N

N

Achieving Process modeling and Execution through the
Combination of Aspect and Model-Driven Engineering
Approaches

Reda Bendraou, Jean-Marc Jézéquel, Franck Fleurey

» To cite this version:

Reda Bendraou, Jean-Marc Jézéquel, Franck Fleurey. Achieving Process modeling and Execution
through the Combination of Aspect and Model-Driven Engineering Approaches. Journal of Software:
Evolution and Process, 2012, 24 (7), pp.765-781. 10.1002/smr.494 . inria-00538462

HAL 1d: inria-00538462
https://inria.hal.science/inria-00538462

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00538462
https://hal.archives-ouvertes.fr

Achieving Process modeling and Execution through the
Combination of Aspect and Model-Driven Engineering
Approaches

Reda Bendrady Jean-Marc Jezéqiiéland Franck Fleuréy

aUniversity Pierre & Marie Curie
4, Place Jussieu, Paris F-75005, France
{firstname.lastname @lip6 Jfr
b INRIA-Rennes Bretagne Atlantique, Campus de Beaulieu
F-35042 Rennes Cedex, France
{firstname.lastname @inria}fr
¢ IRISA, Université Rennes 1
Campus de Beaulieu
F-35042 Rennes Cedex, France
4 SINTEF, Oslo Franck.Fleurey@Sintef.no

Abstract. One major advantage of executable software praveskels is that
once defined, they can be simulated, checked aliahted in short incremental
and iterative cycles. This also makes them a paweasset for important
process improvement decisions such as resourcecatiin, deadlock
identification and process management. In this pape propose a framework
that combines Aspect and Model-Driven Engineeripgraaches in order to
ensure process modeling, simulation and execufibis framework is based
upon UML4SPM, a UML2.0-based language for Softwrecess Modeling
and Kermeta, an executable metaprogramming language

Keywords: Executable models, process modeling and executibth,.

1 Introduction

Complementary to the use of traditional Verificatiand Validation
(V&V) based approaches, it has been widely recaghthat the quality
of the software development process also has a&tdirgact on the
quality of the software. By capturing team’s bestagtices, task
ordering, flows of artifacts, agent coordinationdacommunications,
process models become nowadays an important aeseingure
repeatability and quality in building software.

1 This work is partially supported by the French ANMRoject Galaxy (ref. ANR-09-SEGI-005) and the MQN-I
project from the Competitiveness Cluster of Brijtan

Recently, driven by the pressure for more accuegelts and shorter
time-to-market, a demand for executable processemodmerged.
Executable process models are process models @dhabe used not
only for documenting processes and methods butfaidhe support of
their execution. Indeed, executable process modafs be used to
coordinate between agents, to enforce artefactsingpubetween
process’s steps, to ensure rules and constraitegrity and process
deadlines. They can also be of an effective aidesthey can be used
for simulation and testing. Simulation results b&nused as a basis for
important improvement decisions such as resoufoeation, deadlock
identification, estimation of the project duratiand many other aspects
that have a direct impact on the process and thuke quality of the
delivered software.

During the last two decades, the need for execait&uftware
Process Modeling Languages (SPML) has been widetpgnized.
Osterweil opened the way with his seminal wt8oftware Processes
are Software Too"(Osterweil 1987). He introduced the notion of
Process Programming which consisted in representing software
processes in terms of computer-readable prograrhse. main goal
behind this was to ensure agent coordination aedatitomation of
process's repetitive and non-interactive tasksutjinathe execution of
process programsThe process programming trend stimulated many
research works and had as an impact, the emergéracenultitude of
SPMLs. These SPMLs were based on some well-knowgr@amming
languages (e.g., Ada, LISP) or formal formalismshsas Petri Nets
and put a strong emphasis on the executabilitychspe

One of the lessons learned from these first-gelo@rddnguages is
that comprehensibility and communication of protesgents around
process models is at least as important as thgredeof formality
(Fuggetta 2000). The use of low-level formalisms dmyme process
description languages, the lack of flexibility atiee impossibility for
non-programmers to use them, were among the maisesaof their
limited adoption.

Another fact that became manifest to the softwaoegss modeling
community was the critical need of having a staddarmalism for
representing and exchanging software processdsabhsf reinventing
the wheel, many industrial and research teams wa#racted by the
success of UML (Unified Modeling Language) and exet the
possibility of using it as a process modeling laaggi (Chou and Chen

2000) (Di Nitto et al. 2002) (OMG SPEM1.0 2002) gfkch and Rib
1998). UML is standard, provides a rich set of tiotes and diagrams,
extension mechanisms and whatever its advantagedrawbacks, it is
undeniably one of the most adopted modeling langsiad this decade.
Experiences with UML were not restricted to thetwafe process
community but covered other areas such as the égasprocess and the
workflow domains (OMG WFMS 2000). However, thesganences
faced in their turn a major barrier. Despite th@regsiveness of the
language, UML models are not executable. Procestelsiavere used
as contemplative rather than productive assetsexXample of such
propositions in the industry is the OMG's SPEM dtad (Software
Process Engineering Metamodel) (OMG SPEM1.0 200&hile
execution was out of the scope of the first verstihSPEM (i.e.
SPEML1.1), it has been established as a mandatqureenent in its
second revision (i.e. SPEM2.0). Unfortunately, tleeently adopted
standard still fails in ensuring this requirement.

In this paper we propose to deal with the execlitphssue in the
context of UML-based process modeling languagesthit aim, we
propose a framework and an approach for modelirgd) eecuting
software processes. This framework is based omdledicated language
for software process modeling called UML4SPM (UMaskd
Language for Software Process Modeling) (Bendraoal.2005) and
an execution support. UML4ASPM comes in form of a M(Meta
Object Facility)-compliant metamodel (OMG MOF 2008) notation
and semantics that extend the UML2.0 standard. tRerexecution
support of UML4SPM, the semantics of the metamaslalefined in
terms of operations and instructions in order tonfevhat we call the
Execution ModelThe Execution Models then used as a basis for the
realisation of the execution support. In this paperhave experienced
two approaches for implementing tBecution ModelThe first one
consists of a Java implementation using the Vigiesign pattern. The
second one is based on a metaprogramming langwdige &ermeta
(Muller et al. 2005) and the use of aspect oriemedeling techniques.
We will discuss both process execution approache® advantages
and inconvenient of each one and finally discusssthitability of UML
in general for the definition of executable processdels. In a previous
work (Bendraou et al. 2007), not presented herealae explored the
possibility of transforming UML4SPM process modefdo BPEL

(Business Process Execution Language) (OASIS BRELZRin order
to execute them and we highlighted the limitatiohsuch approach.

It is worth noting that the approach described his tpaper for
building an executable environment for UML4SPM nledg.e. the
Execution Modél can be generalised to any other MOF-instance
language and is not restricted to UML-based langsiag

The paper is organized as follows. Section 2 startsiotivating the
use of UML 2.0 as a process modeling language.ighlights its
strengths in terms of expressiveness but alsoatkmnesses such as the
lack of an execution support and the inabilityld standard to express
some primary elements proper to process modeliagpvErcome these
limitations, an extension to UML is proposed througML4SPM, our
process modeling language. The executability issuaddressed by
introducing the notion of thdxecution Modelin Section 3. Two
realizations of théexecution Modein the context of UML4SPM are
presented in section 4. Section 5 discusses theltgesf these
realisations, gives the advantages and limitatiohseach one and
synthesises the outcome of our experimentationsaté&k work is
addressed in Section 6. Finally, section 7 sketclo@se perspectives
and concludes this work.

2 UML asaBasisfor Software Process Modeling

In UML2.0, Activities have changed radically fromMU1.x. In its
version 2.0, UML goes beyond graphical represematby offering a
high potential for expressing a large variety adqasses (Bendraou et
al. 2005). Thanks téctivity andAction packages, it provides concepts
for expressing proactive and reactive controls,dd@mnal branches,
loops, exception handling as well as a numerousorect with
computational semantics. It also supports a latgeber of Workflow
patterns, a taxonomy of generic, recurring consdradginally devised
to evaluate workflow systems, and more recentlyd usesuccessfully
evaluate process modeling and execution languagegemneral (see
(Dumas et al. 2001), (Van der Aalst et al. 2003) &Wvhite 2004). In
accordance with Jablonski and Bussler's originaassification
(Jablonski and Bussler 1996) , these patterns $iparcontrol-flow,
data and resource perspectives, the two later @etrgps being more
specific to business processes rather than to amdtywrocesses. In

(Wohed et al. 2005), authors evaluated the capaifitiyML2.0 in
modeling twenty control-flow patterns that commondgur in process
models. Examples of such patterns are parallet, spliltiple merge,
deferred choice, etc. UML2.0 succeeded in reprasgrdll of them
except for four patterns, which makes it more esgire than some
business process formalisms (e.g. BPEL: BusinesseBs Execution
Language) (Wohed 2005). Data patterns mainly dedh wdata
visibility, data interaction and data transfer andting. Examples of
such patterns are the multiple instances datarpattee database task
trigger patterns and so on. In (Russel 2005ajstbeen demonstrated
that eighteen of the forty data patterns were stpgoby UML2.0,
which remains quite satisfactory. As for resouradeyns, they address
all the issues about work allocation to processs®urces, the ability
for resources to see the work status, resourcaesasitbn conflicts, work
distribution and so on. According to (Russel 2005@yvever, UML2.0
only satisfies six of the forty-three resource gais$, which reduces its
suitability for modeling the resource perspecti8éll, many of these
perspectives can be addressed at a lower levéleogxecution support.
All these points, added to the fact that UML is &ely used
standard and provides a rich set of notations, mak. a good
candidate as process modeling language. Howevart @ notion of
Activity, it has been demonstrated that UML lacKssome primary
process elements, which constitute the vocabulaggessary for
modeling software processes (OMG SPEM1.0 2002) dBeu et al.
2005). This set of concepts was identified by many iniieg in the
literature and regroups elements such as Role, Woduct, Agent,
Tool, Guidance and Team (Lonchamp 93). In the rsedtion we
propose an extension to UML2.0 in order to prowiae standard with
such concepts. This is done in the context of angliage, UML4ASPM.

UML4SPM

Our extension, namely UML4SPM, aims in first platentroducing
primary process elements to the UML2.0 stand@hds is obtained by
extending the UML2.0 metamodel and more precidbky Activity and
Artifact metaclasses. This extension comes in fawsma MOF-
compliant metamodel (OMG MOF 2006) and is presemtefig. 1.
White boxes represent the UML metaclasses we egtkend

The UML4SPM metamodel aims at defining the minirsabset of
concepts for software process modeling while rgjyom the advanced
constructs and activity coordination mechanismerefi by UML2.0.

By making UML4SPM Software Activity extending theMl2.0
Activity metaclass, we take advantage of all itoparties and
associations. Thus, a Software Activity can be posed of other
Software Activities and may contain Actions. An URID Activity
being indirectly a Classifier, the ability to spgchew properties and
new operations, as well as pre and post condiborthe execution of a
Software Activity is also made possible. The UMLASWorkProduct
element extends UML2.0 Artifact. It represents amysical piece of
information consumed, produced or modified duritg tsoftware
development process. An Artifact being a ClassifféorkProducts can
be defined as InputPins and OutputPins of Softwaravities and
Actions. It is also possible to specify compositer®¥Products thanks
to the reflexive "nested artifact” association (slebwn in the figure).

Artifact

fileName : String
Activity

(from IntermediateActivities)
A\

: P El
[ProcessEiament | +pucesseiemen +hing |ProcessElemen
description : String 1 0.1 |name : Sting
A
T A\
+responsibleRoles ‘ —
- Soft iMtyKind -
ResponsibleRole 0.n WorkProductKind
Ln responsability : String
SoftwareActivity 0.n qualifications : String +performer - -
e = H e ResponsibleRoleKind
isInitial : Boolean = false - rights : String +workPraduct:
executionKind : ActivityExecutionKind | *activties on
priority : priorityKind +Role | 0.n
complexity : complexityKind WorkProduct
duration : String idWorkProduct : String -
+rolePerformer| 1N isDeliverable : Boolean <<enumeration>>
created : String ActivityExecutionKind
lastTimeModified : String machineExecution
+endsAt +guidance uriLocalization : String humanExecution
rstartsAt version : String
o / 0..n/
.1 0.1 1
0..n Tool
TimeLimit - description : String +impacts
milestone : String Guidence isBatch : Boolean .
\ersion : String <<enumeration>> <<enumeration>>
Agent priorityKind complexityKind
skills : String Low S
isAvailable : Boolean Medium Medium
e High Difficult

Fig. 1. UML4SPM Metamodel
Since the aim of this paper is to present the dabdity aspect of
UML4SPM and not the language itself, the interesestler can refer
to (Bendraou et al. 2005) for more details on tletamodel.
We also enriched the UML2.0 activity diagram natas in order to
take into account some new properties and asppetsfis to software
process modeling that we introduced by our extendiois important

to note that this extension do not affect neitheracomprehensibility of
people already familiar with the UML2.0 Activity mstructs nor their
semantics. One that makes use of Activity diagraarseasily use the
UML4SPM notation. This notation is given in fig. Rooking to the

figure, one can identify the activity's name, itgput and output
parameters (and possibly their current state)pritsrity in the process,
its duration, the assigned roles, the tools usedpgrforming the

activity, accepted and triggered events, if it'schiae or human-
oriented, etc. Post and pre conditions can be egpceusing OCL2.0
constraints (Object Constraint Language). Thesstcaints have to be
expressed upon process's constituents (i.e., piepesind states of
WorkProducts, activities, roles, etc.). Of couisés not mandatory that
all these features appear on the activity reprasent

Z'\ D

I;A;:zt::: Ee\/ents} {Triggered Events}

Pre-Condition:

-Kind-
. Activity Name Exception Parameter
{Optional: Priority, Complexity, Duratioh K/

[State]

Post-Condition: Outputs

I nput

Role Performer (s): x Tool (): xx

{ Exception Handler)

L m|

Fig. 2. The UML4SPM Software Activity Notation

Excegtion Type

Process Example

Fig. 3, gives a simple yet representative exampla portion of a
software process modelled using the UML4SPM natafidhis process
example was provided by our industrial partnershwwitthe IST

European Project MODELPLEXWe will use it throughout the paper
to demonstrate our approach.

-M -
‘ Inception Phase \

Pre-Condition: Requirement Documents available

Requirement
documents

L,
o

—» Elaborate Analysis Model
&(in: Requirement Document)

UML Analysis
Model
[Created]

-H-
—» validate Analysis Model / . \
@(‘”: UML AnalysisModel) Elaborate Analysis M odel

Pre-Condition: Work Specifications available

Validation H
Report Requirement* /I-E\lablomeMU’(\jM] UMIMgg::ySls
nalysis Model N
[Created] documents y: (Croated]
[Else] /k [Validation Ok]

A

l l Post-Condition: UML Analysis Model Created
[@ SendMessage][E SendMessage] @Ie(s): Analyst Tool (s): UML Edity
(Rework Analysis Model) (Start Construction Phase)

—™ Construction Phase
@ (in: UML Analysis Model) I

v

®

Post-Condition: UML Analysis Model Validated
Role (s): Analyst

Fig. 3. Software Process Example

The "Inception Phase" activity represents the cdrié this process
(i.e., container for all process's activities). 914 indicated by the start-
blob in the top-left corner. It is used to coordendetween different
process's activities and WorkProducts. The "M'eleis to indicate that
the activity is machine-executable (H for Human cees®n). One
important aspect is the use of CallBehaviorActions order to
initiate/call process's activities (e.g., "Elaber&nalysis Model" call).
In the call, one has to precise 1) whether theisaynchronous (use of
a complete arrow in the top-left corner) or asynadous (half arrow,
e.g., "Construction Phase" call); 2) the parametérthe call, which
represent WorkProducts inputs/outputs of the agtivinother aspect

2 Modelplex, IST European Project contract IST-346ihttp://www.modelplex-ist.org/

is the use of Decision and Merge nodes. The DetiNiade allows for

the expression of a choice of actions to perforrpedding on a
condition (in this case, if the analysis modeladid/ or not). Conditions
have to be expressed on activity edges (i.e., blfjl@es) and will be

evaluated at runtime. The merge node here is usearess that the
"Elaborate Analysis model" activity may be triggetey one of the two
possibilities. The first one is when the "InceptiBhase" activity is
launched. The second one is when the analysis nvatigation fails.

At this level, UML4SPM is used only for modelingrposes. Since
it is UML-based, there is no direct support for@aeng UML models.
Even if UML2.0 provides execution semantics for reaactivity's
constructs and actions, no implementation or Virtoechine is
provided. In the next section, we will see how éaldwith this issue by
introducing what we call thExecution ModelThat latter specifies the
operational semantics of each element of the UMIMSRetamodel
and particularly of the UML2.0 Activity and Actioglements. We will
then present two realizations of tBgecution Modeés the basis of the
UML4SPM’s execution support (cf. section 4). Thening example
described above will be used to explain the apgroac

3 TheExecution Modd

The Execution Modeltends to bring life to elements of the
UML4SPM metamodel. By life, we mean a precise dmetion of the
runtime behaviour of each element of the metamo@kérefore, a
UML4SPM process model once edited can be straighdéia executed
without any additions or intermediate steps. Thiy @ondition is that
the process model is well formed. By well formed mean that the
model should respect the structure and constraiefed in the
metamodel. It also supposes that the process nwdeimplete in the
sense that it specifies a coherent sequence afnactcontrol nodes,
object nodes, etc that allows its execution. F@tance, a software
activity, without an initial node and without agtiyw parameter nodes
can never be started. A process model containinvgrak software
activities with no one with its "isInitial" attritte set to "true" also will
never be launched since we need one and only atial isoftware
activity within the process.

The approach we propose for defining executable etsockquires
two main steps. The first one consists in defiimgExecution Model

which aims at specifying how each element of théamedel should
react at runtime and the set of operations it lmapdrform. In the
context of UML4ASPM for instance, this means to #yehow the
activity starts its execution, how roles are assigto activities, how
WorkProducts are automatically routed between gg®vactions, how
activities react to events, and so on.

The second step is to formalise this execution séps at the
metamodel level. In UML4SPM, the operational sencantwas
implemented using two different approachBse first one consisted in
implementing theexecution Modelsing Java and the Visitor pattern,
the second one by combining a metaprogramming kgeLcalled
Kermeta and aspect modeling techniques.

Execution Model: Rational

The idea of thé&xecution Models inspired from the RFP (Request
For Proposal) issued by the OMG called: Executalt. Foundation
(OMG fUML 2009). The objective of this initiatives ithe definition of
a compact subset of UML 2.0 to be known as “ExddatdJML
Foundation”, along with a full definition of its egution semantics.
Since that the building blocks of UML4SPM are UMQZctivity and
Action packages, we found it interesting to takerastage of this
specification, while focusing on the UML2.0 elensente reused in our
SPML. In UML4SPM, Activity and Action elements aresed for
sequencing the process's flow of work and datagfpressing actions,
events, decisions, concurrency, exceptions, andorso Thus, the
implementation of the execution behavior of thesacepts will be
used as the core of the UML4ASPM engine.

The UML4SPMExecution Modetomes in form of a class diagram;
each class represents the executable semantics OMBASPM
element. An executable class is a class havingt aofseperations
aiming at describing the execution behavior of thML4SPM element
at runtime. If the element is an UML element reubgdJML4ASPM,
then its semantics is implemented according tootiegiven in natural
language by the UML2.0 standard. The implementatbthe UML
Execution Modelvas restricted to Activity and Action elementsttva
reused within UML4SPM, and which respects the UNML& mantics
(see table 1). Fig. 4. gives an example of the aijmsrs and features

required for an Activity Node to execute. In UMLctvity Nodes
regroup Actions, Object Nodes (pins), and Controtd&s metaclasses.
The execution semantics adopted by UML2.0 actwitgequite similar
to Petri Nets one and is based on offering and wairgy tokens
between the different activity's constituents (i&ctivity Nodes and
Activity Edges). This semantics is presented hedeun

Actions Activity Elements
- AcceptEventAction - Activity
- CallBehaviorAction - Activity Edge (ControlFlow, ObjectFlow)
- CallOperationAction - Controle Nodes (DecisionNode FinalNode,
- RaiseExceptionAction | ForkNode, InitiaINode, JoinNode, MergeNode)
- SendSignalAction - ObjectNodes (ActivityParameterNode, Inputpin &
- OpaqueAction Outputpin, DataStoreNode)
- ConditionalNode & LoopNode
- ExceptionHandler

Table 1. UML2.0 activity elements and actions reliseUML4SPM

ActivityNode

Eg name : String
[Eg offering : boolean
E5 terminated : boolean
%ActivityNDdeExecutiDn (actMode, context : ActivityExecution)
&2 hasIncomingEdges () © boolean
&5 receiveOffer ()
&2 isReady () : boolean
3 takeOfferedTokens () : Token
& fire ()
&2 getactivityExecution () @ ActivityExecution
&2 countofferedTolens () @ int
&2 sendOffer ()
&2 addIincomingEdge (edge : ActivityEdgelnstance)
&2 addOutgoingEdge (edge : ActivityEdgelnstance)
2 hasOffer () : boolean
&2, terminate ()
Fig. 4. Specification of thé\ctivityNode'sBehavior

Execution Model: Execution Behavior

In UML2.0, the execution semantics of activitiesbssed on token
flows. By flow, we mean that the execution of océvity node affects,
and is affected by, the execution of other noded,saich dependencies
are represented by edges in the activity diagranok&n contains an
object, datum, or locus of control, and is presenhe activity diagram
at a particular node. Each token is distinct framy ather, even if it
contains the same value as another.

In the UML4SPMExecution Modelwe defined the token class and
we differentiate between two kinds of tokens. Contiokens and
Object tokens. When an action completes its executit creates a
control token and offers it to all its outgoing iaty edges. Object
tokens are exchanged between object nodes (InguOartput Pins of
actions, Data Store Nodes, etc.) and may travere&al nodes. For
instance, when an action completes and if it previdn output, an
object token with a reference to the Output Piretigcreated. In the
context of UML4SPM, an Output Pin can only be typbég
WorkProducts or subclasses of the WorkProduct rasts.c

Activity Nodes (i.e. actions, control nodes, etnd Activity Edges
follow token flow rules as defined by the UML2.Gastlard. Activity
Nodes control when tokens enter or leave them.vAgtEdges have
rules about when a token may be taken from thecsodictivity Node
and moved to the target Activity Node. A token &eses an Activity
Edge when it satisfies the rules for target and@oi\ctivity Nodes,
and the Activity Edge, all at once. This means thatource Activity
Node can only offer tokens to the outgoing Actividgiges, rather than
force them along the Activity Edges, because theerte may be
rejected by the Activity Edges or the target AdtiiNode on the other
side.

Tokens are effectively held by the offering ActwiNode until the
receiving one is ready to take them. As such median Activity Edge
provides the following functionality: checks whethigs source is
offering any token, if the guard on the edge issfiat, send offers of
tokens from its source to its target and take fifered tokens from its
source to its target Activity Node (see figure 5).

Tokens will be consumed by the executing Activityodg
accordingly depending on its type and, eventuadly, a result of
executing the fire() operation, tokens may be peceduand written to
the offeredTokens of the executing Activity Nodehére they will be
held up to its consumption), which also sets ftering attribute to
true (to indicate that it is now making an offendathen concurrently
calls sendOffer() on all its outgoing edges andhseguently, this will
cause each outgoing Activity Edge to call receive@f on its target
Activity Node. Figure 5 synthesizes this generaaaion behavior in
form of a UML sequence diagram.showsall the operations that need
to be executed in order to ensure such interactietween any kinds
of Activity Nodes.

sourceActNode: actEdgelnstance: targetActNode:

ActivityNode ActivityEdge ActivityNode
1
1: sendOffer |
1.1: hasGuard
[‘4—‘ 1.2: hasGuard <<return>>

|: 1.3: evaluateGuard
[a—1 1.4 evauateGuard cqretums>

1

|

|

|

|

IF hasGuard() returns TRUE |
|

|

IF evaluateGuard() returns TRUE |
|

1

1.5: receiveOffer
1.5.1.1: sourceHasOffer 1.5.1: isReady
1.5.1.1.1: hasOffer
«<returnz>
—_—— — — — — — — — ¥ 1.5.1.2: sourceHasOffer
<<return>> T _— Y — — — — — B
1.5.1.1.2: hasOffer
<<returnz>
case: hasOffer() returns TRUE —11.5.2; isReady

1F isReady () returns TRUE

1.5.3: fire
1.5.3.1: takeToke
1.5.3.1.1: takeOfferedTokens aleokens
N <<return>>
. | 1.5.3.2; takeTokens
1.5.3.1.2: takeOfferedTokens N
<<returnz>
=<return=> «<returnz>
1.6: receiveOffer —] 154 fie
2: sendOffer | |
<<return>> | |

\l
ﬂ

[[
Fig. 5. ActivityNodeandActivityEdgelnteractions

To illustrate this, let's go back to the exampledeéned in figure 3.
When the "Elaborate Analysis Model" action endspribduces an
output, which is the "UML Analysis Model" documeithis document
is placed in the action's OutputPin. In UML, an @uPin represents a
container that holds action's output values (lfekens). An action has
an OutputPin for each type of output it producdse $ame applies for
InputPin. This output has then to be consumed kg "Malidate
Analysis Model" action. Prior to this, the outpwshto be first put in
the action's OutputPin, offered by the OutputPiraltats out coming
edges, checked against guards or conditions, if amjch may be
specified between the first action's OutputPin #re second action's

InputPin. In the example, we can figure out a guspecifying that the
"UML Analysis Model" document's state should be aet'created”
when passing from the source action into the taagdbn, otherwise,
the target action will not start. If the guard &isfied and the target
action is ready to execute, then the output issteaned from the source
action's OutputPin into the target action's InpoitRvhich would then
fire the execution of the action. All these intdi@as represent an
instance of the sequence diagram representedurefky

To refer to the example, it represents the intevast between a
source action's OutputPin, the activity edge andarget action's
InputPin (see top left side of figure 5). Thus, enal metamodel
element's behaviours defined in terms of operatems interactions,
which we did in the context of UML4SPM, the nexépstconsist in
implementing theExecution Model This is presented in the next
section. Of course, these two steps have to beedaynly once and are
completely transparent to the UML4SPM process medelvho just
instantiates the metamodel (from the graphicalogdiand run the
process.

4 Realization of the Execution Model

Hereunder we present two realizations offxecution Model

The Visitor pattern approach with Java

This approach is inspired from the GoF Visitor patt(Gamma et al.
94). The idea here is to decouple the elementsnetkfiin the
UML4SPM metamodel from their runtime behavior. Thésr each
element in the UML4SPM metamodel, there is a ruatixecution”
visitor class that represents a single executionthaft element.
Therefore, we will have for the Software Activitylement, an
ActivityExecution class, for the ActivityNode an
ActivityNodeExecution class, for the ForkNode a kdodeExecution
class, and so on. Each class having a set of apesathat once
implemented, reproduce the execution behavior ef dlement. The
Visitor pattern typically requires implementatioha“visit” operation
on the visitor class and an “accept” operationtenwisited class. In the
Execution Modelexecution classes have an association that ptnts

the UML4SPM element to which they add behavior sTikiin line with
the purpose of the Visitor pattern which “represesm operation to be
performed on the element(s) of an object structued allows the
addition of behavior to the elements in UML4ASPM heitit actually
modifying them.

Figure 6 draws the big picture of th&xecution Model
implementation using the Visitor pattern by givitlge example of
Software Activity, Activity Edge and Activity Nodelements and their
corresponding executable classes inERecution Model

In the design of the UML4SPM Executable Model we ps a
crucial requirement, to keep a strong coupling leetwprocess model
elements and their execution instances. Thus,areiecution classes,
we define only the behavior of UML4SPM elementsréttime, when
the execution class instance is created, it ongpkea reference to the
process model element for which it defines an etxecubehavior.
When the execution class instance requires a datakes it directly
from the process model element definition. Thushé process model
element evolves or has some of its element’s ptiggemodified, the
execution class instance will always has accestheocorrect (last)
version of data. This facility opens some largespectives such as the
possibility to modify process models at runtimehwitt restarting the
execution of the process. Of course, the procestehmodification has
to be performed from the API classes generated ttemUML4SPM
metamodel and under some conditions that still havee defined. The
definition of these conditions is underway and gbegond the scope
of this document.

We provide a Java implementation of this model.sTihiplementation is
used as the basis of the UML4ASPM process execuogine. This
implementation can be also used as a basis of @ityadiagram virtual
machine since we implemented the execution behafidadML2.0 activity
and action packages according to the standard.

~

/ UML4SPM \
Metamodel

UML4SPM
Executable Model

= ActivityExecution

Eg name | String
[inputActivityParamiodeExecution @ ActivityParameterNodeExecution
[Eg outputActivityParamiodeExecution © ActivityParameterNodeExecution
45 ActivityExecution ()

2 CreateActivityEdgelnstance [)

3 CreateActionExecutionInstance ()

2 CreateControlNodeExecutionInstance ()

&2 CreateObjectNodeExecutionInstance ()

2 linkEdgelnstancesToActivityExechodes ()

&2 activityElementSort ()

5 loadworlProductToActivityObjecthodes ()

&2 Initialize ()
&3 AssignRolePerformer ()
&2 Execute ()
&2 Suspend ()
5 Resume ()
&2 Abort ()

& Terminate ()

=%

I UMASPMIL:: SoftwareActivity

3 isInitial ; Boolean

¥ecutionkind ; ActivityExecutionKind
riority & prioritykind

5 complexity © complexitykind

5 duration : String

-

- activi

B T e e e T I T T I R e e e e T = e L

- activity

0.1 - context - activityExecContext]

- edgelnstance
|| ActivityEdgeInstance
gy name : String

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
S context ¢ ActivityExecution !
* &3 ActivityEdgelnstance () :
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5 gethlame ()

2, gethctivityEdge ()
3 setActivityEdge ()
3 getSource ()

&3 getTarget ()

5 sendoffer ()

&2 taleTolens ()

5 countOfferedTokens ()
2, sourceHasOffer ()
2 getGuardstring ()
45 hasGuard ()

3 evaluateGuard ()

!EIIACTM" sy
Egname : Siring
5 offering : boolean
I3 terminated : boolean
2 ActivityNodeExecution () - nodeExecution
5 hasIncomingEdges ()
2 receiveOffer ()
i isReady ()
3 taleOfferedTolens ()
& fre ()
2 getActivityExecution ()
&3 countOfferedTakens ()
5 sendoffer ()
2, addIncomingEdge ()
% addoutgoingEdge ()
2 hasOffer ()

2 terminate () V2
~ - NS -

Fig. 6. Execution Model: the visitor approach

- node

UML:: ActivityNode | 0.1

- node

e I e T T S e e T [T T

-
e
AN
~
-

The Kermeta approach

Kermeta is an MDE platform designed to specify ta@nsts and
operational semantics of metamodels (Muller et2a8D5). The MOF
supports the definition of metamodels in terms atkages, classes,
properties and operations but it does not includecepts for the

definition of constraints or operational semantiBgrmeta extends
MOF with an imperative action language for specifyconstraints and
operation bodies at the metamodel level.

One of the key features of Kermeta is the statbenmosition
operator, which allows extending an existing metdehowith new
elements such as properties, operations, con&raintclasses. This
operator allows defining various aspects in sepaunatts and weaving
them automatically into the metamodel. The weavindone statically
and the composed model is typed-checked to ensersafe integration
of all aspects. This mechanism makes it easy tmereexisting
metamodels or to split metamodels in reusable pidtalso provides
flexibility. For example, several operational sem@ncan be defined
in separate units for a single metamodel and thiennatively woven
depending on a particular need. This is the casanf&iance in the
UML metamodel where several semantics variationfsare defined.

The purpose of Kermeta is to remain a core platféom safely
integrating all the aspects around a metamodel. atance,
metamodels can be expressed using MOF and coristnasng the
OCL. Kermeta also allows importing Java classesoiider to use
services such as file input/output or network comitations, which
are not available in the Kermeta standard framewditks is very
useful for instance to allow interactions betweeodeis and existing
legacy applications. In the case of UML4ASPM, tHisves processes to
interact with business applications, the enterprigekflow, to call
distant web services and so on.

Fig. 7 presents an overview of the architecturahef UML4SPM
implementation using Kermeta. The diagram shows uhigs to be
composed in order to build the UML4SPM environmamd simulator.
Ecore files (UML.ecore and uml4spm.ecore) are metiis expressed
using the Eclipse Modeling Framework (EMF). Becatlse EMF is
compliant with the EMOF standard, these metamodals be used
directly in the implementation. UML.ecore corresgento the
standardized UML 2 metamodel provided by the EelipdIL project.
The uml4spm.ecore metamodel corresponds to thexsate of UML
for software process modeling given in Fig. 1.

UML_ecore | Standard UML2 metamodel provided by the Eclipg®A project.

/ requires

Implemenation of UML2 semantics in Kermeta. Thipiiovided
by the UML Model Development Kits which is parttioé Kermeta
project.

umispm.ecore UMLkmt

package umidspm;

requi re kemeta
requi re "umkspm.ecore’
Constraints.ocl, Semantics.kmf | Feauire UMt
aspect class SoftwareAcivity
{
operation execue (. \oidis do
Il nitiglize actions having InputPins withoutinco mming edges
SPMSimulator.kmt sel f.node . select {e|e.isinstanceOf (Acion)}. each{ acion |
action . asType (Action). getinputPins (). select { pn |
: . pin .incomng .empty }. each{ pin |
Main of the simulator MWorkProduaTolnpUPiS (in)

}
}

Intialize Activity's Intial Nodes
@nt ext Team i nv: se!f.mde.select {__ele. isinstanceOf (IniaNode)} each { inode |
sel f performers> for Al | (roeperformer | inode . asType (IntalNode). fre ()

not roleperformer.iskindOf (Tool) }en d
)

[-]

}
Fig. 7. Weaving Executability to The UML4SPM Metamodel

The *.kmt files on Fig. 7 correspond to Kermetarseufiles. The
UML.kmt is an implementation of the UML semantias Kermeta.
This file especially implements the semantics of WUM activity
diagrams, which is reused in the context of the UWEBM extension.
The file Semantics.kmt corresponds to the impleaten of the
UML4SPM Execution ModelAn excerpt of the source code of this file
is shown on the right hand side of Fig. 7. Thet firse of the listing
specifies the containing package for the definitontained in the file.
Then the “require” directives are used to declagpethdencies with
other units. In the example, the uml4spm metamadigfines a
metaclass named uml4spm::SoftwareActivity. The @igiccode shown
on the listing adds an operation named “execut¢hiimmetaclass.

Adding new elements to a metaclass of the metamsdathieved
using the keyword “aspect” before the declaratibrthe class. The
body of the operation “execute” presented in Figuimplements how
a software activity can be executed. The executbran activity
consists of initializing actions and initial nodekthe activity. In the
code, we first search for actions having input pvmthout incoming

edges in order to initialize them with WorkProduofsthe same type
and then we look for initial nodes and initializeein by calling the
operation “fire”. In order to fully implement tHexecution Modebf the
UML4SPM metamodel, all required operations are enpmnted in the
same way as for the “execute” operation detailetheristing.

The file Constraints.ocl shown in Figure 7 encapi®d constraints
on the UML4SPM metamodel. These constrains ardemrin standard
OCL. Figure 7 presents the listing of a simple ¢@nst as an example.
In the metamodel given in Figure 1 there is an egation called
“performers” from the Team metaclass to RolePerarmetaclass. In
practice, the performers of a team can be eitl@nseor agents but not
tools. The constraint presented is an invariantttier metaclass Team
that ensures that no tools can be added as perf@rme
Finally, the Kermeta source file SPMSimulator.kmontains the entry
point for a simulator, which can load process medeé. instances of
the uml4spm Ecore metamodel), check the constraimthese models
thanks to the OCL constraints and execute theseelsiodsing
operations that were weaved into it.

5 DISCUSSION

Through simulation and execution of software precesdels, the
approach we propose provides project managerseaitier feedbacks
on how the process should behave in productionestadt is
particularly vital to evaluate process definitiacerefully to be sure of
their correctness and effectiveness. Importantseats on resource
allocation, coordination of agents and procedusalés can then be
taken before to put the process on rails. In thieviang we discuss the
outcomes of our work and how they can be usedderao fulfill these
expectations.

The Execution Model

Contrarily to traditional process model executiggp@aches, one
key feature of our approach is the ability to execprocess models
without any transformation or compilation step. dded, current
propositions require a compilation phase towardmescexecution

languages, sometimes proprietary, in order to exettiem (cf. related
work section). This step is most often followedabgnanual coding and
configuration steps, which is error prone and maguce some
traceability issues between process models andr teeecution.
Additionally, these steps have to be performed danb the process
definition is modified, which can become a burdesr process
modelers. Using theExecution Modelapproach, the operational
behavior is defined once in the metamodel and lean be instantiated
many times. Process modelers do not have to ddal eade. It is
completely transparent for them. Process modelsliagetly enclosing
an execution behavior and can be executed and atfieaul
straightforwardly. Process definitions come in fooh UML4SPM
models that abstract away all the implementatiotailde and are
accessible to a broader community of process ugegs, engineers,
stakeholders, project managers, etc).

A generic approach

In this paper we introduced Executability of modelshe context of
UML4SPM. However it is worth noting that this appobh can be
generalized to any MOF-instance language. The sgpach can be
used for instance to define the execution behavmfutJML state
machines in order to make them executable models.

Since the operational semantics we defined respleetene given in
the UML2.0 specification, this makes it possiblesimulate activity
diagrams and to build a UML virtual machine foriaty diagrams
based on the work presented here. The outcomes &xcution Model
regarding the UML2.0 elements has been shared thfOMG group
working on UML executability in order to provide roteedbacks but
also to highlight some new classes, operationsoastcaints that we
defined and which are not addressed by the cu@&f®’s proposition.

Java Vs Kermeta

We provided two realizations of tHexecution Modelthe first one
using the Visitor design pattern with Java and sheond one using
Kermeta and aspect modeling techniques. Our chfmcelava for

implementing the UML4ASPM Executable Model was gdidby

efficiency reasons and by the possibility to reasealready existing
and powerful tooling support such as Eclipse/EMFvettgoment

environment. However two main reasons encouraged unvestigate a
more model-driven solution. The first one relatesthie fact that the
implementation we provide in Java represents on&edfi
implementation and does not take in charge UML sgimavariation

points. Indeed, in the UML standard some elemeratg nave different
semantics and their implementation is the tool-enmnter’s
responsibility. To give a different Java implemeiota for each of the
semantic variation points and to combine them yamild efficiently

would be too complex and error prone. With Kermétas possible to
compose (i.e. to weave) different semantics inte thetamodel.
Process modelers can then choose the appropriatbeafore starting
the process execution. They can also easily extémeldehavior of
metamodel's elements in order to incorporate nemctionalities or
simply to take into account some new constraints &lso possible to
define specific kinds of activities that would hawe charge the
dynamic redefinition of the process model. This ldoallow the

modification of the process at run time in ordetake into account for
instance new deadline constraints or an unexpeleteki of human
resources. In Kermeta it is also possible to take account OCL
constraints which are not addressed in Java.

The second reason for choosing Kermeta is becaisenore in line
with the MDE vision. Indeed, with the Java solutiginis up to the
process modeler to code the visitor pattern withenJava classes. This
supposes a high knowledge of the UML standard amwd rhetaclasses
relate to each others. Using Kermeta, the appticabf the visitor
pattern is completely transparent. The process hapdes only to
identify the class for which he/she aims to defingehavior and simply
specify it. The Kermeta engine, thanks to aspechrtgues, will
internally rely metaclasses to each others, wilvaevéheir execution
behavior and proceed to the execution of their atpmral semantics.

UML4SPM

In the context of this work, a UML4SPM process niagttor and a
process engine was provided. The editor is gergerateomatically

from the UML4SPM metamodel using the EMF Eclipseiemment

(see figure 8). If the UML4SPM metamodel have tonromdified, then

the UML4SPM editor have to be regenerated. Thi$ nat take more

than few seconds. Additionally, if the modificati@an extension to
the metamodel (i.e., addition of a new attributesnetaclasses), the
process models defined in a previous version ddnbst used within

the new editor. Process models are stored usingdOM& standard

XMl format (OMG XMI 05).

The UML4ASPM process execution engine takes as imgut
UML4SPM process model and executes it accordintheoexecution
behavior defined in the UML4SPM executable model.No
configuration or intermediate step is required.

L Resource 3et

= @ platform: fresourcef/UML4SPM_Instance)SimpleExample, umldspm
-l <> Process Model Sip='-—-=='-

S 4 Software Act L e Child k| software Activiey
@ Initial M ¥ Responsible Role
LY <Opaque *#3: Wifork Product
@ <activity “§ Guidance
A =Contral 44 Team
A eControl| (=
=| Copy 4 ngent
¢:5C Tool

5 Software Ackivity Kind
7 wark, Product Kind
“§ Responsible Role Kind
& Time: Limit

Validake

Run As
Debug As
Team
Compare With
Replace With

* ¥ v v v

Load Resource, .,

Refrash
Selection | Parent | List | Tree Shaw Properties View [
Fig. 8. UML4SPM Process Model Editor
Regarding the expressiveness of UML4SPM, we ewvedudt with
the well-known ISPW-6 Software Process Example Ifieelet al. 91),
a standard benchmark software process problem ajgatlby experts
in the field of software process modeling. The desion of the

benchmark process by UML4SPM was not just limitedtite eight
activities of the core problem but it also succekette express most
optional extensions. Tool invocation actions, comioation

mechanisms, exception handling, WorkProduct vensgnand

management features and other constructs offerddMiy4SPM were

used at this aim. This evaluation is presenteddrendetails ir .

6 Reated Work

In this section we only deal with UML-based processdeling
languages, taxonomy of first-generation PMLs cafob@d in (Zameli
and Lee 2001).

In the industrial side, SPEM1.0 was the first sladdSPML based
on UML (UML1.4) (OMG SPEML1.0 2002). However SPEMIh@s
had a limited success within the industry since IPB did not offer
any execution support. Process models were onlyteogsiative
models. In SPEM2.0, the main advance was the priipo®f a clear
separation between the content of a method ofogsiple use within a
specific process. SPEM2.0 extends the UML2.0 Itfuature and does
not use any concept from the UML2.0 Superstrucfuee Activities,
Actions, etc.). Regarding executability, SPEM2.@slprovide neither
concepts nor formalisms for executing process nsodeistead, the
standard proposes to either map process definitrdossome project
planning tools (e.g. MS. Project) which is not ddesed as process
execution but a process planning activity or toirgetransformation
rules into some business process execution languégg. BPEL).
Unfortunately, the standard does not define arth@de rules.

In Di Nitto's et al. approach (Di Nitto et al. 2QQuthors aim at
assessing the possibility of employing a subsetUdfL1.3 as an
executable PML. It comprises two main phases. Tisé dne consists
in describing processes using UML diagrams. Theorsgcphase
consists in translating these UML diagrams into ecadat can be
enacted by the team's events-based workflow engalied OPSS.
Process constituents can be defined by simply almEog a set of
predefined classes provided by the approach in fofrm UML class
diagram. The flow of work is given in activity di@ns and the

3 UML4SPM evolution using ISPW6: http://pagespersstaye.lip6.fr/Reda.Bendraou/Documents/
UML4SPMEvaluation_ISPW6.pdf

lifecycle of each entity is defined by a state miaeh However, the
activity and class diagrams have no links with eattier. The approach
does not extend the UML language nor introduces mewcepts.
Process elements are simply instances of the UMdsmetaclass,
which means that they all have the same semanigtsiatation as the
UML Class metaclass. Regarding execution, it iem@saly based on
how state diagrams defined by the user are precisagh and sound in
order to enable a complete code generation andlléav grocess
execution within OPSS. Otherwise, code has to becdnanually. The
weak point in the executability aspect remains nmfarmation defined
in activity diagrams (i.e., precedence between viigs), state
machines and class diagrams are integrated toajernsmch of the Java
classes needed for the execution. Authors did maildhow this
integration is realized.

Another approach, called Promenade (Franch and H88),
basically follows the same principle as DiNittdola model a process,
one has to specialize the set of predefined claps@gded by the
approach. To define precedence between proces¥s, tane has to
define a precedence graph, which defines the drelsveen all tasks of
the process. However, authors do not specify haptlcedence graph
(including precedence rules) is to be integrateth Whe class diagram
to form a complete process description. The appraaes not provide
any mechanism or way to execute Promenade procedsisn No tool
or prototype was provided.

In (Chou and Chen 2000), Chou proposed a softwaoeeps
modeling language consisting of high-level UML1.4s8d diagrams
and a low-level process language. While UML diagsaame used for
process's participants understanding, the pro@esyudge is used to
represent the process - from UML diagrams — in ahm-readable
format i.e., a program. The principal obstacle lo§ tapproach is the
lack of an automatic generation of process progrdromm UML
diagrams, which imposes the rewriting of the preckg developers
mastering the proprietary OO language providedchkeyatuthor.

7 Conclusion

In this paper, we proposed an approach for buildexgcutable
software process models. Additionally to codingrisabest practices,

process models can now be used for simulation aecuéon purposes.
This would help not only for agent coordinationt llso can be used
as means to improve and to validate process defisit Executability
of models was addressed in the context of a softwercess modeling
language (i.e., UML4SPM) thanks to tBecution Modelpproach.
However, it can be generalized to any MOF-instalacgyuage. We
provided two realizations of thexecution ModelThe first one is Java
using the visitor pattern. The second one, a moeldriven
solution, is based on Kermeta and aspect modekogniques. The
outcome of this work is largely used by our indiastpartners within
the Modelplex projet. A larger evaluation of theeus UML4SPM in
production stages is underway. In the context ot@ss modeling, an
important perspective of this work is the defintiof the set of
activities and constraints that would allow a psescéefinition to be
modified at runtime and without restarting the @®& execution i.e.
preserving the process state.

References

Bendraou, R. Gervais, M.P. and Blanc, X. “UML4SPM: MLR.0-Based metamodel for
Software Process Modeling”, in Proceedings of th€MAEEE 8th International
Conference on Model Driven Engineering Languages Systems (MoDELS), Montego
Bay, Jamaica, Oct. 2005, LNCS, Vol. 3713, PP 17-38.

Bendraou, R., Sadovykh, A., Gervais, M.P. and Blanc;Sé6ftware Process Modeling and
Execution: The UML4SPM to WS-BPEL Approach”. In Peedings of the 33rd
EUROMICRO Conference of Software Engineering Advanceglidation (SEAA), pp.
314-321, Lubeck, Germany, IEEE Computer Societg$Rre

Chou, S.C., and Chen, J.Y.J., “Process Program Dewelot Based on UML and Action
Cases, Part 1: the Model, in Journal of Object-QeériProgramming, Vol. 13, Num. 2, pp
21-27, 2000.

Di Nitto, E. et at. “Deriving executable processdi#ptions from UML”, in Proc. of the 24th
International Conference on Software Engineeri@'), Orlando, Fl. 2002, ACM Press.

Dumas, M. and ter Hofstede, A., “UML Activity Diagns as a Workflow Specification
Language,” in Proceedings of the 4th Internaticdbahference on The Unified Modeling
Language, Modeling Languages, Concepts, and Toddd,.2

Franch, X. and Rib, J. “A Structured Approach tot®afe Process Modelling,” in Proceedings
of the 24th Conference on EUROMICRO - Volume 2, 1998.

Fuggetta, A. “Software Process: A Roadmap”. 22nérirdtional Conference on Software
Engineering (ICSE), June 4-11, Limerick (Irelar&,M, 2000.

Gamma E., Helm R., Johnson R., and Vlissides J. tPeBiatterns: Elements of Reusable
Object- Oriented Software”. Addison-Wesley, 1994.

Jablonski, S. and Bussler, C. “Workflow Managementidiling Concepts, Architecture and
Implementation”, London, UK.: Thomson Computer Pré896.

Kellner, M.l., Feiler, P.H., Finklestein, A., Kataya, T., Osterweil, L.J., Penedo, M.H.,
Rombach, H.D. “ISPW-6 software process example™Ptac. of the first Intern. Conf. on
the Software Process. IEEE Computer Society, Wastir) DC, 1991, pp. 176-186.

Lonchamp, L. “A structured conceptual and termigadal framework for software process
engineering”. In Proceedings of the 2nd Internaticd®onference on the Software Process
(ICSP 2) (Berlin, Germany). IEEE Computer Society Bress Alamitos, CA., USA, 1993.

Muller, P.A. Fleurey, F. and Jézéquel, J.M. “Wegvexecutability into object-oriented meta-
languages” In Proceedings of MODELS/UML'2005, votui713 of LNCS, pp 264-278,
Montego Bay, Jamaica, October 2005. Springer-Verlag.

OASIS, Web Services Business Process Execution laggg¥ersion 2.0. Working Draft.
WS-BPEL TC OASIS, January 2007.

OMG MOF, "Meta Object Facility version 2.0", adogtespecification, OMG document
formal/06-01-01, January 2006, at http://www.omg.or

OMG, “Semantics of a Foundational Subset for Exaget UML Models RFP”, OMG
document ad/05-04-02, May 2008, at: http://www.arngfdocs/ad/05-04-02.pdf

OMG SPEML1.0, “Software Process Engineering Metartipd@MG document formal/02-
11/14, November 2002, at http://www.omg.org.

OMG, “Workflow Management Facility Specification 22, OMG document formal/00-05-02,
April 2000, at http://www.omg.org.

OMG XMI, “XML Metadata Interchange”, version 2.1.0MG document formal/05-09-01 ,
September 2005 at http://www.omg.org

Osterweil, L. “Software Processes Are Software TwoProceedings of the 9th International
Conference on Software Engineering (ICSE'9), NewkY®®87, ACM Press.

Russell, N. Ter Hofstede, A., Edmond D. et al., “Wlmw data patterns: Identification,
representation and tool support,” in Proceedingshef 25th International Conference on
Conceptual Modeling, Klagenfurt, Austria, 2005.

Russell, N., Van der Aalst, W. et al., “Workflow oesce patterns: Identification,
representation and tool support,” in Proceedingshef 17th Conference on Advanced
Information Systems Engineering (CAISE’'05), PortortBgal, 2005, pp. 216—-232.

Van der Aalst, W. et al. “Workflow Patterns”, inuimal of Distributed and Parallel Databases,
14(3), pages 5-51, July 2003.

White, S. “Process modeling notations and workflmatterns”, Workflow Handbook 2004, L.
Fischer, ed., pp. 265-294, FL, USA: Future Stra®dic., Lighthouse Point, 2004.

Wohed, P. et al. “Pattern-based Analysis of thet@bflow Perspective of UML Activity
Diagrams”, in L. Delcambre et al., editors, Prodegs of the 24th International Conference
on Conceptual Modeling (ER 2005), volume 3716 of uextNotes in Computer Science,
pages 63-78. Springer-Verlag, Berlin, 2005 (a).

Wohed, P. et al., “Pattern-based analysis of UMiviyg diagrams,” in Proceedings of the 25th
International Conference on Conceptual Modeling (BR%), Klagenfurt, Austria, 2005 (b).

Zameli, K. Z., Lee, P.A. “Taxonomy of Process Mdibgl Languages”, in Proc. of the
ACS/IEEE Inter. Conf. on Computer Systems and Apgilins (AICCSA'01) Beirut,
Lebanon, June 2001.

