:ProcCall" de
x51:type="ASM: Constant"

3.2 Weaving static semantics

The Object Constraint Language A meta-model can be seen as the def-
inition of the set of allowed configurations for a set of objects representing a
domain. All structures are represented as classes, relations and structural prop-
erties. In MDLE, a meta-model defines a set of valid programs. However, some
constraints (formulas to the logician, Boolean expressions to the programmer)
cannot directly be expressed using EMOF. For example there is no easy way
to express that formal parameter names should be unique in a given procedure
declaration, or that in a valid Logo program the number of actual arguments in
a procedure call should be the same as the number of formal arguments in the
declaration. This kind of constraints forms part of what is often called the static
semantics of the language.

In Model-Driven Engineering, the Object Constraint Language (OCL) [20]
is often used to provide a simple first order logic for the expression of the static
semantics of a meta-model. OCL is a declarative language initially developed at
IBM for describing constraints on UML models. It is a simple text language that
provides constraints and object query expressions on any Meta-Object Facility
model or meta-model that cannot easily be expressed by diagrammatic notation.
OCL language statements are constructed using the following elements:

1. a context that defines the limited situation in which the statement is valid

2. a property that represents some characteristics of the context (e.g., if the
context is a class, a property might be an attribute)

3. an operation (e.g., arithmetic, set-oriented) that manipulates or qualifies a
property, and

4. keywords (e.g., if, then, else, and, or, not, implies) that are used to specify
conditional expressions.

Expressing the Logo Static Semantics in OCL The Logo meta-model
defined on figure 2 only defines the structure of a Logo program. To define the
sub-set of programs which are valid with respect to Logo semantics a set of
constraints has to be attached to the abstract syntax. Figure 4 presents the
OCL listing of two constraints attached to the Logo meta-model. The first one
is an invariant for class ProcCall that ensures that any call to a procedure has
the same number of actual arguments as the number of formal arguments in the
procedure declaration. The second invariant is attached to class ProcDeclaration
and ensures that the names of the formal parameters of the procedure are unique.

Weaving the Logo Static Semantics into its Meta-Model In the Ker-
meta environment, the OCL constraints are woven directly into the meta-model
and can be checked for any model which conforms to the Logo meta-model. In
practice, once the designer has created a meta-model with the E-core formalism
in the Eclipse Modeling Framework (called e.g. ASMLogo . ecore), she can import
it into Kermeta (see line 2 in Figure 5) using the require instruction as described
in Section 2. Suppose now that the Logo static semantics (of Fig. 4) is located

1 package kmLogo::ASM

2

3 context ProcCall

4 inv same_number_of_formals_and_actuals

5 actualArgs ->size () = declaration.args->size ()

6

7 context ProcDeclaration

8 inv unique_names_for_formal_arguments

9 args ->forAll (al, a2 | al.name = a2.name implies al =
a2)

10

11 endpackage

Fig. 4. OCL constraint on the Logo meta-model

in a file called StaticSemantics.ocl. Then the same require instruction can be
used in Kermeta to import the Logo static semantics and weave it into the Logo
meta-model (see line 3 in Figure 5).

package kmLogo;
require "ASMLogo.ecore"
require "StaticSemantics.ocl"
[...]
class Main {
operation Main(): Void is do
// Load a Logo program and check constraints on it
// then run <t
end
end

—_
O © 00O U kW~

Fig. 5. Weaving Static Semantics into the Logo Meta-Model

The integration of OCL into Kermeta relies onto two features:

— First, as presented in Section 3, Kermeta already supports a native constraint
system made of invariants, pre and post conditions which makes it possible
to work within a Design-by-Contracts methodology.

— Secondly, the support for the OCL concrete syntax is implemented with
a model transformation from the AST of OCL to the AST of Kermeta.
This transformation has been written in Kermeta. The result model of this
transformation is automatically associated to the meta-model implicated,
using the built-in static introduction of Kermeta.

Kermeta allows the user to choose when his constraints should be checked.
That can be done class by class or at the entire model level with primitive
checkInvariant on class or checkAllInvariants on the root element of the meta-
model. The operation constraints (pre, post) are optionally checked depending
on the type of "Run" chosen from the Eclipse menu: normal run or run with
constraint checking.

So, at this stage the meta-model allows defining Logo programs with a model
editor provided by the EMF and this model can be validated with respect to Logo
static semantics within the Kermeta environment. For instance if we modify the
Logo program of Fig. 1 by calling square(50,10) instead of square(50), and if
we load it into Kermeta, then by calling checkAllInvariants we get the expected
error message that

Invariant same_number_of_formals_and_actuals
has been violated for: square(50,10)

One point of interest is that this implementation extends the expressiveness
of OCL. OCL already offers the possibility to call operations or derived prop-
erties declared in the meta-model. Kermeta allows the designer to specify the
operational semantic of these methods or these properties. Then, using the OCL
implementation in Kermeta, it is possible to express any expression based on
the first-order logic and extend it with the imperative operations provided by
Kermeta. Designer must of course still guarantee that these operations are free
from side-effects on the abstract state of the models.

3.3 Weaving dynamic semantics to get an interpreter

The next step in the construction of a Logo environment, is to define Logo op-
erational semantics and to build an interpreter. In our approach this is done in
two steps. The first one is to define the runtime model to support the execution
of Logo programs, i.e. the Logo virtual machine. The second one is to define a
mapping between the abstract syntax of Logo and this virtual machine. This
is going to be implemented as a set of eval functions woven into the relevant
constructs of the Logo meta-model.

Logo runtime model As discussed earlier, the most popular runtime model
for Logo is a turtle which can draw segments with a pen. As for the language
abstract syntax, the structure of the runtime model can be defined by a meta-
model. The advantage of this approach is that the state of the running program
is then also a model. Like for any model, all the tools available in a framework
like EMF can then readily be used in order to observe, serialize, load or edit the
state of the runtime.

Figure 6 presents a diagram of the Logo virtual machine meta-model. The
meta-model only defines three classes: Turtle, Point and Segment. The state
of the running program is modeled as a single instance of class Turtle which
has a position (which is a Point), a heading (which is given in degrees) and

0.* E point
‘ . =y Integer[0..1]
points g . Integer[0..1]
H1urtle 0.1 =
i getDelta(inteqer, Integer) ; Point

= penUp : Boolean[0..1] -
: i & tostring() : String
= heading : Integer[0..1] position

i scale(integer, Real) : Integer
k= rotate(integer)
i forward(Integer)

-

origin 1 | destination

= reset() 0.* B segment
i setPenUp(Boolean) - : - -
B avalinteger: Integan drawings [= make(Point, Point)

Fig. 6. Logo runtime meta-model.

a Boolean to represent whether the pen is up or down. The Turtle stores the
segments which were drawn during the execution of the program. In practice the
meta-model was defined without operation using EMF tools. The operations,
implemented in Kermeta, have been later woven into the meta-model to provide
an object-oriented definition of the Logo virtual machine. Figure 7 presents an
excerpt of the Kermeta listing. It adds three operations to the class Turtle of
the meta-model.

Operational semantics We are now going to define the operational semantics
for each constructs of the abstract syntax. The idea is again to weave operations
implemented in Kermeta directly into the meta-model in such a way that each
type of statement would contain an eval operation performing the appropriate
actions on the underlying runtime model. To do that, a context is provided as a
parameter of the eval operation. This context contains an instance of the Turtle
class of the runtime meta-model and a stack to handle procedure calls. Figure 8
presents how the operation eval are woven into the abstract syntax of Logo. An
abstract operation eval is defined on class Statement and implemented in every
sub-class to handle the execution of all constructions.

For simple cases such as the PenDown instruction, the mapping to the vir-
tual machine is straightforward: it only boils down to calling the relevant VM
instruction, i.e. context.turtle.setPenUp(false) (see line 36 of Fig. 8).

For more complex cases such as the Plus instruction, there are two possible
choices. The first one, illustrated on lines 9-13 of Fig. 8, makes the assumption
that the semantics of the Logo Plus can be directly mapped to the semantics
of “+” in Kermeta. The interest of this first solution is that it provides a quick
and straightforward way of defining the semantics of that kind of operators. If
however the semantics we want for the Logo Plus is not the one that is built-in
Kermeta for whatever reason (e.g. we want it to handle 8-bits integers only),
we can define the wanted Plus operation semantics in the Logo Virtual Machine
(still using Kermeta of course) and change the eval method of lines 9-13 so that
it first calls eval on the left hand side, push the result on the VM stack, then

1 package kmLogo;

2

3 require "VMLogo.ecore"

4 [...]

5 package VM {

6 aspect class Turtle {

7 operation setPenUp(b : Boolean) is do

8 penUp := b

9 end

10 operation rotate(angle : Integer) is do

11 heading := (heading + angle) .mod (360)

12 end

13 operation forward(steps : Integer) is do

14 var radian : Real init math.toRadians (heading.
toReal)

15 move (scale(steps ,math.sin(radian)), scale(steps,
math.cos(radian)))

16 end

17 [...1

18 }

19 }

Fig. 7. Runtime model operations in Kermeta

calls eval on the right hand side, again push the result on the VM stack, and
finally call the Plus operation on the VM.

Getting an Interpreter Once the operational semantics for Logo has been
defined as described above, getting an interpreter is pretty straightforward: we
first have to import each relevant aspect to be woven into the Logo meta-model
(using require instructions, see lines 2-5 in Fig. 9). We then need to load the
Logo program into Kermeta (see lines 9-12 in Fig. 9), instantiate a Context
(that contains the Logo VM) and then call eval(Context) on the root element of
the Logo program.

Loading the Square program of Fig. 1 and executing it this way will change
the state of the model of the Logo VM: during the execution, four new Segments
will be added to the Turtle, and its position and heading will change. Obviously,
we would like to see this execution graphically on the screen. The solution is
quite easy: we just need to put an Observer on the Logo VM to graphically
display the resulting figure in a Java widget. The Observer is implemented in
Kermeta and calls relevant Java methods to notify the screen that something
has changed.

N OOtk W N

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 %

package kmLogo;

require "ASMLogo.ecore"
require "LogoVMSemantics.kmt"
Lo
package ASM {

-]

aspect class Statement {

operation eval (context : Context) : Integer is
abstract
}
aspect class Plus {
method eval (context : Context) : Integer is do
result := lhs.eval(context) + rhs.eval(context)
end
}
aspect class Greater {
method eval (context : Context) : Integer is do
result := if lhs.eval(context) > rhs.eval (context)
then 1 else 0 end
end
}
aspect class If {
method eval (context : Context) : Integer is do
if condition.eval(context) != 0 then
result := thenPart.eval (context)
else
result := elsePart.eval(context)
end
end
}
aspect class Forward {
method eval (context : Context) : Integer is do
context.turtle.forward(steps.eval (context))
result := void
end
}
aspect class PenDown {
method eval (context : Context) : Integer is do
context.turtle.setPenUp (false)
result := void
end
}
[...]

Fig. 8. Logo operational semantics

1 package kmLogo;

2 require "ASMLogo.ecore"

3 require "StaticSemantics.ocl"

4 require "LogoVMSemantics.kmt"

5 require "OperationalSemantics.kmt"

6 [...]

7 class Main {

8 operation Main(): Void is do

9 var rep : EMFRepository init EMFRepository.new

10 var logoProgram : ASMLogo::Block

11 // load logoProgram from its XNI file

12 logoProgram 7= rep.getResource ("Square.xmi") .one

13 // Create a mew Context containing the Logo VN

14 var context : LogoVMSemantics::Context init
LogoVMSemantics::Context.new

15 // mow execute the logoProgram

16 logoProgram.eval (context)

17 end

18 end

Fig. 9. Getting an Interpreter

3.4 Compilation as a kind of Model Transformation

In this section we are going to outline how to build a compiler for our Logo
language. The idea is to map a Logo program to the API offered by the Lego
Mindstroms so that our Logo programs can actually be used to drive small robots
mimicking Logo turtles. These Robot- Turtles are built with Lego Mindstroms and
feature two motors for controlling wheels and a third one for controlling a pen
(see Fig. 10).

A simple programming language for Lego Mindstroms is NXC (standing for
Not eXactly C). So building a Logo compiler for Lego Mindstroms boils down
to write a translator from Logo to NXC. The problem is thus much related
to the Model Driven Architecture (MDA) context as promoted by the OMG,
where a Logo program would play the role of a Platform Independent Model
(PIM) while the NXC program would play the role of a Platform Specific Model
(PSM). With this interpretation, the compilation we need is simply a kind of
model transformation.

We can implement this model transformation either using Model-to-Model
Transformations or Model-to-Text Transformations:

Model-to-Text Transformations are very useful for generating code, XML,
HTML, or other documentation in a straightforward way, when the only
thing that is needed is actually a syntactic level transcoding (e.g. Pretty-
Printing). Then we can resort on either:

4 :

- (2
[y

Fig. 10. A Lego mindstorm robot-turtles.

— Visitor-Based Approaches, where some visitor mechanisms are used to
traverse the internal representation of a model and directly write code
to a text stream.

— Template-Based Approaches, based on the target text containing slices
of meta-code to access information from the source and to perform text
selection and iterative expansion. The structure of a template resembles
closely the text to be generated. Textual templates are independent of
the target language and simplify the generation of any textual artifacts.

Model-to-Model Transformations would be used to handle more complex,
semantic driven transformations.

For example if complex, multi-pass transformations would have been needed
to translate Logo to NXC, it could have been interesting to have an explicit
meta-model of NXC, properly implement the transformation between the Logo
meta-model and the NXC one, and finally call a pretty-printer to output the
NXC source code.

In our case however the translation is quite simple, so we can for example
directly implement a visitor-based approach. In practice, we are once again going
to use the aspect weaving mechanism of Kermeta simplify the introduction of
the Visitor pattern. Instead of using the pair of methods accept and wisit, where
each accept method located in classes of the Logo meta-model would call back
the relevant visit method of the visitor, we can directly weave a compile() method
into each of these Logo meta-model classes (see Fig. 11).

Integrating this compilation aspect into our development environment for

Logo is done as usual, i.e. by requiring it into the main Kermeta program (see
Fig. 12).

O~ O T W

e el e e e
00~ O Ui WNEFEO©

0~ O O W N

— = =
N = O ©

13
14
15
16
17

package

require
[...]
package

kmLogo;
"ASMLogo .ecore"

ASMLogo {

aspect class PenUp {
compile (ctx: Context) {

[..
}
}

-]

aspect class Clear {
compile (ctx: Context) {

oo

package
require
require
require

[...]

-]

Fig.11. The Logo Compilation Aspect in Kermeta

kmLogo ;

"ASMLogo .ecore"
"StaticSemantics.ocl"
"Compiler.kmt"

class Main {
operation Main(): Void is do

var
var

rep : EMFRepository init EMFRepository.new
logoProgram : ASMLogo::Block

// load logoProgram from its XNI file

logoProgram 7= rep.getResource ("Square.xmi").one

// Create a new Context for storing global data
during the compilation

var context : Context init Context.new

// mow compile the logoProgram to NXC

logoProgram.compile (context)

end
end

Fig. 12. Getting a Compiler

3.5 Model to Model Transformation

For the Logo compiler described above to work properly, we have to assume
though that all Logo function declarations are performed at the outermost block
level, because NXC does not support nested function declarations. Since nothing
in our Logo meta-model prevents the Logo user to declare nested functions, we
need to either add an OCL constraint to the Well-Formedness Rules of the
language, or we need to do some pre-processing before the actual compilation
step. For the sake of illustrating Kermeta capabilities with respect to Model to
Model Transformations, we are going to choose the later solution.

We thus need a new aspect in our development environment, that we call
the local-to-global aspect (See Listing 13) by reference to an example taken from
the TXL [5] tutorial. We are using a very simple OO design that declares an
empty method local2global (taking as parameter the root block of a given Logo
program) in the topmost class of the Logo meta-model hierarchy, Statement. We
are then going to redefine it in relevant meta-model classes, such as ProcDec-
laration where we have to move the current declaration to the root block and
recursively call local2global on its block (containing the function body). Then in
the class Block, the local2global method only has to iterate through each instruc-
tion and recursively call itself.

1 package kmLogo;

2

3 require "ASMLogo.ecore"

4 [...]

5 package ASMLogo {

6 aspect class Statement

7 method local2global(rootBlock: Block) is do
8 end

9 end

10 aspect class ProcDeclaration

11 method local2global (rootBlock: Block) is do
12 rootBlock.add (self)

13 block.local2global (rootBlock)

14 end

15 end

16 aspect class Block

17 method local2global (rootBlock: Block) is do
18 statements.each(il i.local2global (rootBlock))
19 end

20 end

21 %}

Fig. 13. The Logo local-to-global Aspect in Kermeta

Note that if we also allow ProcDeclaration inside control structure such as
Repeat or If, we would also need to add a local2global method in these classes to
visit their block (thenPart and elsePart in the case of the If statement).

Once again this local2global concern is implemented in a modular way in Ker-
meta, and can easily be added or removed from the Logo programming environ-
ment without any impact on the rest of the software. Further, new instructions
could be added to Logo (i.e. by extending its meta-model with new classes) with-
out much impact on the local2global concern as long as these instructions do not
contain any block structure. This loose coupling is a good illustration of Ker-
meta advanced modularity features, allowing both easier parallel development
and maintenance of a DSML environment.

4 Discussion

4.1 Separation of Concerns for language engineering

From an architectural point of view, Kermeta allows the language designer to
keep his concerns separated. Designers of meta-models will typically work with
several artifacts: the structure is expressed in the Ecore meta-model, the opera-
tional semantics is defined in a Kermeta resource, and finally the static semantics
is brought in an OCL file. Consequently, as illustrated in Figure 9, a designer can
create a meta-model defined with the Ecore formalism of the Eclipse Modeling
Framework. He can define the static semantics with OCL constraints. Finally
with Kermeta, he can define the operational semantics as well as some useful de-
rived features of the meta-models that are called in the OCL specifications. The
weaving of all those model fragments is performed automatically in Kermeta,
using the require instruction as a concrete syntax for this static introduction.
Consequently, in the context of the class Main, the meta-model contains the
data-structure, the static semantics and the operational semantics.

4.2 Concrete Syntax issues

Meta-Modeling is a natural approach in the field of language engineering for
defining abstract syntaxes. Defining concrete and graphical syntaxes with meta-
models is still a challenge. Concrete syntaxes are traditionally expressed with
rules, conforming to EBNF-like grammars, which can be processed by compiler
compilers to generate parsers. Unfortunately, these generated parsers produce
concrete syntax trees, leaving a gap with the abstract syntax defined by meta-
models, and further ad hoc hand-coding is required. We have proposed in [15] a
new kind of specification for concrete syntaxes, which takes advantage of meta-
models to generate fully operational tools (such as parsers or text generators).
The principle is to map abstract syntaxes to concrete syntaxes via bidirectional
mapping-models with support for both model-to-text, and text-to-model trans-
formations. Other tools emerge for solving this issue of defining the concrete
syntax from a mapping with the abstract syntax like the new Textual Modeling

Framework?. To get usable graphical editors for your domain specific language
(DSL), several projects provides a generative approach to create component and
runtime infrastructure for building graphical editors as GMF or TopCaseD. We
have used Sintaks and TopCaseD to respectively build the Logo concrete syntax,
the Logo graphical syntax and their associated editors.

4.3 Evolution issues

Thanks to the separation of concerns, constraints and behavior aspects are inde-
pendent and may be designed in separate resources. Then they can be developed
and modified separately. The only consideration during their implementation is
that they depend on the structure defined in the Ecore meta-model. Modifi-
cation to this structure can have consequences that have to be considered in
the behavior aspects and in the constraints (if a method signature is changed
for example). Here, Kermeta’s type system is useful as a way of detecting such
incompatible changes at compile time.

5 Related works

There is a long tradition of basing language tools on grammar formalisms, for
example higher order attribute grammars [25]. JastAdd [8] is an example of
combining this tradition with object-orientation and simple aspect-orientation
(static introductions) to get better modularity mecanisms. With a similar sup-
port for object-orientation and static introductions, Kermeta can then be seen
as a symetric of JastAdd in the DSML world.

Kermeta cannot really be compared to source transformation systems and
languages such as DMS [1], Rascal [12], Stratego [2], or TXL [5] that provide
powerful general purpose set of capabilities for addressing a wide range of soft-
ware analysis problems. Kermeta indeed concentrates on one given aspect of
DSML design: adding executability to their meta-models in such a way that any
other tool can still be used for advanced analysis or transformation purposes.
Still, as illustrated in this paper, Kermeta can also be used to program simple, al-
gorithmic and object-oriented transformations for DSML (e.g.; the local-to-global
transformation.

In the world of Modeling, Model Integrated Computing (MIC) [23] is prob-
ably the most well known environment centered on the development of DSML.
The MIC comprises the following steps:

— Design a Domain Specific Modeling Language (DSML): this step allows en-
gineers to create a language that is tailored to the specific needs of the appli-
cation domain. One has also to create the tools that can interpret instances
of this language (i.e. models of the application),

— this language is then used to construct domain models of the application,

% http://www.eclipse.org/modeling /tmf/

— the transformation tool interprets domain models to build executable models
for a specific target platform,

This approach is currently supported by a modeling environment including a
tool for designing DSMLs (GME) [6] and a model transformation engine based on
graph transformations (GREAT). MIC is a standalone environment for Windows
of a great power but also of a great complexity. Kermeta brings in a much more
lightweight approach, leveraging the rich ecosystem of Eclipse, and providing the
user with advanced composition mechanisms based on the notion of aspect to
modularly build his DSML environment within Eclipse.

Another approach builds on the same idea: multi-paradigm modeling. It con-
sists in integrating different modeling languages in order to provide an accurate
description of complex systems and simulate them. The approach is supported
by the ATOMS3 graph transformation engine [24].

Microsoft Software Factories [9] propose the factory metaphor in which de-
velopment can be industrialized by using a well organized chain of software
development tools enabling the creation of products by adapting and assem-
bling standardized parts. A software factory may use a combination of DSMLs
to model systems at various levels of abstraction and provide transformation
between them. A software factory schema is a directed graph where the nodes
are representing particular aspects (called viewpoints) of the system to be mod-
eled and edges represent transformations between them. In particular, view-
points provide the definition of the DSMLs to be used to create model of the
viewpoints, development processes supporting model creation, model refactoring
patterns, constraints imposed by other viewpoints (that help ensuring consis-
tency between viewpoints) and finally any artifact assisting the developer in the
implementation of models based on viewpoints. Transformations between view-
points are supported mostly in an hybrid or imperative way through templates,
recipes and wizards that are integrated as extensions to Visual Studio. Compared
to Software Factories, Kermeta provides an integration platform that makes it
much easier to develop independantly and later combine the various aspects of
a development environment for a given DSML. Further Kermeta follows OMG
standards (MOF, OCL, etc.) and is smootly integrated in the Eclipse platform,
that provides an alternative open source IDE to Visual Studio and Software
Factories.

In the Eclipse environment, several languages have been developed on top
of OCL for model navigation and modification. For instance the Epsilon Object
Language (EOL) [13] is a meta-model independent language that can be used
both as a standalone generic model management language or as infrastructure
on which task-specific languages can be built. The EOL is not object-oriented (in
the sense that it does not define classes itself), even if it is able to manage objects
of types defined externally in EMF meta-models in the spirit of JavaScript. In
contrast to the EOL, Kermeta is an object-oriented (and aspect-oriented) exten-
sion to the EMF, providing full static typing accross the languages it integrates:
E-Core, OCL and Kermeta.

6 Conclusion

This article presented the Kermeta platform for building Eclipse based, inte-
grated environments for DSML. Based on an aspect oriented paradigm [16,10]
Kermeta has been designed to easily extend meta-models with many different
concerns, each expressed in its most appropriate language: MOF for abstract
syntax, OCL for static semantics, Kermeta itself for dynamic semantics and
model transformations [17], Java for simulation GUI, etc.

Technically, since Kermeta is an extension of MOF, a MOF meta-model can
be seen as a valid Kermeta program that just declares packages, classes and
so on but does nothing. Kermeta can then be used to breath life into this meta-
model, i.e. transform it into a full blown development environment by introducing
nicely modularized aspects for handling concerns of static semantics, dynamic
semantics, or model transformations, each coming with Eclipse editor support.

Kermeta is already used in many real life projects: more details are available
on www.kermeta.org.

References

1. Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. Dms. In ICSE, pages
625—634, 2004.

2. Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strat-
ego/xt 0.17. a language and toolset for program transformation. Sci. Comput.
Program., 72(1-2):52-70, 2008.

3. Franck Chauvel and Jean-Marc Jézéquel. Code generation from UML models with
semantic variation points. In S. Kent L. Briand, editor, Proceedings of MODEL-
S/UML’2005, volume 3713 of LNCS, pages —, Montego Bay, Jamaica, octobre 2005.
Springer.

4. Curtis Clifton and Gary T. Leavens. Multijava: Modular open classes and symmet-
ric multiple dispatch for java. In In OOPSLA 2000 Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 130-145, 2000.

5. James R. Cordy. The txl source transformation language. Sci. Comput. Program.,
61(3):190-210, 2006.

6. James Davis. Gme: the generic modeling environment. In OOPSLA ’03: Compan-
ion of the 18th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 82—-83, New York, NY, USA,
2003. ACM Press.

7. Zoé Drey, Cyril Faucher, Franck Fleurey, and Didier Vojtisek. Kermeta language
reference manual, 2006.

8. Torbjérn Ekman and Gorel Hedin. The jastadd system - modular extensible com-
piler construction. Seci. Comput. Program., 69(1-3):14-26, 2007.

9. Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley,
August 2004.

10. Jean-Marc Jézéquel. Model driven design and aspect weaving. Journal of Software
and Systems Modeling (SoSyM), 7(2):209-218, may 2008.

11. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina V.
Lopes, Jean M. Loingtier, and John Irwin. Aspect-oriented programming. In
ECOOP, pages 220242, 1997.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Paul Klint, Jurgen J. Vinju, and Tijs van der Storm. Language design for meta-
programming in the software composition domain. In Software Composition, pages
1-4, 2009.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The epsilon object
language (eol). In ECMDA-FA, pages 128-142, 2006.

P.-A. Muller. From MDD Concepts to Ezperiments and Illustrations, chapter On
Metamodels and Language Engineering. ISTE, ISBN 1905209592, 2006.
Pierre-Alain Muller, Franck Fleurey, Frédéric Fondement, Michel Hassenforder,
Rémi Schneckenburger, Sébastien Gérard, and Jean-Marc Jézéquel. Model-driven
analysis and synthesis of concrete syntax. In Proceedings of the MoDELS/UML
2006, Genova, Italy, octobre 2006.

Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executabil-
ity into object-oriented meta-languages. In S. Kent L. Briand, editor, Proceedings
of MODELS/UML’2005, volume 3713 of LNCS, pages 264—-278, Montego Bay, Ja-
maica, octobre 2005. Springer.

Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pollet,
Frédéric Fondement, Philippe Studer, and Jean-Marc Jézéquel. On executable
meta-languages applied to model transformations. In Model Transformations In
Practice Workshop, Montego Bay, Jamaica, octobre 2005.

Object Management Group (OMG). Meta Object Facility (MOF) specification.
OMG Document ad/97-08-14, septembre 1997.

Simon Pickin, Claude Jard, Thierry Jéron, Jean-Marc Jézéquel, and Yves Le Traon.
Test synthesis from UML models of distributed software. IEEE Transactions on
Software Engineering, 33(4):252-268, avril 2007.

Mark Richters and Martin Gogolla. OCL: Syntax, semantics, and tools. In Tony
Clark and Jos Warmer, editors, Object Modeling with the OCL: The Rationale
behind the Object Constraint Language, pages 42—-68. Springer, 2002.

Sébastien Saudrais, Olivier Barais, and Noél Plouzeau. Integration of time is-
sues into component-based applications. In The 10th International ACM SIG-
SOFT Symposium on Component-Based Software Engineering (CBSE’07), Med-
ford (Boston area), Massachusetts, USA, juillet 2007. Springer Lecture Notes in
Computer Science (LNCS).

Jim Steel and Jean-Marc Jézéquel. On model typing. Journal of Software and
Systems Modeling (SoSyM), 6(4):401-414, décembre 2007.

Janos Sztipanovits and Gabor Karsai. Model-integrated computing. IEEE Com-
puter, 30(4):110-111, 1997.

Hans Vangheluwe, Ximeng Sun, and Eric Bodden. Domain-specific modelling with
atom3. In ICSOFT 2007, Proceedings of the Second International Conference on
Software and Data Technologies, Volume PL/DPS/KE/MUSE, Barcelona, Spain,
July 22-25, 2007, pages 298-304, 2007.

Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. Higher-order attribute
grammars. In PLDI, pages 131-145, 1989.

Tewfik Ziadi, LoAfc Hélouét, and Jean-Marc Jézéquel. Towards a UML profile
for software product lines. In Proceedings of the Fifth International Workshop
on Product Familly Engineering (PFE-5), volume 3014 of LNCS, pages 129-139.
Springer Verlag, 2003.

